超嗜热古菌Thermococcus siculi HJ21高温酸性α-淀粉酶及其基因克隆的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
α-淀粉酶为α-1,4-葡聚糖-4-葡聚糖水解酶(a-1,4-glucan-4-glucanohydrolase EC.3.2.1.1),是最重要的工业酶制剂之一,已被广泛应用在食品、发酵、纺织、造纸和制药等诸多行业。目前工业用α-淀粉酶主要来自嗜热脂肪芽孢杆菌(Bacillus stearothermophilus)和地衣芽孢杆菌(Bacillus licheniformis),这些酶的最适作用条件为90℃和pH 6,存在的主要问题是热稳定性差,高于100℃和pH低于6.0时易失活,热稳定性依赖Ca2+。超嗜热微生物由于能产生在高温下活性高,且具有很好热稳定性的超嗜热酶,而成为研究的热点。本文主要对一株分离自深海热液口的超嗜热古菌HJ21进行生物学特性和分子鉴定、高温酸性α-淀粉酶发酵条件和酶学性质、α-淀粉酶基因的克隆和序列分析、αC-淀粉酶基因在大肠杆菌中的表达和重组酶性质以及重组大肠杆菌高密度高表达培养条件的研究,主要研究结果如下:
     1.对一株分离自深海热液口的极端厌氧的超嗜热古菌HJ21进行了生长特性研究和分子鉴定的研究。菌株HJ21直径为1-1.2μm,菌株生长温度范围60-94℃,菌株最适生长温度88℃;菌株生长pH范围为5.0-9.0,其最适生长pH范围为6.5;生长NaCl浓度范围为10-50g·L-1,最适NaCl浓度为20 g·L-1。该菌株在酵母粉、蛋白胨、胰蛋白胨和酪蛋白等培养基中生长良好;淀粉、麦芽糖、葡萄糖、蔗糖、纤维二糖、乳糖、糖原、明胶促进生长。菌株HJ21生长不需要硫,但没有硫菌株生长缓慢,而在培养基中添加硫会促进菌株生长,振荡培养比静止培养可显著减少硫的添加量。根据其形态特征、生理生化特性以及16S rRNA基因序列分析结果,鉴定HJ21菌株为Thermococcus siculi。目前国内外尚无Thermococcus siculi产高温α-淀粉酶的研究报道。
     2.对Thermococcus siculi产α-淀粉酶发酵条件和酶学性质研究。该菌株发酵9h后到达产酶高峰,产酶温度范围为60-90℃,其最适产酶温度为80℃;产酶pH范围为5.0-9.0,最适产酶pH为7.5;产酶NaCl浓度范围为5-40 g·L-1,最适NaCl浓度为25 g·L-1;菌株接种量5%(v·v-1)。糖原、淀粉、麦芽糖、酵母膏和蛋白胨促进产酶。该菌株产生的α-淀粉酶的分子量为51.4 KDa,最适作用温度为95℃,在100℃仍有60%的酶活力。酶在90℃的半衰期为5h,在100℃2h仍有40%的残余酶活,酶的热稳定性不依赖Ca2+。酶的最适作用pH 5.0,在pH 4.5仍有80%的酶活力,pH在5.0-7.0较稳定(80℃2h)。金属离子Mg2+、Sr2+、K+、Na+对酶有激活作用,Cu2+、Pb2+、Hg2+、Zn2+、Al3+对该酶均有抑制作用。1mmol·L-1和5mmol·L-1 N-溴代丁二酰亚胺对酶的活性具有较强抑制作用。
     3.克隆了T. siculi HJ21 a-淀粉酶基因并进行了序列分析。根据NCBI中已报道的超嗜热古菌α-淀粉酶的基因序列设计引物,通过聚合酶链式反应(PCR)的方法获得了T. siculi HJ21 a-淀粉酶基因的保守序列,采用SiteFinding-PCR技术扩增获得T. siculi HJ21 a-淀粉酶基因两端的序列。通过序列分析和拼接获得了1374bp完整的T. siculi HJ21 a-淀粉酶基因。经生物信息学软件分析该基因与T. hydrothermalis和T. sp. OGL-20P的耐高温α-淀粉酶亲缘关系最近,相似度达到95%以上。该α-淀粉酶基因片段包含与4个其他超嗜热古菌的α-淀粉酶相同的保守区域。将该α-淀粉酶氨基酸序列提交http://swissmodel.expasy.org蛋白质在线分析服务器。表明T. siculi HJ21 a-淀粉酶具有典型的(α/p)8桶状结构形成一个紧密的球体结构。通过分析密码子的使用情况得知,该α-淀粉酶存在着密码子的兼并性和使用的偏向性问题。
     4. T. siculi HJ21 a-淀粉酶基因在大肠杆菌中得到表达并研究了重组酶的性质。构建了在N端添加His6标签的表达载体pEt-28a- His6-amy,获得了重组大肠杆菌。重组酶经过加热处理、DEAE离子交换层析、Ni亲和层析后和胶回收的方法得到纯化。对重组酶酶学性质研究发现,该酶的分子量约为50 KD。重组α-淀粉酶的最适作用温度90℃,在95℃和100℃分别有90%和70%的酶活力。重组α-淀粉酶热稳定性不依赖于Ca2+,酶在80、90、100℃分别保温5h后,其残余酶活分别为82%、77%和69%。重组酶的作用pH范围为pH 4-9,最适作用pH为5.0-5.5,在pH 4.5有81%残余酶活。该酶在100℃1 h,pH 5-7.5的范围内有较好的热稳定性。金属离子K+、Na+对酶有激活作用,Hg2+、Pb2+、Al3+、Cu2+、Fe3+和Zn2+等能够强烈的抑制酶活性。1 mmol·L-1和5 mmol·L-1 N-溴代丁二酰亚胺对酶的活性具有较强抑制作用。该酶的Km为45mg·mL-1, Vmax为9 mg·ml-1·min-1。该重组酶分解马铃薯淀粉的主要产物是麦芽糖和麦芽三糖。
     5.研究了在摇瓶条件下重组大肠杆菌高密度高表达培养条件:接种量1%,装液量为20%(v·v-1),pH 7.0,温度37℃,培养菌液的OD600达到1.0(约4h),再加入浓度为1 mmol·L-1的诱导剂IPTG,诱导时间4 h。葡萄糖在0.5 g·L-1,甘油浓度在0.5 g·L-1,蛋白胨的浓度在10 g·L-1,酵母粉浓度在5 g·L-1,磷酸盐浓度在10mmol·L-1,硫酸镁浓度为0.6 g·L-1。利用响应面方法对重组菌产α-淀粉酶的发酵条件进行优化。选择培养基装液量、pH、诱导时机和诱导时间4因素,分别在3个水平上进行考察,优化的发酵条件为:培养基装液量为23.57%,pH为6.4,培养4.03 h后进行IPTG诱导并持续4.16 h。重组菌酶比活力为0.4 U·mg-1,较优化前提高了1.56倍,目的蛋白表达量为8.75%,较优化前提高了1.64倍。
a-Amylase(EC 3.2.1.1), endo-acting enzyme that hydrolyzes starch by cleaving-1,4-glucosidic linkages at random sites, is one of the most important commercial enzymes widely used in starch-processing, brewing, alcohol production, textile, and other industries. The most thermostable a-amylase in industry is produced from Bacillus licheniformis. This enzyme operates optimally at 90℃and pH 6, and it requires addition of calcium ion (Ca2+) for its thermostability. Hyperthermophiles that optimally grow at temperatures above 80℃, have attracted many researchers' attention as they are a source of enzymes with thermoactive and outstanding thermostability. In this paper, we report the biological characteristics and molecular identification of a hyperthermophilic archaeon (strain HJ21), the production and characterization of an thermoactive a-amylase produced by this strain, the cloning and sequence analysis of a-amylase gene, the expression in E. coli and the characterization of recombinant a-amylase, and cultivation optimization of high cell density and high expression for the recombinant E. coli. Main study results as following:
     1. The identification and characterization of extremely anaerobic hyperthermophilic archaeon strains HJ21, isolated from a deep-sea hydrothermal vent, has been studied. The cells were round to slightly irregular cocci,1 to 1.2μm in diameter. The isolate grew between 60 and 94℃with an optimum around 88℃. The pH range for growth was 5.0 to 9.0, with an optimum around 6.5~7.0. The NaCl range for growth was 10 to 50 g·L-1, with an optimum around 20 g·L-1. Strain HJ21 grew much better in the medium with yeast extract, peptone, tryptone, casein and HJ21 was capable of growing on starch, maltose, glucose, sucrose, cellobiose, lactose, glycogen. The growth of strain HJ21 could be enhanced by elemental sulfur. Cells were also grown in the absence of elemental sulfur; however, the growth was very slow. The growth of strain HJ21 could be enhanced by elemental sulfur. The amount of elemental sulfur added in medium in shaken cultures was less than the medium in stable cultures. On the basis of 16S rDNA sequence comparisons, in combination with morphology, physiological characteristics, it is identified as Thermococcus siculi. At present the research about thermoactive a-amylase from Thermococcus siculi have not reported.
     2. The production and characterization of a-amylase from T. siculi HJ21 has been studied. Maximum enzyme production was achieved after 9 h cultivation. The temperature of a-amylase production were between 60 and 90℃with an optimum around 80℃. The pH range for production of amylase was 5.0 to 9.0, with an optimum around 7.5. The NaCl range for production of amylase was 10 to 50 g·L-1, with an optimum around 2.5 g·L-1. Inoculation amount of the strain was 5%(v·v-1). Addition of yeast extract, peptone, glycogen, starch and maltose enhanced enzyme production. The strain HJ21 produced extracellular thermostable and acid-stable a-amylase. The molecular weight of the enzyme was estimated to be 51.4 KDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The a-amylase exhibited maximal activity at 95℃. The half-life of the enzyme was 5 h at 90℃, more than 40 of the enzyme activity remained after 2h of incubation at 100℃. The enzyme did not require Ca2+ for thermostability. The optimal pH of a-amylase was observed at 5.0, and more than 80% amylase activity of the maximum enzyme activity was detected at pH 4.5. The enzyme was shown to be stable in the broad range of pH 5.0 to 7.0 (at 80℃2h). The enzyme was activated by Mg2+, Sr2+, K+, Na+. It was inhibited by Cu2+、Pb2+、Hg2+、Zn2+、Al3+. N-Bromosuccinimide (at 1 mmol·L-1 and 5 mmol·L-1) showed a significant repression to enzyme activity.
     3. Thisα-amylase gene was cloned and its nucleotide sequence analysed The gene sequence between the conserved region was acquired by PCR using the primers designed based on the sequence of that of hyperthermophilic archaeon deposited in the GenBank. The upstream and downstream of T. siculi HJ21α-amylase gene was acquired by siteFind-PCR. After Sequence analysis, the complete T. siculi HJ21α-amylase gene about 1374bp was obtained through the juncture of them. The similarity between theα-amylase of T. siculi HJ21 and that of T. hydrothermalis and T. sp. OGL-20P was over 95%. Four highly conserved regions, possibly forming the active site, have been identified in a-amylases. These regions were also found in T. siculi HJ21 a-amylase gene and showed great similarities with those of other Thermococcales a-amylases secreted by thermophilic organisms. The gene sequence of was submitted to http://swissmodel. expasy. org to predict the structure of the a-amylases. T. siculi HJ21 a-amylase was single and classicα/βstructure. There were problems of degenerate and preference of codon usage in a-amylase through analysis the sequence of amimo acid.
     4. The gene encoding a-amylase from T. sicili HJ21 was expressed in E. coli and the characterization of the recombinant enzyme was studied. The expression plasmid pEt-28a-His6-amy was constructed. The plasmid was transformed into E. coli BL-21(DE3). The recombinant a-amylase was purified to homogeneity by heat treat, DEAE-sepherose ion exchange chromatography, Ni affinity chromatography and gel recovery. The molecular weight of the enzyme was estimated to be 50 KD by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The optimum temperature for the activity was 90℃. More than 90% and 70%α-amylase activity of the maximum enzyme activity was detected at 95℃and 100℃respectively. The enzyme did not require Ca2+ for thermostability.82%、77% and 69% of the enzyme activity remained after 5 h of incubation at 80,90 and 100℃respectively. The amylase exhibited maximal activity at pH 5.0 to 5.5 and was stable in the range of pH 5.0 to 7.5 at 100℃,1 h. The enzyme was activated by K+, Na+. It was inhibited by Hg2+、Pb2+、Al3+、Cu2+、Fe3+、Zn2+. N-Bromosuccinimide (at 1 mmol·L-1 and 5 mmol·L-1) showed a significant repression to enzyme activity. The Km and Vmax vales of the amylase for soluble starch were 45 mg·mL-and 9 mg·ml-1·min-1, respectively. The amylase hydrolyzed soluble starch to produce maltose and maltotriose as the main products.
     5. Cultivation optimization of high cell density and high expression for the recombinant E. coli in shaking condition. Inoculation amount 1%(v·v-1), liquid filling quantity,20%(v·v-1);pH,7.0;temperature,37℃;inducement opportunity, OD6001.0, amount of IPTG,1 mmol·L-1; inducement time,4 h. The optimal concentration in medium were:glucose,0.5g·L-1; glycerol,0.5g·L-1;peptone,10 g·L-1; yeast extract,5 g·L-1; KH2PO4,10 mmol·L-1;MgSO4,0.6 g·L-1. Response surface design was used to optimize the fermentation condition for a-amylase production by the recombinant E. coli. Facters such as liquid filling quantity, pH, inducement opportunity and inducement time were selected and tested at three levers, respectively. The optimum conditions of the parameters were liquid filling quantity 23.57%, pH 6.4, inducement opportunity 4.03 h and inducement time 4.16 h. After Optimization, specify amylase activity was 10.4 U·mg-1, increases by 1.56 times, and the amount of the protein expression was 8.75%, increases by 1.64 times.
引文
Antje C. Springer Handbook of Enzymes[J]. Springer-Verlag Berlin Heidelberg New York,2003, 1-39
    Adams M W W. Enzymes and proteins from organisms that grow near and above 100℃[J]. Annu Rev Microbiol,1993,47:627-658
    Armand S, Vieille C, Gey C, et al. Stereochemical course and reaction products of the action of β-xylosidase from Thermoanaerobacterium saccharolyticum strain B6A-RI[J]. Bio Chem,1996, 236:706-713
    Babu K R. Satyanarayana T. a-Amylase Production by Thermophilic Bacillus coagulans in Solid State Fermentation[J]. Pro Biochem,1995,30:305-309
    Barns S M, Delwiche C F, Palmer J D, et al. Perspectives on archaeal diversity, thermophily and monophily from environmental rRNA sequences[J]. Paoc Narl Acad Sci,1996,93:9188-9193
    Barns S M, Fundyga R E, Jeffries M W, et al. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment J]. Proc Narl Acad Sci,1994,91:1609-1613
    Barns S M, Fundyga R E, Jeffries M W., et al. DNA was extracted from a soil sample using the "direct lysis" method as described in Barns[J]. Proc Narl Acad Sci,1994,91:1609-1613
    Baross J A, Deming J W. Microbiology of Deep Sea Hydrothermal Vent Environments [J]. CRC Press,1995,169-217
    Baross J A, Holden J F, Pledger R J, et al. Proceedings of the International Summer Seminar on Deep-Sea Microorganisms [J]. JAMSTEC,1993,69-73
    Bauer M W, Driskill L E, Callen W, et al. An endoglucanase, EglA, from the hyperthermophilic archaeon Pyrococcus furiosus hydrolyzes β-1,4 bonds in mixed-linkage (133), (134)-p-D-glucans and cellulose[J]. Bacteriol,1999,181:284-290
    Bauer M W, Driskill L E, Kelly R M. Glycosyl hydrolases from hyperthermophilic microorganisms[J]. Curr. Opin. Biotechnol,1998,9:141-145
    Bayramoglu G, Yilmaz M, Arica Y M. Immobilization of a thermostable α-amylase onto reactive membranes:kinetics characterization and application to continusous starch hydrolysisi[J]. Food Chemistry,2004,4(84):591-599
    Bergquist P L, Morgan H W. The molecular genetics and biotechnological application of enzymes from extremely thermophilic eubacteria[M]. New York,N.Y,1992,44-75
    Bertoldo C, Antranikian G. Starch-hydrolyzing enzymes from thermophilic archaea and bacteria[J]. Curr Opin Chem Biol,2002,6:151-160
    Bertoldo C, Duffner F, Jorgensen P L, et al. Pullulanase type I from Fervidobacterium pennavorans Ven5:cloning, sequencing, and expression of the gene and biochemical characterization of the recombinant enzyme [J]. Environ Microbiol,1999,65:2084-2091
    Bischoff J L, Rosenbauer R J. An empirical equation of state for hydrothermal seawater (3.2 percent NaCl)[J]. Am Sci,1985,285,725-763
    Bok J D, Yernool D A, Eveleigh D E. Purification, characterization, and molecular analysis of thermostable cellulases CelA and CelB from Thermotoga neapolitana [J]. Environ Microbiol,1998, 64:4774-4781
    Brock T D. Thermophilic microorganism and life at high temperatures [M]. Springer-Verlag,1978
    Bronnenmeier K, Kern A, Liebl W, et al. Purification of Thermotoga maritima enzymes for the degradation of cellulosic materials [J]. Environ Microbiol,1995,61:1399-1407
    Brown S H, Kelly R M. Characterization of amylolytic enzymes, having both a-1,4 and a-1,6. hydrolytic activity, from the thermophilic archaea Pyrococcus furiosus and Thermococcus litoralis [J]. Environ Microbiol,1993,59:2614-2621
    Brown S H, J(?)holm C, Kelly R M. Purification and characterization of a highly thermostable glucose isomerase produced by the extremely thermophilic eubacterium Thermotoga maritime[J]. Biotechnol Bioeng,1993,41:878-886
    Buchanan C L, Connaris H, Danson M J, et al. An extremely thermostable aldolase from Sulfolobus solfataricus with specificity for non-phosphorylated substrates [J]. Bio Chem,1999,343:563-570
    Burdette D S, Secundo F, Phillips R S, et al. Biophysical and mutagenic analysis of Thermoanaerobacter ethanolicus secondary-alcohol dehydrogenase activity and specificity [J]. Bio Chem,1997,326:717-724
    Burdette D S, Vieille C, Zeikus J G. Cloning and expression of the gene encoding the Thermoanaerobacter ethanolicus 39E secondaryalcohol dehydrogenase and biochemical characterization of the enzyme [J]. Bio Chem,1996,316:115-220
    Burggraf S, Olsen G J, Stetter K O, et al. A phylogenetic analysis of Aquifex pyrophilus[J]. Syst Appl Microbio,1992,115:352-356
    Butterfield D A, Massoth G J, McDuff R E, et al. Geochemistry of hydrothermal fluids from Axial Seamount hydrothermal emissions study vent field, Juan de Fuca Ridge:Subseafloor boiling and subsequent fluid-rock interaction [J]. Geophys Res,1990,95:12895-12921
    Canganella F, Andrade C M, Antranikian G, Characterization of amylolytic and pullulytic enzymes from thermophilic archaea and from a new Fervidobacterium species[J]. Appl Microbiol Biotechnol, 1994,42:239-245
    Chevaldonne P, Desbruyeres, Childress D J J. Some like it hot, some like it hotter [J]. Nature,1992, 359:593-594
    Chung Y C, Kobayashi T, Kanai H, et al. Purification and properties of extracellular amylase from the hyperthermophilic archaeon Thermococcus profundus DT5432 [J]. Environ Microbiol,1995, 61:1502-1506
    Colombo S, D'Auria S, Fusi P, et al. Purification and characterization of a thermostable carboxypeptidase from the extreme thermophilic archaebacterium Sulfolobus solfataricus [J]. Eur Biochem,1992,206:349-357
    Corliss J B, Dymond J, Gordon L I, et al. Submarine thermal springs on the Galapagos Rift [J]. Science,1979,203:1073-1083
    Davies G J, Gamblin S J, Littlechild J A, et al. The structure of a thermally stable 3-phosphoglycerate kinase and a comparison with its mesophilic equivalent[J]. Proteins Sfruct Funct Genet,1993,15:283-289
    Declerck N, Machius M. Joyet P. et al. Hyperthermostabilization of Bacillus licheniformis alpha-amylase and modulation of its stability over a 50 degrees C temperature range[J]. Protein Eng, 2003,16(4):287-293
    Deming J W, Baross J A. Deep-sea smokers:windows to a subsurface biosphere[J]. Geochimicaet Cosmochimica Acta,1993,3219-3230
    Deming J W, Baross J A. Solid medium for culturing black smoker bacteria at temperatures to 120 ℃[J]. Appl Environ Microbiol,1986,51:238-243
    Demirjian D C, Moris-Varas F, Cassidy C S. Enzymes from extremophiles[J]. Current Opinion in Chemical Biology,2001,5:144-151
    Dong G, Vieille C, Savchenko A, et al. Cloning, sequencing, and expression of the gene encoding extracellular a-amylase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme[J]. Environ Microbiol,1997,63:3569-3576
    Dong G, Vieille C, Zeikus J G. Cloning, sequencing, and expression of the gene encoding amylopullulanase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme[J]. Environ Microbiol,1997,63:3577-3584
    Dong G, Zeikus J G. Purification and characterization of alkaline phosphatase from Thermotoga Neapolitan[J]. Enzyme Microb Technol,1997,21:335-340
    Erra-Pujada M, Debeire P, Duchiron F, et al. The type II pullulanase of Thermococcus hydrothermalis:molecular characterization of the gene and expression of the catalytic domain [J]. Bacteriology,1999,181:3284-3287
    Friedrich A B, Antranikian G. Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermotogales[J]. Environ Microbiol,1996,62:2875-2882
    Fukusumi S, Kamizono A, Horinouchi S, et al. Cloning and nucleotide sequence of a heat-stable amylase gene from an anaerobic thermophile, Dictyoglomus thermophilum[J]. Eur Biochem,1988, 174:15-21
    Gabelsberger J, Liebl W, Schleifer K H. Cloning and characterization of P-galactoside and β-glycoside hydrolysing enzymes of Thermotoga maritime[J]. FEMS Microbiol Lett,1993,109:131-138
    Ganghofner D, Kellermann J, Staudenbauer W L, et al. Purification and properties of an amylopullulanase, a glucoamylase, and an a-glucosidase in the amylolytic enzyme system of Thermoanaerobacterium thermosaccharolyticum[J].Biosci Biotechnol Biochem,1998,62:302-308
    Gantelet H, Duchiron F. A new pullulanase from a hyperthermophilic archaeon for starch hydrolysis[J]. Biotechnol Lett,1999,21:71-75
    Gomes J, Steiner W. Production of a high activity of an extremely thermostable b-mannanase by the thermophilic eubacterium Rhodothermus marinus, grown on locust bean gum[J]. Biotechnol Lett, 1998,20:729-733
    Guagliardi A, Napoli A, Rossi M, et al. Annealing of complementary DNA strands above the melting point of the duplex promoted by an archaeal protein[J]. Mol Biol,1997,267:841-848
    Haney P J, Stees M, Konisky J. Analysis of thermal stabilizing interactions in mesophilic and thermophilic adenylate kinases from the genus Methanococcus[J]. Biol Chem,1999, 274(40):28453-28458
    Harris G W, Pickersgill R W, Connerton I, et al. Structural basis of the properties of an industrially relevant thermophilic xylanase[J]. Proteins,1997,29:77-86
    Haseltine C, Rolfsmeier M, Blum P. The glucose effect and regulation of a-amylase synthesis in the hyperthermophilic archaeaon Sulfolobus solfataricus[J]. Bacteriology,1996;178:945-50
    Hedrick D B, Pledger R D, White D C, et al. In situ microbial ecology of hydrothermal vent sediments[J]. FEMS Microbiol Ecol,1992,101:1-10
    Hei D J, Clark D S. Pressure stabilization of proteins from extreme thermophiles[J]. Environ Microbiol,1994,60:932-93
    Hendriksen N B, Mayr C, Winding A. Community level physiological profile of soil bacteria unaffected by extraction method[J]. Microbiol Methods,1999,36:29-33
    Huber H, Stetter K O. Hyperthemophiles and their possible potential in biotechnology [J]. Biotechology,1998,64:39-52
    Huber R, Wilharm T, Huber D, et al. Aquifex pyrophilus gen. nov., sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria[J]. Syst Appl Microbiol,1992, 15:340-351
    Kengen S W, Bok F A, van Loo N D, et al. Evidence for the operation of a novel Embden-Meyerhof pathway that involves ADP-dependent kinases duringsugar fermentation by Pyrococcus furiosus[J]. Biol Chem,1994,269:17537-17541
    Hess J M, Kelly R M. Influence of polymolecular events on inactivation behavior of xylose isomerase from Thermotoga neapolitana 5068[J]. Biotechnol Bioeng,1999,62:509-517
    Hyun H H, Zeikus J G. General biochemical characterization of thermostable extracellular b-amylase from Clostridium thermosulfurogenes[J]. Environ Microbiol,1985,49:116-1167
    Ikeda M, Clark D S. Molecular cloning of extremely thermostable esterase gene from hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli[J]. Biotechnol Bioeng,1998, 57:624-629
    Jannasch H W. Seafloor Hydrothermal systems:Physical, Chemical, Biological and Geological Interactions[M]. American Geophysical Union Press,1985,91:273-293
    Kalogiannis S, Loleggio L, Bhat M K, et al. High resolution structure and sequence of T.aurantiacus xylanase I:implications for the evolution of thermostability in family 10 xylanases and enzymes with(beta)alpha-barrel architecture [J]. Proteins,1999,36(3):295-306
    Kashiwabara S, Ogawa S, Miyoshi N, et al. Three domains comprised in thermostable molecular weight 54,000 pullulanase of type I from Bacillus flavocaldarius KP1228 [J]. Biosci Biotechnol Biochem,1999,63:1736-1748
    Kengen S W, Luesink E V, Stams A J, et al. Purification and characterization of an extremely thermostable b-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus [J]. Eur Biochem, 1993,213:305-312
    Kelly R M, Adams M W W. Metabolism in hyperthermophilic microorganisms [J]. Antonie van Leeuwenhoek,1994,66:247-270
    Kim C H, Nashiru O, Ko J H. Purification and biochemical characterization of pullulanase type I from Thermus caldophilus[J]. FEMS Microbiol Lett,1996,138:147-152
    Kim Y O, Kim H K, Bae K S, et al. Purification and properties of a thermostable phytase from Bacillus sp. DS11[J]. Enzyme Microb Technol,1998,22:2-7
    Klug M J, Markovetz A J. Thermophilic bacterium isolated on n-tetradecane[J]. Nature,1967, 215:1082-1083
    Koch R, Canganella F, Hippe H, et al. Purification and properties of a thermostable pullulanase from a newly isolated thermophilic anaerobic bacterium, Fervidobacterium pennavorans ven5[J]. Environ Microbiol,1997,63:1088-1094
    Koch R, Spreinat A, Lemke K, et al. Purification and properties of a hyperthermoactive a-amylase from the archaeobacterium Pyrococcus woesei[J]. Arch. Microbiol,1991,155:572-578
    Koch R, Zablowski P, Spreinat A, et al. Extremely thermostable amylolytic enzyme from the archaebacterium Pyrococcus furiosus[J]. FEMS Microbiol Lett,1990,71:21-6
    Koh S, Shin H J, Kim J S, et al. Trehalose synthesis from maltose by a thermostable trehalose synthase from Thermus caldophilus[J]. Biotechnol Lett,1998,20:757-761
    Kozianowski G, Canganella F, Rainey F A, et al. Purification and characterization of thermostable pectate-lyases from a newly isolated thermophilic bacterium, Thermoanaerobacter italicus sp. Nov[J]. Extremophiles,1997,1:171-182
    Kumar S, Tsai C J, Nussinov R. Factors enhancing protein thermostability[J]. Protein Eng, 2000,3(3):179-191
    Lawyer F C, Stoffel S, Saiki R K, et al. Isolation, characterization, and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus[J]. Biol Chem,1989,264:6427-6437
    Lee C Y, Zeikus J G. Purification and characterization of thermostable glucose isomerase from Clostridium thermosulfurogenes and Thermoanaerobacter strain B6A[J]. Biochem,1991,273:565-571
    Lee J T, Kanai H, Kobayashi T, et al. Cloning, nucleotide sequence, and hyperexpression of a-amylase gene from an archaeon, Thermococcus profundus[J]. Ferment Bioeng,1996,82:432-438
    Lee S G, Lee D C, Hong S P,et al. Thermostable D-hydantoinase from thermophilic Bacillus stearothermophilus DS-1:characteristics of purified enzyme[J]. Appl Microbiol Biotechnol,1995, 43:270-276
    Lee Y E, Lowe S E, Henrissat B, et al. Characterization of the active site and thermostability regions of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-RI [J]. Bacteriology,1993, 175:5890-5898
    Lee Y E, Lowe S E, Zeikus J G. Gene cloning, sequencing, and biochemical characterization of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-R1[J]. Environ Microbiol,1993, 59:3134-3137.
    Lee Y E, Zeikus J G. Genetic organization, sequence and biochemical characterization of recombinant β-xylosidase from Thermoanaerobacterium saccharolyticum strain B6A-R[J].Gen Microbiol,1993,139:1235-1243
    Lee J T, Kanai H, Kobayashi T, et al. Cloning, nucleotide sequence and hyperexpression of a-amylase gene from an archaeon, Thermococcus profundus[J]. Ferment Bioeng,1996,82:432-438
    Lehmacher A, Bisswanger H. Comparative kinetics of D-xylose and D-glucose isomerase activities of the D-xylose isomerase from Thermus aquaticus HB8[J]. Biol Chem Hoppe-Seyler,1990, 371:527-536
    L'Haridon S, Reysenbach A L, GlCnatn P, et al. Hot subterranean biosphere in a continental oil reservoir[J]. Nature,1995,377,223-224
    Linden A, MayansO, Meyer-klauckeW. Differential regulation of a hyperthermophilic alpha-amylase with a novel(Ca, Zn) two-metal center by zinc[J]. Biol Chem,2003,278(11):9875-9884
    Liebl W, Brem D, Gotschlich A. Analysis of the gene for β-fructosidase (invertase, inulinase) of the hyperthermophilic bacterium Thermotoga maritima, and characterisation of the enzyme expressed in Escherichia coli[J].Microbiol Biotechnol,1998,50:55-64
    Liebl W, Ruile P, Bronnenmeier K, et al. Analysis of a Thermotoga maritima DNA fragment encoding two similar thermostable cellulases, CelA and CelB, and characterization of the recombinant enzymes[J]. Microbiology,1996,142:2533-2542
    Liebl W, Wagner B, Schellhase J. Properties of an a-galactosidase, and structure of its gene galA, within an a-and β-galactoside utilization gene cluster of the hyperthermophilic bacterium Thermotoga maritime[J].Syst Microbiol,1998,21:1-11
    Lilley M D. Anomalous CH4 and NH4+ concentrations at an unsedimented mid-ocean-ridge hydrothermal system[J]. Nature,1993,364:45-47
    Liu S Y, Wiegel J, Gherardini F C. Purification and cloning of a thermostable xylose (glucose) isomerase with an acidic pH optimum from Thermoanaerobacterium strain JW/SL-YS 489[J]. Bacteriol, 1996,178:5938-5945
    Malhotra R, Noorwez S M, Satyanarayana T. Production and partial characterization of thermostable and calcium-independent a-amylase of an extreme thermophile Bacillus thermooleovorans NP549[J]. Lett Appl Microbiol,2000,31(5):378-384
    Markovitz A, Kiein H P, Fischer E H. Purification, crystallization, and properties of the alpha-amylase of Pseudomonas saccharophila[J]. Biochim Biophys Acta,1956,19(2):267-273
    Mathupala S P, Lowe S E, Podkovyrov S M, et al. Sequencing of the amylopullulanase (apu) gene of Thermoanaerobacter ethanolicus 39E, and identification of the active site by site-directed mutagenesis[J]. Biolchem,1993,268:16332-16344
    Mathupala S P, Zeikus JG. Improved purification and biochemical characterization of extracellular amylopullulanase from Thermoanaerobacter ethanolicus 39E[J]. Microbiol Biotechnol,1993, 39:487-493
    McLean M A, Maves S A, Weiss K E, et al. Characterization of a cytochrome P450 from the acidothermophilic archaea Sulfolobus solfataricus[J]. Biochem Biophys Res Commun,1998, 252:166-172
    Meng M, Bagdasarian M, Zeikus J G. Thermal stabilization of xylose isomerase from Thermoanaerobacterium thermosulfurigenes[J]. Biotechnol,1993,11:1157-1161
    Machius M, Declerck N, Huber R. Activation of Bacillus licheniformis alpha-amylase through a disorder order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad[J]. Structure,1998,6(3):281-292
    Meilenz J R. Identiffication and nucleotide sequence of the promoter region of the Bacillus subtilis gluconate operon[J]. Newswatch,1982,18-23
    Niehaus F, Bertoldo C, Kahler M, et al. Extremophiles as a source of novel enzymes for industrial application[J]. Microbiol Biotechnol,1999,51:711-729
    Nielsen J E, Borchert TV. Protein engineering of bacterial alpha-amylases[J]. Biochimica Et Biophysica Acta,2000,1543 (2):253-274
    Nosoh Y, Sekiguchi T. Protein engineering for thermostability[J]. Trends Biotechnol,1990,8:16-20
    Pace C N. Contribution of the hydrophobic effect to globular protein stability [J]. Mol Biol,1992, 5,226(1):29-35
    Panasik N, Brenchley J E, Farber G K. Distributions of structural features contributing to thermostability in mesophilic and thermophilic alpha/beta barrel glycosyl hydrolases[J].Biochim Biophys Acta,2000,1543(1):189-201
    Perler F B, Comb D G, Jack W E, et al. Intervening sequences in an archaea DNA polymerase gene[J].Proc Natl Acad Sci,1992,89:5577-5581
    Reysenbach A L, Wickham G S, Pace N R. Phylogenetic analysis of the hyperthermophilic pink filament community in octopus spring, Yellowstone-National-Park[J]. Appl Environ Microbiol,1994, 60:2113-2119
    Peters J, Nitsch M, Kuhlmorgen B, et al. Tetrabrachion:A filamentous archaebacterial surface protein assembly of unusual structure and extreme stability[J]. Mol Biol,1995,245:385-401
    Pretorius I S, Laing E, Pretoriusg H J. Expression of a Bacillus a-Amylase gene in yeast[J].Curr Genet,1988,14(1):1-8
    Ruttersmith L D, Daniel R M. Thermostable β-glucosidase and β-xylosidase from Thermotoga sp. strain FjSS3-B.1[J]. Biochim Biophys Acta,1993,1156:167-172.
    Ruttersmith L D, Daniel R M. Thermostable cellobiohydrolase from the thermophilic eubacterium Thermotoga sp. strain FjSS3-B.1[J]. Biochem,1991,277:887-890
    Ruttersmith L D, Daniel R M, Simpson H D. Cellulolytic and hemicellulolytic enzymes functional above 100℃[J]. Ann N Y Acad Sci,1992,672:137-141
    Saha B, Zeikus J G. Characterization of thermostable a-glucosidase from Clostridium thermohydrosulfuricum 39E[J]. Microbiol Biotechnol,1991,35:568-571
    Saul D S, Williams L C, Reeves R A, et al. Sequence and expression of a xylanase gene from the hyperthermophile Thermotoga sp. strain FjSS3-B.1 and characterization of the recombinant enzyme and its activity on kraft pulp[J]. Appl Environ Microbiol,1995,61:4110-4113
    Schink B, Zeikus J G. Characterization of pectinolytic enzymes of Clostridium thermosulfurogenes[J]. FEMS Microbiol Lett,1983,17:295-298
    Schroder C, Selig M, Schonheit P. Glucose fermentation to acetate, CO2 and H2 in the hyperthermophilic eubacterium Thermotoga maritima:involvement of the Embden-Meyerh of pathway [J]. Arch Microbiol,1994,161:460-470
    Schuliger J W, Brown S H, Baross J A., et al. Purification and characterization of a novel amylolytic enzyme from ES4, a marine hyperthermophilic archaeum[J]. Mol Marine Biol Biotechnol, 1993,2:76-87
    Schumann J, Wrba A, Jaenicke R, et al. Topographical and enzymatic characterization of amylases from the extremely thermophilic eubacterium Thermotoga maritima [J]. FEBS Lett,1991,282:122-126
    Shen G J, Saha B C, Lee Y E, et al. Purification and characterization of a novel thermostable β-amylase from Clostridium thermosulfurogenes[J]. Biochem,1988,254:835-840
    Specka U, Mayer F, Antranikian G. Purification and properties of a thermoactive glucoamylase from Clostridium thermosaccharolyticum[J]. Environ Microbiol,1991,57:2317-2323
    Sriprapundh D, Vieille C, Zeikus J G. Molecular determinants of xylose isomerase thermal stability and activity:analysis by site-directed mutagenesis[J]. Protein Eng,2000,13:259-265
    Stemmer W P C. Rapid evolution of a protein in vitro by DNA shuffling[J]. Nature,1994, 370:389-391
    Stetter K O, Microbial life in hyperthermal environments [J]. ASM News,1995,61(6):285-290
    Stetter K O, Hiiber R, Bloch E, et al. Hyperthermophilic Archaea are thriving in deep North Sea and Alaskan reservoirs[J]. Nature,1993a,365:743-745
    Stetter K O, Fiala G, Huber G, et al. Hyperthermophilic microorganisms [J]. FEMS Microbiol Rev, 1990b,75:117-124
    Stemmer W P C. DNA shuffling by random fragmentation and reassembly in vitro recombination for molecular evolution[J]. Proc Narl Acad Sci.,1994,91:10747-10751
    Stemmer W P C. Rapid evolution of a protein in vitro by DNA shuffling[J]. Nature,1994, 370:389-391
    Straube W L, Deming J W, Somerville C C, et al. Particulate DNA in Smoker Fluids:Evidence for Existence of Microbial Populations in Hot Hydrothermal Systems[J]. Environ Microbiol,1990, 56:1440-1447
    Sunna A, Puls J, Antranikian G. Purification and characterization of two thermostable endo-1, 4-β-D-xylanases from Thermotoga thermarum[J]. Biotechnol Biochem,1996,24:177-185
    Suzuki Y, Hatagaki K, Oda H. A hyperthermostable pullulanase produced by an extreme thermophile, Bacillus flavocaldarius KP 1228, and evidence for the proline theory of increasing protein thermostability[J]. Microbiol Biotechnol,1991,34:707-714
    Szewzyk U, Szewzyk R, Stenstrom T. Thermophilic, Anaerobic Bacteria Isolated from a Deep Borehole in Granite in Sweden PNAS[J]. Proc Natn Acad Sci,1994,91:1810-1813
    Tachibana Y, Kuramura A, Shirasaka N, et al. Purification and characterization of an extremely thermostable cyclomaltodextrin glucanotransferase from a newly isolated hyperthermophilic archaeon, a Thermococcus sp. Environ[J]. Microbiol,1999,65:1991-1997
    Tachibana Y, Leclere M M, Fujiwara S, et al. Cloning and expression of the a-amylase gene from the hyperthermophilic archaeon Pyrococcus sp. KOD1, and characterization of the enzyme[J]. Ferment Bioeng,1996,82:224-23
    Tamuri M, Kanno M, lshi Y. Heat and acid-stable alpha-amylase enzymes and processes for producting the sam[M]. United States Patent,1981,4:284,722
    Tanner J J, Hecht RM, Krause KL. Determinants of Enzyme Thermostsbility Observed in the deep-sea at 2.5 Angstrom Resolution[J] Biochemistry,1996,35:2597-2609
    Tripp A E, Burdette D S, Zeikus J G, et al. Mutation of serine-39 to threonine in thermostable secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus changes enantiospecificity[J]. Am Chem Soc,1998,120:5137-5140
    Tsujibo H, Minoura K, Miyamoto K, et al. Purification and properties of a thermostable chitinase from Streptomyces thermoviolaceus OPC-520[J]. Environ Microbiol,1993,59:620-622
    Takase K. Effect of mutation of an amino acid residue near the catalytic site on the activity of Bacillus stearothermophilus α-amylase[J]. Eur Biochem,1993,211:899-902
    Uemori T, Ishino Y, Toh H, et al. Organization and nucleotide sequence of the DNA polymerase gene from the archaeon Pyrococcus furiosus[J]. Nucleic Acids Res,1993,21:259-265
    Uguru G C, Akinyanju J A, Sani A. The use of sorghum for thermostable amylase production from thermoactinomyces thalpophilus[J]. Lett Appl Microbiol,1997,25(1):13-16
    Vieille C, Hess M J, Kelly M R, et al. xylA cloning and sequencing and biochemical characterization of xylose isomerase from Thermotoga neapolitana[J]. Environ Microbiol,1995, 61:1867-1875
    Vieille C, Zeikus G J. Hyperthermophilic enzymes:sources, uses, and molecular mechanisms for thermostability[J]. Microbiol Mol Biol Rev,2001,65(1):1-43
    Vihinen M, Mantsala P. Characterization of a thermostable Bacillus stearothermophilus alpha-amylase[J].Biotechnol Appl Biochern,1990,12(4):427-435
    Vogt G, Woell S, Argos P. Protein thermal stability, hydrogen bonds, and ion pairs[J]. Mol Biol, 1997,269(4):631-643
    Volkl P, Huber R, Drobner E, Rachel R, et al. Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum[J]. Appl Environ Microbiol,1993,59:2918-2926
    Von Damm K L. Seafloor Hydrothermal Activity Black Smoker Chemistry and Chimneys[J]. Ann Rev Earth Planet Sci,1990,18:173-204
    Woese C R, Fox G E. Phylogenic structure of the prokaryotic domain:the primary kingdoms[J]. Proc Narl Acad Sci,1997,74:5088-5090
    Woese C R, Kandler O, Wheelis ML. Towards a natural system of organisms:Proposal for the domains Archaea, Bacteria, and Eucarya[J]. Proc Narl Acad Sci,1990,87:4576-4579
    Yao WeiRong, Yao HuiYuan. Adsorbent Characteristics of Porous Starch[J]. Starch,2002, 6(54):260-263
    Zhang X H, Baase W A, Mattews B W. Protein [M].Science,1992,1:761-776
    郭建强,李运敏,岳丽丽等.超耐热酸性α-淀粉酶基因的克隆及其在酵母细胞中的表达[J].生物工程学报,2006,22(2):237-242
    惠斯特勒等编,王雒文等译,淀粉的化学与工艺学[M].北京:中国食品出版社,1998,8
    和致中,彭谦,陈俊英.高温菌生物学[M].北京:科学出版社,2001,2
    华南工学院等,酒精与白酒工艺学[M].北京:轻工业出版社,1980,44-45
    胡学智,凌晨,侯琴芳等.,高温α-淀粉酶生产菌种选育的研究[J].微生物学报,1991,31(4):267-273
    管斌,谢来苏,丁友芳.枯草芽胞杆菌α-淀粉酶高产菌株的选育[J].浙江农业大学学报,1997,23:88-92
    金凤燮.Isolation of New Thermophilic Aerobic Bacteria which Produce Thermostable a-Amylase[J]. Gen Appl Microbiol,1990,36:412-415
    姜锡瑞,曹本昌,莫湘筠等.酶制剂应用手册[M].北京:中国轻工出版社,1999,33-34
    蒋专,杨慧芬,邱并生等.硫磺矿硫化叶菌耐酸α-淀粉酶基因的克隆及其在枯草芽孢杆菌中的表达[J].中国科技信息,2006,6:317-318
    孔显良,王俊英.α-淀粉酶的研究和应用[J].微生物学通报,1991,16(5):282-287
    凌晨,翁维琦.应用原生质体融合技术改良耐高温α-淀粉酶生产菌[J].工业微生物,1990,20(1):6-10
    李瑶,张春枝,张姝等.耐高温α-淀粉酶产生菌B.sp-JFl的诱变选育[J].大连轻工业学院学报,1997,16(4):45-50
    Tucker G A, Woods L F J等编,李雁群,肖功年译.酶在食品加工中的应用[M].北京:中国轻工业出版社,2002
    卢柏松,王国力,黄培堂.嗜热与常温菌的蛋白质氨基酸组成比较[J].微生物学报,1998,38(1):20-25
    吕晶,陈水林.酶及其在纺织加工中的应用[J].纺织学报,2002,2(23):155-156
    罗贵民.酶工程[M].北京:化学工业出版社,2002,337
    马福强.耐高温α-淀粉酶在酒精生产中的应用[J].酿酒科技,2001,3:42-43
    马向东,马立新,薛征峰等.一种鉴定α-淀粉酶及其产生菌的新方法[J].华中农业大学学报,2000,19(5):456-460
    任红妍.嗜热微生物[J].生物学通报,1995,30(3):18-19
    任天明.嗜热脂肪芽抱杆菌的淀粉酶基因的克隆和表达[J].生物工程学报,1987,3:197
    孙晓云,王小生.α-淀粉酶对面包品质的影响[J].食品工业科技,2005,11(26):65-67
    沈微,王正祥,刘吉泉等.古细菌Pyrococcus furiosusa-淀粉酶基因在大肠杆菌中的表达[J].食品与发酵工业,2003,3:12-14
    沈微,华国强,唐雪明等.古菌Pyrococcus furiosus嗜热α-淀粉酶基因在酿酒酵母中的表达[J].微生物学通报,2003,3:22-25
    汪建国.酶制剂在酿造行业应用的研究及其发展前景[J].中国酿造,2004,1:1-4
    汪钊,郑裕国,叶月恒.真菌α-淀粉酶应用于面包生产的研究[J].食品科学,1998,7(19):29-31
    王楠,马荣山.耐高温α-淀粉酶的研究进展[J].中兽医医药杂志,2007,3:26-27
    王磊,唐上华.耐高温α-淀粉酶基因在枯草杆菌染色体上的整合、扩增及表达的研究[J].工业微生物,1998,28(1):7-12
    王希菊,蒋宇,邵蔚蓝.海栖热袍菌胞外淀粉酶在中的高效表达[J].微生物学通报,2005,32(4):25-30
    熊鹏钧,文建军,嗜热菌Thermus sp. YBJ-1的分离和淀粉酶基因的克隆[J].生物工程学报,2004,20(3):434-436
    肖湘,王风平.深海微生物的研究开发[J].中国抗生素杂志,2006,31(2):87-89
    杨宗岐,李轶女,张志芳等.来源于Pyrococcus furiosus的耐高温α-淀粉酶基因在衣藻叶绿体中的表达[J].生物工程学报,2006,22(4):545-549
    Arab H, Volker H, Thomm M. Thermococcus aegaeicus sp. nov. and Staphylothermus hellenicus sp. nov., two novel hyperthermophilic archaea isolated from geothermally heated vents off Palaeochori Bay, Milos, Greece[J]. Int J Syst Evol Microbiol,2000,50,2101-2108
    Atomi H, Fukui T, Tanaka T, et al. Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1[J]. Archaea,2004,1: 263-267
    Bae S S, Kim Y J, Yang S H, et al. Thermococcus onnurineus sp. nov., a hyperthermophilic archaeon Isolated from a deep-Sea hydrothermal vent area at the Pacmanus Field[J]. J Microbiol Biotechnol,2006,11:1826-1831
    Cambon-Bonavita M A, Lesongeur F, Pignet P, et al. Thermococcus atlanticus sp. nov.,a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the Mid-Atlantic Ridge[J]. Extremophiles,2003,7(4):101-109
    Canganella F, Jones W J, Gambacorta A, et al. Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas Basin hydrothermal vent site[J]. Int J Syst Bacteriol,1998,48:1181-1185
    Corliss J B, Dymond J. Gordon L I, et al. Submarine thermal springs on the Galapagos Rift[J]. Science,1979,203:1073-1083
    Deming J W, Baross J A. Deep-sea smokers:Windows to a subsurface biosphere?[J]. Geochimica et Cosmochimica Acta,1993,57:3219-3230
    Dirmeier R, Keller M, Hafenbradl D, et al. Thermococcus acidaminovorans sp. nov., a new hyperthermophilic alkalophilic archaeon growing on amino acids[J]. Extremophiles,1998,2:109-114
    Duffaud G D, dHennezel O B, Peek A S, et al. Isolation and characterization of Thermococcus barossii, sp. nov., a hyperthermophilic Archaeon isolated from a hydrothermal vent flange formation[J]. Syst Appl Microbiol 1998,21:40-49
    Godfroy A, Lesongeur F, Raguenes G, et al. Thermococcus hydrothermalis sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent[J]. Int J Syst Bacteriol,1997,47: 622-626
    Godfroy A, Meunier J-R, Guezennec J, et al. Thermococcus fumicolans sp. nov., a new hyperthermophilic archaeum isolated from deep-sea hydrothermal vent in North Fiji Basin[J]. Int J Syst Bacteriol,1996,46:1113-1119
    Gonzalez J M, Kato C, Horikoshi K, Thermococcus peptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents[J]. Arch Microbiol, 1995,164:159-164
    Gonzalez J M, Sheckells D, Viebahn M, et al. Thermococcus waiotapuensis sp. nov., an extremely thermophilic archaeon isolated from a freshwater hot spring[J]. Arch Microbiol,1999,172:95-101
    Grote R, Li L, Tamaoka J, et al. Thermococcus siculi sp. nov., a novel hyperthermophilic archaeon isolated from deep-sea hydrothermal vent at Mid-Okinawa Trough[J]. Extremophiles,1999,3:55-62
    Horikoshi and W. D. Grant (ed.), Extremophiles:microbial life in extreme environments[M]. New York:Wiley-Liss,1998:1-24
    Huber R, Stohr J, Hohenhaus S, et al. Thermococcus chitonophagus sp. nov., a novel, chitin-degrading, hyperthermophilic archaeum from a deep-sea hydrothermal environment[J]. Arch. Microbiol,1995,164:255-264
    Jolivet E, Corre E, L'Haridon S, et al. Thermococcus marinus sp. nov., and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation[J]. Extremophiles,2004,8:219-227
    Jolivet E, L'Haridon S, Corre E, et al. Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation[J]. Int J Syst Evol Microbiol, 2003,53:847-851
    Kashefi K, Loveley D R. Extending the upper temperature limit for life [J]. Science,2003,301: 934
    Keller M, Braun F J, Dirmeieir R, et al. Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH[J]. Arch Microbiol, 1995,164:390-395
    Kobayashi T, Kwak Y S, Akiba T, et al. Thermococcus profundus sp. nov. A new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent[J]. Syst Appl Microbiol,1994, 17:232-236
    Kuwabara T, Minaba M, Iwayama Y, et al. Thermococcus coalescens sp. nov., a cell-fusing hyperthermophilic archaeon from Suiyo Seamount[J]. Int J Syst Evol Microbiol,2005,55:2507-2514
    Kuwabara T, Minaba M, Ogi N, et al. Thermococcus celericrescens sp. nov., a fast-growing and cell-fusing hyperthermophilic archaeon from a deep-sea hydrothermal vent[J]. Int J Syst Evol Microbiol,2007,57:437-443
    Marteinsson V T, Birrien J L, Reysenbach A L, et al. Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent[J]. Int J Syst Bacteriol,1999,49:351-359
    Miroshnichenko M L, Bonch-Osmolovskaya E A, Neuner A, et al. Thermococcus stetteri sp. nov., a new extremely thermophilic marine sulfur-metabolizing archaebacterium[J]. Syst Appl Microbiol, 1989,12:257-262
    Miroshnichenko M L, Gongadze G M, Rainey F A, et al. Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov.:heterotrophic extremely thermophilic archaea from New Zealand submarine hot vents[J]. Int J Syst Bacteriol,1998,48:23-29
    Miroshnichenko M L, Hippe H, Stackebrandt E, et al. Isolation and characterization of Thermococcus sibiricus sp. nov., from western siberia hightemperature oil reservoir[J]. Extremophiles, 2001,5:85-91
    Neuner A, Jannasch H W, Belkin S, et al. Thermococcus litoralis sp. nov.:a new species of extremely thermophilic marine archaebacterium[J]. Arch Microbiol,1990,153:205-207
    Pikuta E V, Marsic D, Itoh T, et al., Thermococcus thioreducens sp. nov., a novel hyperthermophilic, obligately sulfur-reducing archaeon from a deep-sea hydrothermal vent[J]. Int J Syst Evol Microbiol, 2007,57:1612-1618.
    Ronimus R S, Reysenbach A-L, Musgrave D R, et al. The phylogenetic position of the Thermococcus isolate AN1 based on 16S rRNA gene sequence analysis:a proposal that AN1 represents a new species, Thermococcus zilligii sp. nov[J]. Arch Microbiol,1997,168:245-248
    Stetter K O. Hyperthermophiles in the history of life [J]. Ciba Found Symp,1996,202:1-10
    Stetter K O. Extremophiles and their adaptation to hot environments [J]. FEBS Lett,1999,452: 22-25
    Thompson J D, Higgins D G, Gibson T J. CLUSTAL W:improving the sensitivity of progressive multiple sequence weighing, position-specific gap penalties and weight matrix choice [J]. Nucleic Acids Res,1994,22:4673-4680
    Vieille C, Zeikus G J. Hyperthermophilic enzymes:sources, uses, and molecular mechanisms for thermostability[J]. Microbiol Mol Biol Rev,2001,65(1):1-43
    Zillig W, Holz I, Janekovic D, et al. The archaebacterium Thermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria[J]. Syst Appl Microbiol,1983,4:88-94
    党宏月,宋林生,李铁刚,等.海底深部生物圈微生物的研究进展[J].地球科学进展,2005,20(12):1306-1313
    王春生,杨俊毅,张东声,等.深海热液生物群落研究综述[J].厦门大学学报:自然科学版,2006,45(S2):141-149
    Bernhardsdotter E C M J, Pusey M L, Ng J D, et al., Cloning and Characterization of an alpha-amylase Gene from the Hyperthermophilic Archaeon Thermococcus thioreducens[J]. Marshall Space Flight Center.2004.
    Bertoldo C, Antranikian G. Starch-hydrolyzing enzymes from thermophilic archaea and bacteria[J]. Curr Opin Chem Biol,2002,6:151-160
    Brown S H, Costantino H R, Kelly R M, Characterization of amylolytic enzyme activities associated with the hyperthermophilic archaebacterium Pyrococcus furiosus[J]. Appl Environ Microbiol,1964,56:1985-1991
    Chung Y C, Kobayashi T, Kanai H, et al., Purification and properties of extracellular amylase from the hyperthermophilic archaeon Thermococcus profundus DT5432[J]. Appl Environ Microbiol,1995, 61:1502-1506
    Gupta R, Gigras P, Mohapatra H, et al.,Microbial a-amylases:a biotechnological perspective[J]. Process Biochemistry,2003,38:1599-1616
    Kwak Y S, Akiba T, Kudo T. Purification and characterization of α-amylase from hyperthermophilic archaeon Thermococcus profundus, which hydrolyzes both a-1,4 and a-1,6 glucosidic linkages [J]. J. Ferment. Bioeng.1998,86:363-367
    Lee J T, Kanai H, Kobayashi T, et al., Cloning, nucleotide sequence, and hyperexpression of a-amylase Gene from an archaeon, Thermococcus profundus[J]. J Ferment Bioeng,1996,82:432-438
    Leveque E, Haye B, Belarbi A, Cloning and expression of an a-amylase encoding gene from the hyperthermophilic archaebacterium Thermococcus hydrothermalis and biochemical characterization of the recombinant enzyme[J]. FEMS Microbio Lett,2000.,186:67-71
    Leveque E, Janecek S, Haye B, et al, Thermophilic archaeal amylolytic enzymes[J]. Enz Microbiol Technol,2000.,26:3-14
    Marc J E C, Maarel v d, Veen B v d, et al., Properties and applications of starch-converting enzymes of the a-amylase family [J].J Biotech,2002,94:137-155
    Rauen H M. Biochemisches Taschenbuch, Springer Verlag, Berlin, Germany, vol.2, p.1964. 90-104
    Vieille C, Zeikus G J, Hyperthermophilic enzymes:sources, uses, and molecular mechanisms for thermostability[J]. Microbiol. Mol Biol Rev,2001,65:1-43
    郭建强,李运敏,岳丽丽等.超耐热酸性α-淀粉酶基因的克隆及其在酵母细胞中的表达[J].生物工程学报,2006,22(2):237-242
    蒋专,杨慧芬,邱并生等,硫磺矿硫化叶菌耐酸a-淀粉酶基因的克隆及其在枯草芽孢杆菌中的表达[J].中国科技信息,2006,6:317-318
    王希菊,蒋宇,邵蔚蓝,海栖热袍菌胞外淀粉酶在中的高效表达[J].微生物学通报,2005,32(4):25-30
    沈微,华国强,王正祥等,古菌Pyrococcus furiosus嗜热α-淀粉酶基因在酿酒酵母中的表达[J].微生物学通报,2003,30(3):22-25
    沈微,王正祥,刘吉泉等,古细菌Pyrococcus furiosus嗜热α-淀粉酶基因在大肠杆菌中的表达[J].食品与发酵工业,2003,29(3):10-14
    Bernhardsdotter E C M J, Pusey M L, Ng J D et al.. Cloning and Characterization of an alpha-amylase Gene from the Hyperthermophilic Archaeon Thermococcus Thioreducens. Marshall Space Flight Center,2004
    Jolivet E, Corre E, L'Haridon S, et al. Thermococcus marinus sp. nov., and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation [J]. Extremophiles,2004,8:219-227
    Jone R A, Jermiin L S, Easteal S. et al. Amylase and 16S rRNA genes from a hyperthermophilic archaebacterium [J]. J Appl Microbiol.1999,86,93-107.
    Lee J T, Kanai H, Kobayashi T, et al. Cloning, nucleotide sequence, and hyperexpression of a-amylase gene from an archaeon, Thermococcus profundus [J]. Journal of Fermentation and Bioengineering,1996,82(5):432-438
    Leveque E., Janecek S, Haye et al. Thermophilic archaeal amylolytic enzymes [J]. Enzyme and Microbial Technology,2000,26; 3-14
    MacGregor E A, Janecek S, Svensson B. Relationship of sequence and structure to specificity in the a-amylase family of enzymes [J]. Biochimica et Biophysica Acta,2001,1546:1-20
    Nielsen J E, and Borchert TV. Protein engineering of bacterial α-amylase [J]. Biochimia et Biophysica Acta.2000,1542:253-274
    Richardson T H, Tan X, Frey G, et al. A novel, high performance enzyme for starch liquefaction. discovery and optimization of a low pH, thermostable a-amylase [J]. J Biol Chem.2002,277, 26501-26507
    Tan G H, Gao Y, Shi M, et al. SiteFinding-PCR:a simple and efficient PCR method for chromosome walking, Nucleic Acids Research.,2005,33:2-7
    萨姆布鲁克,拉塞尔,分子克隆实验指南[M].第三版.黄培堂等译.北京:科学出版社,2002.
    Bernhardsdotter E C M J, Pusey M L, Ng J D, et al. Cloning and characterization of an a-amylase gene from the hyperthermophilic archaeon Thermococcus thioreducens[J]. Marshall Space Flight Center Database,2004
    Canganella F, Andrade CM, Antranikian G. Characterization of amylolytic and pullulytic enzymes from thermophilic archaea and from a new Fervidobacterium species. Appl Microbiol Biotechnol,1994, 42:239-45
    Chung YC, Kobayashi T, Kanai H, Akiba T, Kudo T (1995) Purification and properties of extracellular amylase from the hyperthermophilic archaeon Thermococcus profundus DT5432. Appl Environ Microbiol 61:1502-1506
    Dong G, Vieille C, Savchenko A, et al. Cloning, sequencing, and expression of the gene encoding extracellular a-amylase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme[J]. Environ Microbiol,1997,63:3569-3576
    Jone R A, Jermiin L S, Easteal S, et al. Amylase and 16S rRNA genes from a hyperthermophilic archaebacterium [J]. J Appl Microbiol,1999,86:93-107
    Kwak Y S, Akiba T, Kudo T. Purification and characterization of a-amylase from hyperthermophilic archaeon Thermococcus profundus, which hydrolyzes both a-1,4 and a-1,6 glucosidic linkages [J]. J Ferment Bioeng,1998,86:363-367
    Lee J T, Kanai H, Kobayashi T, et al. Cloning, nucleotide sequence and hyperexpression of a-amylase Gene from an archaeon Thermococcusprofundus[J]. J Ferment Bioeng,1996,82:432-438
    Legin E, Copinet A, Duchiron F, Production of thermostable amylolytic enzymes by Thermococcus hydrothermalis, Biotechnology Letters,1998,20(4):363-367
    Leveque E, Haye B, Belarbi A. Cloning and expression of a a-amylase encoding gene from the hyperthermophilic archaebacterium Thermococcus hydrothermalis and biochemical characterization of the recombinant enzyme [J]. FEMS Microbio Lett,2000,186:67-71
    Li H F, Chi Z M, Wang X H. Purification and characterization of extracellular amylase from the marine yeast Aureobasidium pullulans N13d and its raw potato starch digestion[J]. Enz Microbiol Technol,2007,40(5):1006-1012
    Lim W J, Park S R, An C L, et al. Cloning and characterization of a thermostable intracellular a-amylase gene from the hyperthermophilic bacterium Thermotoga maritima MSB8 Research Microbiol, 2003,154(10):681-687
    Schlieben N H, Niefind K, Schomburg D, Expression, purification, and aggregation studies of His-tagged thermoalkalophilic lipase from Bacillus thermocatenulatus [J]. Prot Express Purifi,2004,34: 103-110
    Rauen H M. Biochemisches Taschenbuch, Springer Verlag, Berlin, Germany, vol.2, p.1964. 90-104
    Tachibana Y, Leclere M M, Fujiwara S, et al. Cloning and expression of the a-amylase gene from the hyperthermophilic archaeon Pyrococcus sp. KOD1, and characterization of the enzyme[J]. Ferment Bioeng,1996,82:224-23
    Thaddeus C. Ezeji, Hubert Bahl.Purification, characterization, and synergistic action of phytate-resistant a-amylase and β-glucosidase from Geobacillus thermodenitrificans HRO10[J]. J Biotechnol,2006,125:27-38
    Fang Q, Tang Y, Zhong J. Significance of inoculation density control in production of polysaccharide and ganodenic acid submmerged cultuer of Ganoderma lucidum. Process Biochemistry,2002,37:1375-1379
    Jolivet E, Corre E, L'Haridon S, et al. Thermococcus marinus sp. nov., and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation[J]. Extremophiles,2004,8:219-227
    侯松旺,李小洁,马辉文,受乳糖启动子控制的基因表达过程的优化[J].武汉大学学报:自然科学版,1998,4:513-516
    李进,L-异亮氨酸产生菌的选育及发酵条件优化[J].江南大学学报,2005,43:7-13
    李民,陈常庆,重组大肠杆菌高密度发酵研究进展[J].生物工程进展,2000,20(2):26-31
    李民,修朝阳,陈常庆,脯氨酞内肤酶培养条件的优化及高密度发酵,生物工程学报,2000,16(2):183-187
    罗红霞,林少华,任发政等,重组大肠杆菌BL21(DE3)/rb LF-N高密度培养条件优
    化[J],中国乳品工业,2007,35(1):10-14
    熊宗贵,生物技术制药[M],北京:高等教育出版社,1999:86-90
    张彩,王郡甫,刘金生等,重组人白细胞介素15工程菌高密度发酵条件探讨[J],中国生化药物杂志,2007,28(1):1-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700