锈蚀下的RC梁桥抗力退化概率模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在材料老化、不利环境以及使用不当等多种因素的综合作用下,既有钢筋混凝土(RC)构件在服役期间抗力不断退化,其安全性和耐久性受到严重影响。随着对服役桥梁维修加固的增多,以及桥梁倒塌事故的不断出现,既有钢筋混凝土桥梁的耐久性问题越来越引起国内外研究人员的重视。而在引起RC构件抗力退化的诸多因素当中,钢筋锈蚀是其最为重要的原因,因此正确地评估锈蚀环境下的钢筋混凝土构件的抗弯和抗剪承载力就显得尤为重要。
     本研究项目在国家自然科学基金项目“既有RC桥梁构件抗剪性能退化模型及可靠性研究(50878031)”和湖南省优秀研究生创新基金项目“考虑弯剪失效的RC梁桥时变可靠度计算(CX2011B355)”的支持下,主要针对氯盐环境下的锈蚀钢筋混凝土构件,研究了不同类型钢筋性能退化和构件弯剪抗力衰减等相关问题,主要工作如下:
     (1)基于已有钢筋锈蚀研究,模拟了钢筋在局部锈蚀情况下的面积和屈服强度退化曲线,探讨了保护层厚度对钢筋面积和屈服强度退化速率的影响规律。
     (2)采用基于修正钢筋-混凝土变形协调关系后的锈蚀梁抗弯承载力计算公式,结合锈蚀钢筋的面积和强度退化模型,提出了锈蚀梁抗弯承载力的退化概率模型,通过参数敏感性分析确定了混凝土保护层厚度对抗弯承载力退化速度影响最为显著。
     (3)对比分析了基于修正钢筋-混凝土应变关系和钢筋-混凝土粘结强度损失两种不同方法所建立的抗弯承载力退化模型的差异,结果表明两种退化概率模型所得出的结果最大相差12%。
     (4)对比了以现行规范公式为基础所建立的抗剪概率退化模型的差异,其抗力退化计算结果相差不超过3%。通过参数敏感性分析确定了箍筋保护层和氯离子浓度对抗剪承载力退化的初始时间影响较大;斜筋保护层和氯离子浓度对抗剪承载力退化速度影响较大。
     (5)对比分析了RC梁在100年内的抗弯承载力和抗剪承载力退化曲线,结果表明在63年以前构件的受剪抗力退化率高于受弯抗力的退化率,而在63年以后受弯抗力退化率却要高于受剪抗力的退化率。
Severely affected by material aging、poor environment and misapplication,theresistances of reinforced concrete(RC)beams deteriorated so that the safety anddurability decreased. With the increase of collapse、maintenance and reinforcementfor bridges, the durability of corroded RC components were focused by researchers.The steel-bar corrosion is the overriding reason in all factors that lead to theresistance degradation of RC beams. Therefore, the accurate assessment ofresistance of corroded RC beam is very important .
     This research project is supported by National Natural Science Fund of Chinaunder the Project No. 50878031“research on shear capacity deterioration modeland reliability of existing RC bridge”and Excellent Postgraduate Innovation Fundof Hunan Province under the Project No. CX2011B355“the time-variant reliabilitycalculation of RC beam bridge with considering the resistance deterioration”. Thispaper focused on the resistance degradation of RC components in chlorideenvironment. The main research works included as follow:
     (1) Based on the existing research on steel-bar corrosion, the sectional area andyield strength degradation curves of reinforcements were plotted for local corrosionand the impact of concrete cover on sectional area degradation was discussed.
     (2) The flexural capacity formula of corrosion beam was adopted based onimproved strain relations between reinforcement and concrete. Combined with thedegradation models of corroded reinforcement for area and strength, the probabilitymodel of flexural capacity degradation for corroded RC beam was presented. Incomparison of the parameter sensitivity analysis, the results showed that the impactof concrete cover on the flexural capacity degradation rate was the most significant
     (3) The difference between the flexural capacity degradation models that basedon the improved strain relations and bond strength loss were comparativelyanalyzed. The calculation results showed that the maximum difference of flexuralcapacity degradation was 12%.
     (4) The probability models of shear capacity degradation that based on theexisting codes were compared. The result showed that the maximum difference was 3%. In comparison of parameter sensitivity analysis, the thickness of stirrup coverand chloride concentration had more impact on the degradation initiation time.However, the thickness of diagonal reinforcement cover and chloride concentrationhad more impact on the shear capacity degradation rate.
     (5) The degradation curves of shear and flexural capacity in 100 years wereplotted and compared. The results showed that the shear capacity degraded fasterthan flexural capacity but slower than that after the 63rd year.
引文
[1] Mehta P.K. Durability critical issues for the future[J]. Concreteinternational, 1997, 20(7): 27-33.
    [2]樊云昌,曹兴国,陈怀荣.混凝土中钢筋腐蚀的防护与修复[M].北京:中国铁道出版社, 2001.
    [3]洪乃丰.混凝土中钢筋腐蚀与结构物的耐久性[J].公路, 2001(2): 66-69.
    [4] Val D.V., Stewart M.G., Melchers R.E. Effect of reinforcementcorrosion reliability of highway bridges[J]. Engineering Struction,1998, 20(11): 1010-1019.
    [5]洪乃丰.基础设施的腐蚀破坏不容忽视[J].腐蚀与防护, 2001, 22(9):389-391.
    [6] Almusallam A.A., Al-Gahtani A.S., Aziz A.R., Rasheeduzzafar. Effectof reinforcement corrosion on bond strength[J]. Construction andBuilding Materials, 1996, 10(2): 123-129.
    [7]牛荻涛.混凝土耐久性研究与寿命预测[M].北京:科学出版社, 2003.
    [8]洪定海.混凝土中钢筋的腐蚀与防护[M].北京:中国铁道出版社, 1998.
    [9]中国工程院土木水利与建筑学部工程结构安全性与耐久性研究咨询项目组.混凝土结构耐久性设计与施工指南[M].北京:中国建筑工业出版社, 2004.
    [10]杨全兵,吴学礼,黄士元.去冰盐引起的混凝土盐冻剥蚀破坏[J].混凝土,1995, (6): 29-35.
    [11]王媛俐,姚燕.重点工程混凝土耐久性的研究与工程应用[M].北京:中国建材工业出版社, 200l.
    [12]Maslehuddin M., Allam I.M., Sulaimani G.J., Mana A.I., AbduliauwadS.N. Effect of rusting of reinforcing steel on its mechanicalproperties and bond with concrete[J]. Materials Journal, 1990, 87(5):496-502.
    [13]Almusallam A.A. Effect of degree of corrosion on the properties ofreinforcing steel bars[J]. Construction and Building Materials, 2001,15(8): 361-368.
    [14]Lee H.S., Noguchi T., Tomosawa F. Evaluation of the bond propertiesbetween concrete and reinforcement as a function of the degree ofreinforcement corrosion[J]. Cement and Concrete Research, 2002, 32(8):1313-1318.
    [15]杨淑慧.腐蚀对钢筋力学性能影响的研究[D].郑州:郑州大学, 2002.
    [16]张平生,卢梅,李晓燕.锈损钢筋的力学性能[J].工业建筑, 1995, 25(9):41-44.
    [17]张建仁,岳建彬.混凝土中光圆与变形钢筋腐蚀对比分析[J].长沙交通学院学报, 2007, 23(2): 1-4.
    [18]惠云玲,林志伸,李荣.锈蚀钢筋性能试验研究分析[J].工业建筑, 1997,27(6): 10-13.
    [19]袁迎曙,贾福萍,蔡跃.锈蚀钢筋的力学性能退化研究[J].工业建筑, 2000,30(1): 43-46.
    [20]沈德建,吴胜兴.海水浪溅下混凝土中锈蚀钢筋性能试验研究及仿真分析[J].工业建筑, 2005, 35(3): 58-62.
    [21]Lee H.S., Noguchi T., Tomosoma F. FEM Analysis for Structuralperformance of Deteriorated RC Structures due to Rebar Corrosion[C].Proceeding of the Second International Conference on Concrete UnderSevere Conditions, Tromso, 1998: 1010-1019.
    [22]张伟平,商登峰,顾祥林.锈蚀钢筋应力-应变关系研究[J].同济大学学报(自然科学版), 2006, 34(5): 586-592.
    [23]Fu X., Chung D.D.L. Effect of corrosion on the bond between concreteand steel rebar[J]. Cement and Concrete Research, 1997, 27(12):1811-1815.
    [24]Coronelli D. Corrosion cracking and bond strength modeling forcorroded bars in reinforced concrete[J]. Structural Journal, 2002,99(3): 267-276.
    [25]袁迎曙,余索,贾福萍.锈蚀钢筋混凝土的粘结性能退化的试验研究[J].工业建筑, 1999, 29(11): 47-50.
    [26]范颖芳,黄振国,李健美,郭乐工.受腐蚀钢筋混凝土构件中钢筋与混凝土粘结性能研究[J].工业建筑, 1999, 29(8): 49-51.
    [27]潘振华,牛荻涛,王庆霖.锈蚀率与极限粘结强度关系的试验研究[J].工业建筑, 2000, 30(5): 10-12.
    [28]赵羽习,金伟良.钢筋与混凝土粘结本构关系的试验研究[J].建筑结构学报, 2001, 23(1): 32-37.
    [29]金伟良,赵羽习.随不同位置变化的钢筋与混凝土的粘结本构关系[J].浙江大学学报(工学版), 2002, 36(1): 1-6.
    [30]Victor S.K., Liu X.L. Analyses on the tied-arch action of loadedreinforced-concrete beams with corroded steel reinforcement[J].Tsinghua Science and Technology, 2004, 19(2): 148-152.
    [31]Buyle-Bodin F., Rezaie F. Modelling at global scale of mechanicaleffects of the corrosion of the steel reinforcement of RC beam[C].International RILEM Workshop on Life Prediction and Aging Managementof Concrete Structures, France, Cannes, 2000: 43-51.
    [32]Mangat P.S., Elgarf M.S. Flexural strength of concrete beams withcorroding reinforcement[J]. Structural Journal, 1999, 96(1):149-158.
    [33]张伟平.混凝土结构的钢筋锈蚀损伤预测及其耐久性评估[D].上海:同济大学, 1999.
    [34]任宝双,钱稼茹,聂建国.在用钢筋混凝土简支桥面梁受弯承载力估算[J].工业建筑, 2000, 30(11): 29-33.
    [35]金伟良,赵羽习.锈蚀钢筋混凝土梁抗弯强度的试验研究[J].工业建筑,2001, 31(5): 9-11.
    [36]范颖芳,周晶,黄振国.受氯化物腐蚀钢筋混凝土构件承载力研究[J].工业建筑, 2001, 31(5): 3-5.
    [37]王庆霖,池永亮,牛荻涛.锈后无粘结钢筋混凝土梁的模拟试验与分析[J].建筑结构, 2001, 31(4): 51-53.
    [38]牛荻涛,卢梅,王庆霖.锈蚀钢筋混凝土梁正截面受弯承载力计算方法研究[J].建筑结构, 2002, 32(12): 14-17.
    [39]徐善华.混凝土结构退化模型与耐久性评估[D].西安:西安建筑科技大学, 2002.
    [40]王小惠.锈蚀钢筋混凝土梁的承载能力[D].上海:上海交通大学, 2004.
    [41]Rodriguez D.J., Ortega L.M., Casal J. Load carrying capacity ofconcrete structures with corroded reinforcement[J]. Construction andBuilding Material, 1997, 11(4): 239-248.
    [42]Higgins C., Farrow W.C. Tests of reinforced concrete beams withcorrosion-damaged stirrups[J]. Structural Journal, 2006, 103(1):133-141.
    [43]Val D.V. Deterioration of strength of RC beams due to corrosion andits influence on beam reliability [J]. Journal of StructuralEngineering, 2007, 33(9): 1297-1306.
    [44]赵羽习,金伟良.锈蚀箍筋混凝土梁的抗剪承载力分析[J].浙江大学学报(工学版), 2008, 42(1): 19-24.
    [45]Zararis P.D. Shear compression failure in reinforced concrete deepbeams[J]. Journal of structural Engineering, 2003, 129(4):544-553.
    [46]田瑞华,颜桂云,孙炳楠.锈蚀钢筋混凝土构件抗剪承载力的试验研究与理论分析[J].四川建筑科学研究, 2003, 29(3): 36-38.
    [47]徐善华,牛荻涛.锈蚀钢筋混凝土简支梁斜截面抗剪性能研究[J].建筑结构, 2004, 25(5): 98-104.
    [48]熊进刚,祝建军,霍艳华.钢筋混凝土简支梁纵筋锈蚀对受剪承载力的影响[J].南昌大学学报, 2006, 28(2): 194-196.
    [49]余璠璟,李琮琦,曹大富.锈蚀钢筋混凝土粱斜截面性能模拟试验研究和分析[J].建筑技术开发, 2006, 33(5): 2006.
    [50]王小惠,刘西拉.锈蚀钢筋混凝土梁的斜截面抗剪承载能力[J].上海交通大学学报, 2007, 41(6): 944-949.
    [51]倪国荣,戎冠纶.钢筋锈蚀对混凝土梁抗剪性能的影响[J].混凝土与水泥制品, 2005, 4: 4-6.
    [52]马亚飞.基于信息更新的RC受弯构件抗力衰减概率模型[D].长沙:长沙理工大学, 2011.
    [53]Vu K.A.T., Stewart M.G. Structural reliability of concrete bridgesincluding improved chloride-induced corrosion models[J]. StructuralSafety, 2000, 22(4): 313-333.
    [54]Elsener B. Corrosion rate of steel in concrete—Measurements beyondthe Tafel law[J]. Corrosion Science, 2005, 47(12): 3019-3033.
    [55]Stewart M.G., Rosowsky D.V. Time-dependent reliability ofdeteriorating reinforced concrete bridge decks[J]. Structural Safety,1998, 20(1): 91-l09.
    [56]Hoffman P.C., Weyers R.E. Predicting critical chloride levels inconcrete bridge decks[J]. Structural Safety and Reliability, 1994,2: 957–959.
    [57]Thoft-Christensen P., Jensen F.M., Middleton C.R.Assessment of thereliability of concrete slab bridges[C]. Reliability and optimizationof Structural Systems Pergamon, Pergamon: Elsevier,New York, 1997:321-328.
    [58]Liu Y., Weyers R.E. Modeling the Time-to-Corrosion Cracking inChloride Contaminated Reinforced Concrete Bridge[J]. MaterialsJournal, 1998, 95(6): 675-681.
    [59]Chernin L., Val D. Predicting of Cover Cracking in ReinforcedConcrete Structures Due to Corrosion[C]. First InternationalConference on Construction Heritage in Coastal and MarineEnvironments, MEDACHS08, Lisbon, 2008.
    [60]Maaddawy T.E., Soudki K. A Model for Prediction of Time from CorrosionIinitiation to Corrosion Cracking[J]. Cement & Concrete Composites,2007, 29(3): 168-175.
    [61]Vu K.A.T., Stewart M.G. Predicting the Likelihood and Extent ofReinforced Concrete Corrosion-Induced Cracking[J]. Journal ofStructural Engineering, 2005, 131(11): 1681-1689.
    [62]Stewart M.G., Al-Harthy A. Pitting corrosion and structuralreliability of corroding RC structures: Experimental data andprobabilistic analysis [J]. Reliability Engineering and System Safety,2008, 93(3): 373-382.
    [63]王磊.考虑模糊性与随机性的既有RC梁桥时变可靠性研究[D].长沙:长沙理工大学, 2008.
    [64]李扬海,鲍卫刚,郭修武,程翔云.公路桥梁结构可靠度与概率极限状态设计[M].北京:人民交通出版社, 1997.
    [65]Sakai K., Shimomura T., Sugiyama T. Design of Concrete Structuresin the 21st Century[[C]. Proceeding International Conference onControlling Concrete Degradation, Dundee, U.K., 1999.
    [66]Enright M.P., Frangopol D.M. Probabilistic analysis of resist- ancedegradation of reinforced concrete bridge beams under corrosion[J].Engineering Structures, 1998, 20(11): 960-971.
    [67]Tanaka Y., Watanabe H., Nakajo T. Study on required cover depth ofconcrete highway bridges in coastal environment [C]. 17th-JapanBridge Engineering Workshop, 2001.
    [68]袁迎曙,贾福萍,蔡跃.锈蚀钢筋混凝土梁的结构性能退化模型[J].土木工程学报, 2001, 34(3): 47-52.
    [69]牛荻涛,翟彬.锈蚀钢筋混凝土梁的承载力分析[J].建筑结构, 1999,29(8): 23-25.
    [70]陶峰,王林科,王庆霖.服役钢筋混凝土构件承载力的试验研究[J].工业建筑, 2004, 26(4): 17-20.
    [71]张克波.锈蚀RC构件力学性能与整桥破坏性试验研究[D].长沙:长沙理工大学, 2009.
    [72]Dagher H. J., Kulendran S. Finite element modeling of corrosiondamage in concrete structures[J]. Structural Journal, 1992, 89(6):699-708.
    [73]Bhargava, K., Ghosh, A.K., Mori, Y., Ramanujam, S. Suggestedempirical mod-els for corrosion induced bond degradation inreinforced concrete[J]. Journal of Structural Engineering, 2008,134(2): 221–230.
    [74]Bhargava, K., Mori, Y., Ghosh, A.K. Time-dependent reliability ofcorrosion-affected RC beams—Part 1: Estimation of time-dependentstrengths and associated variability[J]. Nuclear Engineering andDesign, 2011, 241(5): 1371–1384.
    [75]GB50010-2002,混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [76]JTG D60-2004,公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004.
    [77]AASHTO LRFD Bridge design specifications and commentary[S]. AmericanAssociation of State Highway Transportation Official, Washington, DC, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700