基于磨削加工表面完整性的滚动接触疲劳寿命预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磨削加工通常作为重要零件的最后一道精密加工工序,磨削加工工艺过程在零件表面形成表面粗糙度、微硬度、残余应力等表面完整性指标对零件的服役寿命与可靠性具有直接影响。目前工程应用中,通常只检测磨削零件的表面粗糙度等几何特征,而对表面层的微硬度、残余应力等物理性能却很少予以检测和控制,进而基于零件磨削加工表面完整性进行磨削零件寿命预测的研究还没有报道。本文将以实际工业中应用的轴承内圈为研究载体,基于实际磨削工艺加工过程形成的表面完整性,对零件滚动接触疲劳疲劳寿命进行预测研究。本文主要内容包括:
     首先,基于零件加工工艺过程形成的残余应力、显微硬度等表面完整性指标和断裂力学理论,建立了滚动接触疲劳萌生寿命和扩展寿命的预测模型,并修正L-P模型与之对比。与寿命试验数据进行对比验证表明,该寿命模型具有较高的预测精度。
     其次,以实际工业生产线上随机抽取的轴承内圈作为试样,较系统地测试了内圈试样滚道表面历经热处理、粗磨、精磨、超精四道工序时的表面层残余应力、显微硬度、表面粗糙度等表面完整性指标,着重分析了零件的表面层残余应力及其离散度历经各工序时的变化过程。研究结果表明:零件的表面层残余应力、显微硬度等物理性能指标具有离散性,并且其离散度随工序累积呈收敛趋势。这揭示了传统磨削工序能够使零件表面完整性逐步达到较好的一致性。
     最后,基于本文建立的滚动接触零件的寿命模型,分析了超精工序后零件表面层残余应力、显微硬度及其离散度对零件滚动接触疲劳萌生寿命和扩展寿命的影响规律;并对超精磨削零件的疲劳寿命进行了预测,根据类似工序的轴承寿命试验数据,对预测结果进行了间接的验证。预测结果与实验结果比较吻合。
     基于磨削加工零件表面完整性的寿命预测结果表明:残余应力和显微硬度的最大峰值及其沿深度的分布都对零件的疲劳接触寿命都具有较大影响,而残余应力对疲劳寿命的影响更大;超精磨削工序后零件表面层残余应力最大峰值的标准差仅为20MPa,即只有平均值的16%,而试样的疲劳寿命极差却高达4倍。本文从磨削工艺角度揭示了零件使用寿命离散度较大的原因,提供了基于工艺过程提高零件使用可靠性的工艺控制途径,因此对延长精密零件(诸如轴承、齿轮等)的服役周期具有很好的科学价值,并对实际工业生产线的改善和优化具有工程指导意义。
Usually,grinding process is the finish process of key component, some indexes of ground components surface integrity,such as surface finish,microhardness and residual stress,have direct and important influence on the service life and reliability of components.Presently,in engineering applications,routine test items is only limited to some geometrical features such as surface roughness,however,physical properties such as surface layer micro-hardness and residual stress are seldom inspected and controlled.Furthermore,there is few research on life prediction of ground components based on ground surface integrity is reported.In this paper,bearing rings are randomly selected from a industry production line as the samples,and the rolling contact fatigue (RCF) lives of ground samples is predicted based on the ground surface integrity.Main contents and conclusions are as follows:
     Firstly,based on surface integrity induced by machining processes and fracture mechanics,a RCF crack initiation life and propagation life prediction model is propsoed and compared with a Lundberg—Palmgren RCF life model.Comparative validation with experiment life shows that using this method the higher forecasting accuracy can be acquired.
     Secondly,bearing rings are randomly selected from industry production line as the samples,and some indexes of samples surface integrity,such as surface finish,micro-hardness and residual stress,are systemically investigated when samples experience four sequential processes:heat treatment,rough grinding,fine grinding and superfinish grinding,and emphatically analyzes the process of changes of surface layer residual stress and its scatter.The analysis shows that each surface integrity indexes have scatters,and the scatters are gradually converging with the processes cumulate.This reveals that a good consistency surface integrity can be gradually acquired by the tradition grinding processes.
     Finally,based on the proposed models,the effects of residual stress and microhardness of superfinish ground samples surface layer on RCF crack initiation lives and propagation lives are analyzed,and the fatigue lives of superfinish ground samples are predicted and indirectly validated by experiment lives of bearing with similar machining processes.The predicted and experimental results match well.
     The predicted results based on ground components surface integrity show that:the Maximum peak and distribution of both residual stress and microhardness have important effect on RCF life,and the effect of residual stress on RCF life is more significant than that of micro-hardness; the standard deviation of surface residual stress after superfinish grinding process is just 20MPa,only 16%of mean residual stress,but the life range of the four superfinish ground samples is higher than 4 times.This paper,from the perspective of grinding process,reveals the reason of why the component lives have great scatter,and offer a possible approach to enhance the reliability of components by manufacturing process control. Therefore,the result of this paper has a good scientific value of improving the service life of precision components such as bearings, gears,and also is a significant guide of improving and optimizing the practical production line.
引文
[1]邹小理,樊蔚勋,刘卫英,疲劳裂纹扩展寿命的随机模型,固体力学学报,1997 18(2):167-172
    [2]鄢建辉,李兴林,蒋万里等,轴承疲劳寿命理论的新进展,轴承,2005(11):38-44
    [3]Brinksmeier,E.,Cammett,J.T.,Koenig,W.etc.,Residual stresses-measurement and causes in machining processes,CIRP Annals-Manufacturing Technology,1982 31(2):491-510
    [4]Davim,J.P.(Ed.),Rech J.,Hamdi H.etc.,Machining:Fundamentals and Recent Advances,Springer London,2008:59-96
    [5]Liu,C.R.,Mittal,S.,Optimal pre-stressing the surface of a component by superfinish hard turning for maximum fatigue life in rolling contact,Wear,1998,219(1):128-140
    [6]Smith,S.,Melkote,S.N.etc.,Effect of surface integrity of hard turned AISI 52100 steel on fatigue performance,Materials Science and Engineering A 2007,459(1-2),pp.337-346
    [7]鲁连涛,盐泽和章,西野精一,研磨加工层对高碳铬轴承钢超长寿命疲劳行为的影响,机械工程学报,2007,43(2):115-121
    [8]Liu,C.R.,and Yang,X.P.,The scatter of residual stresses due to machining and grinding[J],Journal of Machining Science and Technology,2001,5(1):1-22
    [9]李伯民,赵波等,现代磨削技术,北京:机01工业出版社,2003.1
    [10]王贵成,洪泉,朱云明等,精密加工中表面完整性的综合评价,兵工学报,2005 26(6):820-824
    [11]Matsumoto,Y.,Hashimoto,F.,Lahoti,G..,Surface Integrity Generated by Precision Hard Turning,CIRP Annals-Manufacturing Technology,Volume 48,Issue 1,1999,Pages 59-62
    [12]Agha,S.R.,Liu,R.C.,Experimental study on the performance of superfinish hard turned surfaces in rolling contact,Wear 244(2000) 52-59
    [13]Guo,Y.B.,Barkey,M.E.,FE-simulation of the effects of machining-induced residual stress profile on rolling contact of hard machined components,International Journal of Mechanical Sciences,Volume 46,Issue 3,March 2004,Pages 371-388
    [14]Guo,Y.B.,Yen,D.W.,Hard turning versus grinding-the effect of process-induced residual stress on rolling contact,Wear 256(2004) 393-399
    [15]Guo,Y.B.,Barkey,M.E.,Modeling of rolling contact fatigue for hard machined components with process-induced residual stress,International Journal of Fatigue 26(2004) 605-613
    [16]Schwach,D.W.,Guo,Y.B.,A fundamental study on the impact of surface integrity by hard turning on rolling contact fatigue,Transactions of NAMRI/SME,Volume 33,2005,pp.541-548
    [17]Guo,Y.B.,Schwach,D.W.,An experimental investigation of white layer on rolling contact fatigue using acoustic emission technique,International Journal of Fatigue 27(2005)1051-1061
    [18]Choi,Y,Liu,C.R.,Rolling contact fatigue life of finish hard machined surfaces Part 1.Model development,Wear 261(2006) 485-491
    [19]Warren A.W.and Guo Y.B.,The impact of surface integrity by hard turning versus grinding on rolling contact fatigue-Part Ⅰ:Comparison of fatigue life and acoustic emission signals,Fatigue Fract Engug Mater Struct 2007 Vol.30,698-711
    [20]Liu C.R.,Choi Y.,A new methodology for predicting crack initiation life for rolling contact fatigue based on dislocation and crock propagation.International Journal of Mechanical Sciences 2008.50 117-123
    [21]Jiang,B.Y.,Zheng,X.T.,Wang,M.L.,Calculation for rolling contact fatigue life and strength of case-hardened gear materials by computer.Journal of Testing and Evaluation (ISSN 0090-3973),1993:21(1):9-13.
    [22]Yokogawa,M,Yokogawa,K,Improvement of Surface Integrity and Material Fatigue Strength by CBN Grinding Wheels,erkstatt und Betrieb.1991,Vol.124,no.3,pp.187-190.
    [23]Jahanmir,S.,Strakna,T.J.,Quinn,G.D.,Effect of Grinding on Strength and Surface Integrity of Silicon Nitride.Machining of Advanced Materials,1993,20,22,263-277.
    [24]Monahan,R.W.,Zhang,B.,Yang,F.L.,Residual stress and damage effect on integrity of ground silicon nitride,Journal of materials science 35(2000)1115-1124
    [25]Ghanem F.,Braham C.,Fitzpatrick M.E.etc.,Effect of Near-Surface Residual Stress and Microstructure Modification From Machining on the Fatigue Endurance of a Tool Steel,Journal of Materials Engineering and Performance,Volume 11(6) 2002—631-639
    [26]Yang,X.P.,Liu,C.R.,Grandt,A.E,An Experimental Study on Fatigue Life Variance,Residual Stress Variance,and Their Correlation of Face-Turned and Ground Ti 6A1-4V Samples,Journal of Manufacturing Science and Engineering,2002,Vol.124,809-819
    [27]Karina S.S.Lopes,Wisley Falco Sales,Ernani S.Palma,Influence of Machining Paramneters on Fatigue Endurance Limit of AISI 4140 Steel,J.Braz.Soc.Mech.Sci.& Eng.vol.30 no.1Rio de Janeiro Jam/Mar.2008
    [28]Gao,Y.K.,Li,X.B.,Yang,Q.X.,et al.,Influence of surface integrity on fatigue strength of 40CrNi2Si2MoVA steel,Materials Letters 61(2007)466-469
    [29]Alexandre M.Abrao,David K.Aspinwal,The surface integrity of turned and ground hardenedbearing steel,Wear 196(1996):179-284
    [30]Smith,S.R.,An investigation into the effects of hard turning surface integrity on component service life,Dissertation,Georgia Institute of Technology,2000
    [31]Sharman,A.R.C.,Aspinwall,D.K.,Dewes,R.C.,The effects of machined workpiece surface integrity on the fatigue life of γ-titaniurn aluminide,International Journal of Machine Tools &Mannfacture 41(2001)1681-1685
    [32]Yang,X.P,Liu,C.R.,A Methodology for Predicting the Variance of Fatigue Life Incorporating the Effects of Manufacturing Processes,Journal of Manufacturing Science and Engineering,2002,Vol.124,745-753.
    [33]Huang,Q.,Ren,J.X.,Surface Integrity and Its Effects on the Fatigue Life of the Nickel-Based Superalloy GH33A,International Journal of Fatigue(UK).Vol.13,no.4,pp.322-326.July 1991.
    [34]Jeffrey D.T.,Shreyes,N.M.,Effect of cutting edge geometry and workpiece hardness on suface residual stresses in finish hard turning of AISI 52100 steel,Transactions of ASME,J.of Manuf.Sci.& Eng.,Vol.122,No.4,pp.642-649,2000
    [35]Cheng,X.M.,Experimental and numerical approaches for improving rolling contact fatigue of bearing steel through enhanced compressive residual stress,PhD.Dissertation,The Ohio State University 2007
    [36]Hashimoto,E,Guo,Y.B.,Warren,A.W.,Surface Integrity Difference between Hard Turned and Ground Surfaces and Its Impact on Fatigue Life,CIRP Annals-Manufacturing Technology,Volume 55,Issue 1,2006,Pages 81-84
    [37]Guo,Y.B.,Sahni,J.,A comparative study of hard turned and cylindrically ground white layers,International Journal of Machine Tools & Manufacture 44(2004)135-145
    [38]Smith,S.R.,An investigation into the effects of hard turning surface integrity on component service life,Dissertation,Georgia Institute of Technology,2000
    [39]文东辉,刘献礼,严复钢等,CBN磨削和车削淬硬轴承钢的表面完整性,工具技术2001(6):4-9
    [40]岳彩旭,刘献礼,王宇等,硬态切削与磨削工艺的表面完整性工具技术2008 42(7):13-18
    [41]Guo,Y.B.,Warren,A.W.,The impact of surface integrity by hard turning vs.grinding on fatigue damage mechanisms in rolling contact,Surface & Coatings Technology 203(2008)291-299
    [42]Kazuhiko,Y.,Makoto,T.,Optimum grinding condition of CBN grinding wheel made clear through the ground surface integrity,Meiji Daigaku Rikogakubu Kenkyu Hokoku Vol.13,no.69,pp.25-32.1995
    [43]Hashimoto,F,Guo,Y.B.,Warren,A.W.,Surface Integrity Difference between Hard Turned and Ground Surfaces and Its Impact on Fatigue Life,CIRP Annals-Manufacturing Technology,Volume 55,Issue 1,2006,Pages 81-84
    [44]Barbacki A.;Kawalec,M.;Hamrol,A.,Turning and grinding as a source of microstructural changes in the surface layer of hardened steel,Journal of materials processing technology,2003,vol.133,no1-2,pp.21-25
    [45]Kanig,W.,Berktold,A.,Koch,F.K.,Turning versus grinding:a comparison of surface integrity aspects and attainable accuracies,Annals of the CIRP,1993,vol.42,no1,pp.39-43
    [46]Gopal;A.V,Rao,P.V.,Performance Improvement of Grinding of SiC Using Graphite as a Solid Lubricant,tefials and Manufacturing Processes,Volume 19,Issue 2 December 2004,pages 177-186
    [47]Grzesik,W.,Rech,J.,Wanat,T.,Surface integrity on hardened steel parts produced by hybrid machining sequences,Journal of Achievements in Materials and Manufacturing Engineering,Volume 31 Issue 2 December 2008,654-661
    [48]Krnszynski,B W,Luttervelt,C A.,An Attempt to Predict Residual Stresses in Grinding of Metals With the Aid of a New Grinding Parameter,CIRP Annales(Switzerland).Vol.40,no.1,pp.335-337.1991
    [49]Chen,X.,Rowe,W.B.,McCormack,D.F.,Analysis of the transitional temperature for tensile residual stress in grinding,Journal of Materials Processing Technology 107(2000) 216-221
    [50]Zhang,L.C.,Suto,T.,Noguchi,H.and Waida T.,Applied mechanics in grinding.Part Ⅱ:Modelling of elastic modulus of wheel and interface forces.International Journal of machine Tools & Manufacture 33(1993),pp.245-255.
    [51]Mamalis,A.G.,Kundra'k J.,Manolakos,D.E.,Thermal Modelling of Surface Grinding Using Implicit Finite Element Techniques,Int J Adv Manuf Technol(2003) 21:929-934
    [52]Brosse,A.,Hamdi,H.,Bergheau,J.M.,Residual Stresses prediction with a new Thermo Mechanical simulation of Grinding,Int J Mater Formn(2008) Suppl 1:1319-1322
    [53]高二威,精密磨削表面残余应力离散度试验研究与数值分析[D],上海交通大学,2008
    [54]万长森,滚动轴承的分析方法,北京,机械工业出版社,1987.
    [55]苗学问,王大伟,洪杰,滚动轴承寿命理论的发展,轴承,2008(03):47-52
    [56]Lundberg G,Palmgren A.Dynamic Capacity of Rolling Bearings[J].Acta Polytech Mech.Eng.,1947,(3).
    [57]Tallian T E.Data-fitted Beating Life Prediction Model-part Ⅰ:Mathematical Model[J].Trib.Trans.,1994 39(2):249-258.
    [58]Tallian T E.Data-fitted Bearing Life Prediction Model-part Ⅱ:Experimental Database[J].Trib.Trans.,1996,39(2):259-268.
    [59]Tallian T E.Data-fitted Bearing Life Prediction Model -partⅢ:Parametric Study[J].Trib.Trans.,1996,39(2):269-275.
    [60]Tallian T E.Data-fitted Bearing Life Prediction Model-partⅣ:Model Implementation for Current Engineering Use[J].Trib.Trans.,1996,39(4):957-963.
    [61]Keer L M,Bryant M D.A Pitting Model for Rolling Contact Fatigue[J].Trans.of ASME,J. of Tribology,1983,105:198-205.
    [62]Salehizadeh H,Saka N.Crack Propagation in Rolling Line Contact[J].Trans.of ASME,J.of Tfibology,1992,114:690-697.
    [63]Hearlea A.D.and Johnson K.L.,Mode Ⅱ stress intensity factors for a crack parallel to the surface of an elastic half-space subjected to a moving point load,Journal of the Mechanics and Physics of Solids,1985,33(1):61-81
    [64]Tanaka K,Mura T.Dislocation model for fatigue crack initiation.ASME Journal of Applied Mechanics 1981,48:97-103.
    [65]Johnson K.L.Contact mechanics.Cambridge University Press:Cambridge;1985.
    [66]Leng,X.G.,Chen Q.,Shao E.Y,Initiation and propagation of case crushing cracks in rolling contact fatigue Wear,Volume 122,Issue 1,15 February 1988,Pages 33-43
    [67]ISO281/I.1977(E).International Organization for Standardization,Rolling Bearings Dynam ic Load Ratings and Rating Life[S].
    [68]阿姆斯塔特著,可靠性数学,北京,科学出版社,1978

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700