森林地上生物量的非参数化遥感估测方法优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,综合使用多源遥感数据的森林地上生物量(Forest Above Ground Biomass,FAGB)估测技术已逐渐成为遥感领域的研究热点。由于传统的参数化估计方法不能有效地描述FAGB与多源遥感数据间的非线性关系,所以出现了一些将非参数化方法,如K最近邻(K Nearest Neighbours,KNN)、神经网络(NN)算法等,用于森林AGB多源遥感估测的研究。支持向量机(Support Vector Machine,SVM)也是一种非常有前景的非参数化方法,它基于统计学习理论,可以较好地解决小样本、非线性、过学习、高维度、局部极小点等实际问题。自提出以来,因其独特的优势,使其在众多领域中得到了广泛的研究与应用,然而利用SVM进行森林AGB遥感估测的相关报道还很少,并且也只有少数研究开展了旨在提高估测精度和稳键性的非参数化优化算法。
     本文全面分析评述了森林AGB遥感估测的主要方法,重点总结了KNN、SVM等非参数化估测方法用于遥感生物物理参数反演方面的研究现状。在对已有的一些非参数化估测方法进行系统深入研究及优化的基础上,确定了NN、KNN用于森林AGB估测的优化方法,并建立了优化的基于SVM的森林AGB遥感估测技术流程,提出了一种将随机特征选择技术与SVM相结合的组合算法。主要研究内容及成果如下:
     (1)基于SPOT5影像,LiDAR归一化点云统计变量以及相关的一些遥感因子,如纹理、植被指数等,设计了单隐层的错误反向传播NN模型(Back Propagation Neural Network,BPNN)及三层径向基NN模型(Radial Basis Function Neural Network,RBFNN),并利用随机森林(Random Forest,RF)算法进行特征选择。结果表明,特征选择可以提高NN算法的估测效果,RBFNN在估测精度、稳定性上均优于BPNN。
     (2)基于KNN采用多源遥感数据,包括光学SPOT影像光谱值、相关遥感因子,如纹理、植被指数等及LiDAR归一化点云统计变量进行森林AGB估测,为了与其他研究的非参数化模型进行比较,同样采用RF特征选择对基于KNN的估测方法进行优化,并对KNN算法的众多参数进行优选。结果表明,优化后的KNN算法可以用于森林AGB估测,并且在处理错误样本时具有良好的容错能力。
     (3)改进了SVM用于森林AGB遥感估测应用中的一些缺陷,建立了SVM在森林AGB遥感估测应用中的技术流程,包括特征选择、最优参数确定、核函数的自动寻优等。在特征选择部分采用了RF算法。结果表明,基于RF算法进行特征选择的估测效果优于F-score的估测效果。在核函数寻优部分,利用留一法,根据均方根误差最小原则选择最优核函数,并依此建立了从5种常用核函数中自动寻优的算法与程序,解决了常规SVM估测方法依赖经验选择核函数的局限性。
     (4)提出了将SVM和随机特征选取技术相结合的森林AGB组合估测模型。该模型在随机森林特征选择的基础上,利用随机特征选取技术生成一组特征子集,然后基于这组特征子集构建一组SVM,并对每个SVM子模型都进行参数的最优化选择及核函数的自动寻优等处理步骤,最后采用三种不同的方法将每个SVM子模型的估测值进行结合,分别为平均法、加权平均法以及选择法。与现有主流的非参数化方法的估测效果进行了比较,结果表明:由于组合模型在计算过程中会根据不同的样本选择其对应的最优拟合超平面,在某种程度上具有自适应性,整体的估测效果均要优于单一SVM及其他非参数化方法。
     本文研究工作的创新点如下:
     (1)建立并实现了基于SVM的森林AGB遥感估测应用技术流程。发展了基于SVM与随机特征选择相结合的森林AGB遥感估测模型。该模型在处理森林AGB遥感估测问题时,无论从预测精度还是稳定性均优于参比模型。
     (2)实现了基于KNN的森林AGB遥感估测方法的优化。在对KNN算法的参数如K值、距离计算方法及权重计算方法进行优选的基础上,通过结合RF特征选择方法,使估测精度得到提高。
     (3)将基于RF算法的特征选择方法应用于非线性估测模块中,与传统的F-score算法进行了比较,证实了该方法的有效性,为非线性估测模型的优化提供了一种通用方法。
In the last years, the remote sensing community has devoted particular attention to the estimation of forest above ground biomass (AGB) via the analysis of multisource remote sensing data. A major observation in previous research on forest AGB estimation is that conventional parametric statistical pattern recognition methods are not appropriate in forest AGB estimation using multisource remote sensing data, since they cannot be modeled by a convenient multivariate statistical model. In these situations, the use of nonlinear regression techniques based on machine learning methodologies, such as K nearest neighbours(KNN), neural networks (NN), can represent an effective approach to solve such estimation problems. Another promising alternative nonparametric method to neural networks and KNN is the Support Vector Machine(SVM), originating from statistical learning theory, have provided capacities to deal with the few ground measurements, nonlinear, overfitting, highly dimension problems and have already proven their usefullness in many literature. However, few studies have investigated the potential of applying SVM to estimate forest AGB and the peculiarities of the nonparametric methods to improve the robustness and precision of the estimation process.
     This paper completely appraised various methods on forest AGB estimation and summerized the research status of the nonparametric methods, such as SVM, for biophysical variable estimation from remotely sensed images. On the basis of systematicly and intensely investigation and optimization of some nonlinear tools, the optimized neural networks and KNN algorithms on forest AGB estimation is presented. Furthermore, the technique flow of SVM for estimating forest AGB is introduced. To increase the performance of the algorithms in terms of estimation accuracy and robustness, the algorithm of SVM is modified and combined with random feature selection for optimizing the estimation results.
     The main works and results are as follows:
     (1) The method of back propagation neural network (BPNN) with single hidden layer and radial basis function neural network(RBFNN) are designed using the SPOT5 spectral reflectivity, LiDAR points cloud statistical variables and some remote sensing factors such as texture and vegetation index. The results clearly demonstrate that estimation accuracies increased by feature selection based on the random forest(RF) algorithm. Furthermore, compared to BPNN, the RBFNN model provided more accurate, improved robust result on the considered case.
     (2) The optimal KNN algorithm is established to estimate the forest AGB by using SPOT5 spectral reflectivity, LiDAR points cloud statistical variables and some remote sensing factors such as texture and vegetation index. The results show that the optimal KNN model, based on the selection of features and the determination of optimal parameters, provides a solution to deal with such problems and represents a promising method to address the complex and important problem of containing kinds of noise in training samples. In order to be compared with other nonparametric methods in this paper, the feature selection algorithm is RF too.
     (3) This paper introduces the basic flow of SVM for estimating forest AGB, which includes: feature selection, the determination of optimal parameter, the automatic optimization of kernel function and so on. In the stage of feature selection, the RF model provide better results compared to the typical F-score method. For the automatic optimization of kernel function, we developed the method of selecting optimal kernel automatically from four common kernels, which are linear kernel, polynomial kernel, RBF kernel and sigmoid kernel, abiding by root mean squared error (RMSE) minimum principle.
     (4) A novel approach to the estimation of forest AGB from multisource remote sensing images based on the composed model of SVM and random feature selection has been presented. The composed model, on the basis of RF feature selection, trains a group of SVM models by random feature selection technique and aims at exploting the peculiarities of an ensemble of SVM to improve the robustness and accuracy of the estimation process. The defining of optimal parameter and the automatic optimization of kernel function are handled by the single SVM in composed model. Three result combination strategies are adopted which are average-based method, weight-based method and selection-based method. Results show that: the composed model is more effective than regular SVM and other nonparametric methods to estimate forest AGB whether the training data are uncertainty or not, since it has the characteristic of self-adapted to some extent.
     The innovations in the thesis are as follows:
     (1) Introduce the basic flow of using SVM to estimate forest AGB and propose a novel approach to estimate forest AGB from multisource remote sensing images by combining SVM and random feature selection technique.The gain of the proposed algorithm is noticeable especially significant when working with very reduced training sets and different noise sources.
     (2) Implement the optimal estimation model based on KNN for estimating forest AGB from multisource remote sensing images. The optimal model improves the accuracy further by combining the RF feature selection method.
     (3) Use the RF algorithm to select features in the three kinds of nonparametric estimation method and validate the effectiveness by comparing to the result of typical F-score algorithm.
引文
[1]宛志沪,严平,吴烽.森林对二氧化碳循环的影响.安徽农业大学学,1997,24(1):8-13.
    [2]杨洪晓,吴波,张金屯,林德荣,常顺利.森林生态系统的固碳功能和碳储量研究进展.北京师范大学学报(自然科学版),2005,41(2):172-177.
    [3] Brown S., Sathaye J., Canell M.. Mitigation of carbon emission to the atmosphere by forest management. Com For Rev, 1996, 75: 80-91.
    [4]徐新良,曹明奎.森林生物量遥感估算与应用分析.地理信息科学,2006,8(4):123-128.
    [5] Dong J.K., Myneni R.K., Tucker R.B.. Remote seining estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks. Remote Sensing of Environment, 2003, 84:393-410.
    [6] Hame T., Salli A., Andersson K.. A new methodology for the estimation of biomass of conifer dominated boreal forest using NOAA AVHRR data. Photogrammetric Engineering and Remote Sensing, 1997,18(15):11-32.
    [7] Hame T., Salli A., Andersson K.. A new methodology fot the estimation of biomass of conifer dominated boreal forest using NOAA AVHRR data.International Journal of Remote Sensing,1997, 18(15):3211-3243.
    [8] Trotter C.M., Dymond J.R., Goulding C.J.. Estimation of timber volume in a coniferous plantation forest using LANDSAT TM. International Journal of Remote Sensing,1997,18(10):2209-2223.
    [9] LU Dengsheng, Mateus Batistella. Exploring TM image texture and its relationships with biomass estimation in Rondia,Brazilian Anlazon.Acts Amazonica,2005,35(2):261-268.
    [10] Franklin J.. Thematic Mapper analysis of coniferous forest structure and composition.International Journal of Remote Sensing,1986,7:1287-1301.
    [11] Horler D.N.H, Ahern F. J.. Forestry information content of Thematic Mapper data.International Journal of Remote Sensing,1986,7:405-428.
    [12] Peterson U., Nilson T.. Successional reflectance trajectories in northern temperate forests. International Journal of Remote Sensing,1993,14:609-613.
    [13] Sader S.. Forest biomass,canopy structure and species composition relationships with multipolarization L-band synthetic aperture radar, Photogrammetric Engineering and Remote Sensing,1987,53(2): 193-202.
    [14] Hussin Y., Reich R., Hoffer R. Estimating slash pine biomass using radar backscatter, IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(3):427-431.
    [15] Toan Le.T., Beaudoin A., Riom J., Guyon D.. Relating forest biomass to SAR data. Proceedings of the International Geoscience and Remote Sensing Symposium IGARSS'91, Helsinki University of Technology, Espoo, Finland, June 3-6, 1991, vol. II: 689-692.
    [16] Hoekman D.H., Quinones M.J., Land cover type and biomass classification using AirSAR data for evaluation of monitoring scenarios in the Colombian Amazon, Proceedings of the 2nd International Workshop on Retrieval of Bio- and Geophysical Parameters from SAR Data for Land Applications, 1998,10:21-23.
    [17] Hoekman D., Quinones M.. Land cover type and biomass classifications using AirSAR data for evaluation of monitoring scenarios in the Colombian Amazon, IEEE Transactions on Geoscience and Remote Sensing, 38:685-696.
    [18] Castel T., Beaudoin A., Stach N., Stussi N., Toan Le.T., Durand P.. Sensitivity of space-borne SAR data to forest parameters over sloping terrain-Theory and experiment, International Journal of Remote Sensing, 2001, 22(12):2351-2376.
    [19] Balzter H.,Baker J., Hallikainen M.,Tomppo E.. Retrieval of timber volume and snow water equivalent over a Finnish boreal forest from airborne polarimetric synthetic aperture radar, International Journal of Remote Sensing, 2002, 23(16): 3185-3208.
    [20] Santos J., Araujo L., Freitas C., Anna S., Dutra L., Mura J., Gama F., Hernandez Filho. Inventory of forest biomass in Brazilian Amazon: A local approach using airborne P-band SAR data, Proceedings of the International Geoscience and Remote Sensing Symposium IGARSS 2001, Sydney, Australia, 9-13 July, 2001, IEEE, Piscataway, NJ, USA, Vol. 2:786-788.
    [21] Santos J., Freitas C., Araujo L., Dutra L., Mura J., Gama F., Soler L.. Airborne P-band SAR applied to the above ground biomass studies in the Brazilian tropical rainforest, Remote Sensing of Environment, 2003, 87:482-493.
    [22] Israelsson H.,Ulander L., Askne J., Fransson J., Frolind P., Gustavsson A., Hellsten H.. Retrieval of forest stem volume using VHF SAR, IEEE Transactions on Geoscience and Remote Sensing, 1997, 35:36-40
    [23] Fransson J., Walter F., Ulander L.. Estimation of forest parameters using CARABAS-II VHF SAR data, IEEE Transactions on Geoscience and Remote Sensing, 2000,38:720-727.
    [24] Aardt J.A.N., Wynne R.H., and Oderwald R.G.. Forest volume and biomass estimation using small-footprint Lidar-distributional parameters on a Per-Segment Basis. Forest Science, 2006, 52(6):636-649.
    [25] Popescu S. C., Wynne R.H., Nelson R. F.. Estimating plot-level tree heights with lidar: local filtering with a canopy-height based variable window. Computers and Electronics in Agriculture, 2002 (37): 71-95.
    [26] Popescu S.C., Wynne R.H., Nelson R. F.. Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Canadian Joumal of Remote Sensing, 2003, 29(5): 564-577.
    [27] Kodani E., Awaya Y..Estimating mean height and stand volume in broad leaved forest stands using LiDAR. Journal of Forest Planning, 2008,13:239-243.
    [28]杨燕琼,吴奕敏,黄平,侯长谋.基于RS、GIS的林分蓄积量估测.华南农业大学学报(自然科学版),2003,24(3):73-77.
    [29]杨存建,刘纪远,张增祥.热带森林植被生物量与遥感地学数据之间的相关性分析.地理研究, 2005,24(3):473-479.
    [30]郭志华,彭少麟,王伯荪.利用TM数据提取粤西地区的森林生物量.生态学报,2002,22(11):1832-1839.
    [31]国庆喜,张锋.基于遥感信息估测森林的生物量.东北林业大学学报.2003,31(2):13-16.
    [32]邢素丽,张广录,刘慧涛.基于Landsat ETM数据的落叶松林生物量估算模式.福建林学院学报,2004,24(2):153-156.
    [33]徐天蜀,岳彩荣.基于印度遥感卫星IRS-P6的森林生物量估测模型研究.中南林业调查规划,2008,27(1):42-45.
    [34]陈尔学.合成孔径雷达森林生物量估测研究进展.世界林业研究,1999,12(6):18-23.
    [35]夏朝宗.森林生态系统生产力遥感模型研究(博士论文).中国科学院地理科学与资源研究所,2004.
    [36] Andrew Lister, Mike Hoppus, Raymond, Czaplewsk L.. K-Nearest neighbor imputation of forest inventory varibles in new Proceedings of the Tenth Forest Service Remote Sensing Applications Conference Salt Lake City, Utah April 5-9 2004.
    [37] Holmstr(o|¨)m H., Fransson J. E. S.. Combining remotely sensed optical and radar data in KNN estimation of forest variables. Forest Science.
    [38] Tomppo E..Satellite imagery-based national inventory of Finland. International Archives of Photogrammetry and Remote Sensing,1991,28:419-424.
    [39] Tomppo E.. Application of remote sensing in Finnish national forest inventory. In: Kennedy, P. J. Application of remote sensing in European forest monitoring. International Workshop, Vienna, Austria, 14th-16th October 1996. Proceedings. European Commission, 1997,375-388.
    [40] Tomppo E.. Multi-source National Forest Inventory of Finland. In: Proceedings of Ilvessalo Symposium on National Forest Inventories, 1993,August 17-21, Finland. pp. 52-59.
    [41] Tokola T., Pitkanen J.,Muinonen E.. Point accuracy of a nonparametric method in estimation of forest characteristics with diferent satellite materials. International Journal of Remote Sensing,1996,17: 2333-2351.
    [42]冯险峰.基于过程的中国陆地生态系统生产力和蒸散遥感研究(博士论文).中国科学院地理科学与资源研究所,2004.
    [43] Nilsson M.. Estimation of forest variables using satellite image data and airborne Lidar. Acta Univ. Agricult.Suecia.Silvestria17.Swedish University of Agricultural Sciences. Department of Forest Resource Management and Geomatics, Ume?, Sweden.
    [44] Poso S.,Paananen R.,Simila M.. Forest inventory by compartments using satellite imagery. Silva Fennica, 21, pp. 69-94.
    [45] Muinonen E.,Tokola T.. An application of remote sensing for communal forest inventory. In: The Usability of Remote Sensing for Forest Inventory and Planning. SNS/IUFRO workshop, Department of forest resource management and geomatics, Swedish University of Agricultural Sciences, Umea, Sweden, pp. 35-42.
    [46] Hagner O.. Computer aided forest stand delineation and inventory based on satellite remote sensing. In: workshop:The Usability of Remote Sensing for Forest Inventory and Planning, Umea, Sweden. 94-105.
    [47] Ahern F. J.,Erdle T.,Maclean D.A.,Kneppeck I.D.. A quantitative relationship between forest growth rates and Thematic Mapper reflectance measurements. International Journal of Remote Sensing, 12:387-400.
    [48] McRoberts R.E.,Nelson M.D.,Wendt D.G.. Stratified estimation of forest area using satellite imagery, inventory data, and the k-nearest neighbors technique. Remote Sensing of Environment, 2002, 82: 2-3, 457-468.
    [49] Heather Reese,Mats Nilsson,Per Sandstr?m,H?kan Olsson. Applications using estimates of forest parameters derived from satellite and forest inventory data. Computers and Electronics in Agriculture, 2002, 37:37-55.
    [50] Matti Katila,Erkki Tomppo,Stratification by ancillary data in the multisource forest inventories employing k-nearest-neighbour estimation, Can. J. For. Res. 32: 1548-1561.
    [51] Chirici G..Non-parametric and parametric methods using satellite images for estimating growing stock volume in alpine and Mediterranean forest ecosystems. Remote Sensing of Environment, 2008, 112.
    [52] Hector Franco-Lopeza,Alan R.Ek,Marvin E.,Bauer.. Estimation and mapping of forest stand density, volume,and cover type using the k-nearest neighbours method.Remote Sensing of Environment, 2001(77):251-274.
    [53] Reese H.,Granqvist Pahlen T.,Egberth M.,Nilsson M.,Olsson H.. Automated estimation of forest parameters for Sweden using Landsat data and the KNN algorithm.The 31st International symposium on Remote Sensing Environment June 20-24,2005,Saint Petersburg,Russia.
    [54]许东,代力民,邵国凡,汤蕾,谷会岩.基于RS、GIS及K-近邻法的森林蓄积量估测.辽宁工程技术大学学报(自然科学版).2008, 2.
    [55]陈尔学,李增元,武红敢,韩爱惠.基于k-NN和Landsat数据的小面积统计单元森林蓄积估测方法.林业科学研究,2008,21(6):745-750.
    [56] Giles M Foody, Mark E Cutler, Julia Memorrow,. Mapping the biomass of Bornean tropical rain forest from remotely sensed data, Global Ecology & Biogeography. 2001.10: 379-387.
    [57]浦瑞良,宫鹏.应用神经网络和多源回归技术预测森林产量.应用生态学报,1999,10(2):129-134.
    [58]李际平,邓立斌,何建华.基于人工神经网络的森林资源预测研究.中南林学院学报2001,21(4):19-22.
    [59]刘志华,常禹,陈宏伟.基于遥感、地理信息系统和人工神经网络的呼中林区森林蓄积量估测.应用生态学报.2008,19(9):1891-1896.
    [60]王淑君,管东生.神经网络模型森林生物量遥感估测方法的研究.生态环境.2007,16(1):108-111.
    [61]范文义,张海玉,于颖.三种森林生物量估测模型的比较分析.植物生态学报.2011,35(4):402-410.
    [62] Haigang Zhan, Ping Shi,Chuqun Chen. Retrival of Oceanic Chlorophyll Concentration Using Support Vector Machines. IEEE Transactions on geoscience and remote sensing 2003,Vol.41,No.12.:2947-2951.
    [63] Gang Chen, Geoffrey J.Hay.. Estimation of Forest Height,Biomass and Volume Using Support Vector Regression and Segmentation From Lidar Transects and Quickbird Imagery 2010,.in: Geoinformatics, 2010 18th International Conference.
    [64]谢屹鹏,汪西莉.基于GA-LSSVR的渭河水质参数遥感反演研究.遥感技术与应用2010,2:257-262.
    [65] Yakoub Bazi, Farid Melgani.. Semisupervised PSO-SVM Regression for Biophysical Parameter Estimation. IEEE Transactions on geoscience and remote sensing 2007,Vol.45, No.6.:1887-1895.
    [66] Gustavo Camps-Valls. Biophysical Parameter Estimation With a Semisupervised Support Vector Machine.IEEE Geoscience and Remote Sensing Letters 2009,Vol.6,No.2:248-252.
    [67] Gustavo Camps-Valls, Lorenzo Bruzzone.. Robust Support Vector Regression for Biophysical Variable Estimation From Remotely Sensed Images. IEEE Geoscience and remote sensing letters 2006, Vol.3, No.3:339-343.
    [68] Lorenzo Bruzzone. Robust Multiple Estimator System for the Analysis of Biophysical Parameters From Remotely Sensed Data. IEEE Transactions on geoscience and remote sensing, 2005, Vol.43, No.1:159-174.
    [69]王金叶,于彭涛,王彦辉等.森林生态水文过程研究:以祁连山水源涵养林为例.北京:科学出版社,2008:1-13.
    [70]张鹰,温娅丽,马力.祁连山北坡中部气候特征及垂直气候带的划分.山地学报,2001,19(6): 497-502.
    [71]徐柏林,王金叶,葛双兰.祁连山(北坡)水源涵养林类型划分与组成结构分析.甘肃林业科技,2001,26(3):16-19.
    [73]孙家柄,舒宁,关泽群编著.遥感原理、方法和应用.北京:测绘出版社,1999.
    [74] Jordan C. F.. Derivation of leaf area index from quality of light on the forest floor. Ecology, 1969, 50:663-666.
    [75] Rouse J. W.,Haas R. H.,Cehell,J. A.. Monitroing vegetation system in the Great Plains with ERTS [A]. Proceedings of Third Earth Resources Technology Satellite-1 Symposium[C], Greenblet: NASA SP-351:310-317.
    [76] Huete A.R. A.soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 1988, 25:95-309.
    [77] Qi J. A.. Modified soil-adjusted vegetation index. Remote Sensing of Environment, 1994,48:119-126.
    [78]魏海坤.神经网络设计的理论和方法[M].北京:国防工业出版社,2005:11-15
    [79] Malki S.,Spaanenburg L.,Ray N.. Neural vision sensors for surface defect detection.IEEE International Joint Conference,2004,4(25):3155-3160.
    [80] Hou L.,Wu W.,Zhu B.,Li F.. A segmentation method for merged characters using self-organizing map neural networks.Journal of Information and Computational Science,2006,3(2):219-226.
    [81] Shishir Bashyal. Classification of Psychiatric Disorders Using Artificial Neural Network[J].Lecture Notes in Computer Scicence,2005,34(9):386-394.
    [82] Alireza Givehchi,Gisbert Schneider.. Impact of Descriptor Vector Scaling on the Classification of Drugs and Nondrugs with Artificial Neural Networks[J].Journal of Molecular Modeling,2004,10(3):204-211.
    [83] Hirohito Shintani,Hirofumi Nagashino,Masatake Akutagewa.. A Neural Network Model for Pattern Recognition[J].Lecture Notes in Computer Science,2003,27(7):814-821.
    [84]吴成东,刘文涵,傅小菲.基于粗网络神经网络的车牌字符识别方法[J].沈阳建筑大学学报(自然科学版),2007,23(4):693-697.
    [85] Kwang Kyu Seo,Sung Hwan Min,Hun Woo Yoo.. Artificial Neural Network Based Life Cycle Assessment Model for Product Concepts Using Product Classification Method[J].Lecture Notes in Computer Science,2005,34(8):458.
    [86] Haralarmbos Sarimveis,Philip Doganis,Alex Alexandridis.. A classification technique based on radial basis function neural network[J].Advances in Engineering Software,2006,37(4):218-221.
    [87]蒋宗礼.人工神经网络导论[M].北京:高等教育出版社,2001:16-18.
    [88] Guang-Bin Huang,P.Saratchandran,Narasimhan Sundararajan. An Efficient Sequential Learning Algorithm for Growing and Pruning RBF(GAP-RBF) Networks.IEEE Transion Cybernetics.2004, 34(6): 2284-2292.
    [89] Breiman L.. Random forests. Machine Learning, 45(1):5–32, 2001.
    [90] Altman N.S.. An introduction to kernel and nearest-neighbour nonparametric regression[J].American Statistician,1992,46:175-185.
    [91]陈念贻,陆文聪,陆治荣.优化建模技术和机器学习理论的新发展[J].计算机与应用科学,2002,19(6):678-682.
    [92]曾邵华.支持向量回归机算法理论研究与应用:[博士学位论文].重庆:重庆大学,2006.
    [93] Vapnik V. . The nature of statistical learning theory[M]. New York: Springer-Verlag Press,1995,87-189.
    [94] Mujtaba I. M., Hussain M. A.. Application of neural networks and other learning technology in process engineering [M], London, Imperial College Press,2001.
    [95] Russel E.,Chiang L. H., Bratz R. D.. Data-driven models for fault detection and Diagnosis in chemical process [M], Berlin, Springer-Verlag, 2000.
    [96]任东.基于支持向量机的植物病害识别研究:[博士学位论文].长春:吉林大学,2006.
    [97]栾峰.支持向量机(SVM)和径向基神经网络(RBFNN)方法在化学、环境化学和药物化学中的应用研究:[博士学位论文].兰州大学,2006.
    [98]杨国为,王守觉,杨义先.分式线性神经网络及其非线性逼近能力研究[J],计算机学报,2007,30(2):189-199.
    [99]忠义信,潘新安,杨义先.智能理论与技术:人工智能与神经网络[M].北京:人民邮电出版社, 1992.
    [100]周志华,曹存根.神经网络及其应用[M].北京:清华大学出版社,2004.
    [101] Vapnic V N.. Statistical Learning Theory[M], New York: Wiley,1998.
    [102] Vapnic V N.著,张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000.
    [103]张学工.关于统计学习理论与支持向量机[J],自动化学报,2000,26(1):32-42.
    [104]李国正.支持向量机导论[M].北京:电子工业出版社,2004,82-139.
    [105] Chen Y.-W., Lin. C.-J. Combining svms with various feature selection strategies. In I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors, Feature extraction, foundations and Applications. Springer, 2004.
    [106] Chang C.-C.,Lin C.-J.. LIBSVM: a library for support vector machines,2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700