被动微波雪水当量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
积雪是气象学和水文学中一个非常重要的参数。积雪的多寡不仅是影响气候变化的重要因子,也是影响干旱和半干旱地区农牧业发展的重要因素。季节性雪盖和冰川是全球水循环中的重要成分,监测季节性雪覆盖的范围以及冰川的堆积和消融地带,对于理解全球水循环是十分必要的。
     本论文的研究目的是改进当前AMSR-E传感器的雪水当量算法。我们用考虑多次散射的积雪辐射理论模型──Matrix Doubling法求解辐射传输方程,用致密介质理论模型模拟积雪发射和消光特性,用AIEM模型模拟地表辐射及作为辐射传输方程的边界条件,来模拟和分析不同积雪参数和地表参数对积雪总辐射和亮温差的影响,指出当前反演算法中存在的问题,并用地面实验数据对该模型做了验证。为了发展雪水当量(或积雪深度)算法,我们对不同散射阶模型(零阶、一阶和本论文采用的多次散射模型)做了比较,结果表明我们必须在前向理论模型和反演模型中考虑多次散射作用。利用积雪理论模型,我们建立了针对AMSR-E传感器参数设置的积雪辐射模拟数据库,包含了各种可能的自然积雪和地表特性参数。从而在模拟数据库基础上,我们发展了针对AMSR-E的参数化模型。最后,我们提出了发展雪水当量反演算法框架。本论文的研究重点和创新点表现在:
     (1)对现有积雪辐射理论模型与雪水当量反演模型认识上的突破:
     我们利用理论AIEM面辐射模型,考虑了有积雪覆盖的下垫面粗糙度、介电特性的影响,而当前的前向理论辐射模型与反演模型中都把积雪-土壤、积雪-空气界面作为平面处理。
     不同散射阶模型──零阶、一阶与多阶模型的比较,表明高频(频率> ku波段)多次散射作用不可忽略,因此必须在我们的雪当量反演算法中考虑多次散射作用;
     (2)用实验数据对包括地表介电常数和粗糙度效应,且考虑多次散射的积雪辐射模型做验证,验证结果表明我们所选用的积雪辐射模型能描述自然积雪的辐射特性;
     (3)建立了积雪辐射模拟数据库,该数据库包括了几乎所有的自然雪特性──积雪密度、颗粒大小,以及地表介电常数、地表粗糙度特征──冻土/非冻土、土壤湿度和粗糙度特征。通过对模拟数据库的分析,我们发展了针对AMSR-E传
Snow is a key element in the meteorological and hydrological studies. The amount of regional snow plays an important role in the climate change and also affects greatly the development of agriculture and farming industries in arid/semi-arid areas. Seasonal snow cover and glacier are important components of global water cycling. Thus, it is necessary to monitor the seasonal snow cover, the depositing and melting of the glacier. It will help us to acquire a more accurate understanding of global water cycling.
     In this study, we evaluate the capability of a multi-scattering microwave emission model that including the Dense Media Radiative Transfer Model (DMRT) and AIEM in simulation of dry snow emission with Matrix Doubling approach. We compared the predictions of this model with the ground experimental measurements. The comparison showed that our snow microwave emission model agreed well with the experimental measurements. In order to develop retrieval snow properties: snow depth or snow water equivalence (SWE) retrieval algorithm, we carried out the sensitivity test between the emission models with the different scattering-order: the zeroth-order, the first-order and the multi-scattering models. The results indicated that the multi-scattering effects have to be taken into account in the snow emission model, especially for large grain size. Due to the complexity of the multi-scattering model, we developed a parameterized inversion model using our multi-scattering emission model with a wide range of snow and under-ground properties for algorithm development purpose. Finally, we proposed a technique retrieval to estimate snow water equivalence.
     There are some new results obtained as follows in this study.
     1. New understanding of the snow microwave emission model and snow water equivalence (SWE) inversion algorithm. First, using AIEM model, we can take into account the properties of underground surface roughness and dielectric constant in the snow emission model, while in current emission
引文
[1]. A. Ishimaru and Y. Kuga, Attenuation constant of coherent field in a dense distribution of particles, J. Opt. Soc. Amer, vol. 72, pp. 1317-1320., 1982.
    [2]. A. Ishimaru, R. J. Marks, II, L. Tsang, C. M. Lam, and D. C. Park, Particle size distribution determination using optical sensing and neural networks, Opt. Lett., vol.15, no. 21, pp. 1221-1223, 1990.
    [3]. A. Ishimaru, Wave Propagation and Scattering in Random Media, vol. I: Single Scattering and Transport Theory; vol. II: Multiple Scattering, Turbulence, Rough Surfaces and Remote Sensing. New York: Academic, 1978.
    [4]. A. K. Fung, Microwave Scattering and Emission Models and their Applications. Norwood, MA: Artech House, 1994
    [5]. A. Linden and J. Kindermann, “Inversion of multilayer nets” in Proc. Int. Joint Conf. Neural Networks, vol. II, Washington DC, pp.425-443, June 1989.
    [6]. A. Quesney, S.Le Hegarat-Mascle, O.Taconet, Estimation of watershed soil moisture index from ERS/SAR data, REMOTE SENS. ENVIRON, vol72, pp290-303
    [7]. A. Rango, J. Martine, A. T. C. Chang, J. L. Foster, and V. F. van Katwijk, Average areal water equivalent of snow in a mountain basin using microwave and visible satellite data, IEEE Trans. Geosci. Remote Sens., Vol. 27, No. 6, pp. 740-745, Nov., 1989.
    [8]. A. T. C Chang, J. L. Foster, and D. K. Hall, Nimbus-7 derived global snow cover parameters, Annals of Glaciology, Vol. 9, pp. 39-44, 1987.
    [9]. A. T. C Chang, N. Grody, L. Tsang, A. Basist, B. Goodison, A. Walker, T. Carroll, R. Armstrong, E. Josberger, and C. Sun, Algorithm theoretical basis document (ATBD) for AMSR-E snow water equivalent algorithm, NASA/GSFC, Nov., 1997
    [10]. A. T. C Chang, N. Grody, L. Tsang, A. Basist, B. Goodison, A. Walker, T. Carroll, R. Armstrong, E. Josberger, and C. Sun, Algorithm theoretical basis document (ATBD) for AMSR-E snow water equivalent algorithm, NASA/GSFC, Nov., 1997.
    [11]. A. Wiesmann and C. M?tzler, Microwave emission model of layered snowpacks, Remote Sens. Environ., vol. 70, pp. 307–316, 1999.
    [12]. A.L. Chang and R. Kelly, Description of Snow Depth Retrieval Algorithm for ADEOS II AMSR, 2003
    [13]. A.T.C. Chang, P. Gloersen, T.J. Schmugge, T.T. Wilheit, and H. J. Zwally, Microwave emission from snow and glacier ice, J. Glaciology, vol. 16, pp. 23-29,1976
    [14]. Achammer T, Denoth A., Snow dielectric properties: from DC to microwave X-band, Annals of Glaciology, vol. 19: 92-96, 1994.
    [15]. Adrian k. Fung, Zongqian Li,K.S.Chen, Backscattering from a Randomly Rough Dielectric Surface, IEEE Transactions on Geoscience and Remote Sensing, Vol.30, No.2, pp.356-369, 1992.
    [16]. Ambach W, Denoth A. Studies on the dielectric properties of snow, Zeitschrift für Gletscherkunde und Glazialgeologie, vol. 8: 113-123, 1972..
    [17]. Armstrong, R.L., A.T.C. Chang, A. Rango and E.G. Josberger. Snow depth and grain size relationships with relevance for passive microwave studies. Annals of Glaciology, vol. 17, 171-176, 1993.
    [18]. Aschbacher, J., Land surface studies and atmospheric effects by satellite microwave radiometry, Ph. D. Dissertation, Univ. of Innsbruck, 1989.
    [19]. B. Goodison and A. Walker, Canadian development and use of snow cover information from passive microwave satellite data, Passive Microwave Remote Sensing of Land-Atmosphere Interactions, Eds: B. Choudhury, Y. Kerr, E. Njoku, and P. Pampaloni, Utrecht: VSP BV, pp. 245-262, 1994.
    [20]. Backus, G. E. and Gilbert, F. Uniqueness in the Inversion of Inaccurate Gross Earth Data. Phil. Trans. Roy. Soc. London Ser. A 266, 123-192, 1970.
    [21]. Basist, A., N.C. Grody, T.C. Peterson and C.N. Williams. Using the Special Sensor Microwave Imager to monitor land surface temperatures, wetness and snow cover. J. Appl. Metero. vol.37, no.9, 1998, pp. 888-911, 1997.
    [22]. Bass, F. G. and I. M. Fuks, Wave Scattering from Statistically Rough Surfaces, translated, 1979.
    [23]. Beckmann, P. and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces, Pergamon Press, Oxford, 1963.
    [24]. C. M?tzler, Applications of the interaction of microwaves with the natural snow cover, Remote Sens. Rev., vol. 2, pp. 259-387, 1987.
    [25]. C. M?tzler, Passive microwave signatures of landscapes in winter, Meteorol. Atmos. Phys., vol. 54, pp. 241-260, 1994.
    [26]. C. M?tzler, H. Schanda, and W. Good, Toward the definition of optimum sensor specification for microwave remote sensing of snow, IEEE Trans Geosci. Rmote Sensing, vol. GE-20, pp.57-66, Jan. 1982.
    [27]. C. M?tzler, Microwave permittivity of dry snow, IEEE Transactions on Geoscience and Remote Sensing, vol. 34, no. 2, pp.573-581, 1996.
    [28]. C. M¨atzler, Passive microwave signatures of landscapes in winter, Meteorol. Atmos. Phys., vol. 54, pp. 241–260, 1994.
    [29]. C. M?tzler, “Autocorrelation functions of granular media with arrangement of spheres, spherical shells or ellipsoids,” J. Appl. Phys., vol.81. no.3, pp. 1509-1517, 1997.
    [30]. Chandrasekhar, S. “Radiative Transfer”, Dover Publication, New York (1960).
    [31]. Chang, A. T. C. and Choudhury, B. J., 1978, Microwave emission from polar firn, NASA Technical Paper No. 1212, 20 pp., available from NITS, Springfield, Virginia.
    [32]. Chang, A. T.C. , and T. Koike, Progress in AMSR snow algorithm devekopment, in Microwave Radiometry and Remote Sensing of the Earth’s Surface and Atmosphere, edited by P. Pampaloni and S. Paloscia, pp. 515-523, VSP BV, Utrecht, Netherlands, 2000.
    [33]. Chang, A.T.C., Shiue, J.C., Boyne, H., Ellerbruch, D.E, Counas, G., Wittmann, R. and Jones, R., 1979, Preliminary results of passive microwave snow experiment during February and March 1978, NASA Technical Paper No. 1408, 112 pp., available from NTIS, Spring field, Virginia.
    [34]. Chen, K. S., T. D. Wu, L. Tsang, Qin Li, J. Shi and A. K. Fung, “The Emission of Rough Surfaces Calculated by the Integral Equation Method with a Comparison to a Three-Dimensional Moment Method Simulations”, IEEE Transactions on Geoscience and Remote Sensing, 41(1):90-101, Jan. 2003
    [35]. Chuah, H.T., S. Tjuatja, A.K. Fung and J.W. Bredow, “A phase matrix for a dense. discrete random medium: Evaluation of volume scattering coefficient”, IEEE Trans. Geosci. Remote Sens., vol. 34, no.5, 1996, pp. 1137-1143.
    [36]. Cohen, J., Snow cover and climate, Weather, 1994, 49, 150–155.
    [37]. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propagation,” in Parallel Distributed Processing(PDP): Exploration in the Microstructure of Cognition, vol. 1. Cambridge, MA: M.I.T. Press, 1986, ch.8, pp.318-362.
    [38]. D. T. Davis, Z. Chen, J.-N. Hwang, L. Tsang, and E. Njoku, “Solving inverse problems by Bayesian iterative inversion of a forward model with applications to parameter mapping using SMMR remote sensing data,” IEEE Trans. Geosci. Remote Sensing, vol. 33, pp. 1182–1193, Sept. 1995.
    [39]. D. T. Davis, Z. Chen, L. Tsang, J.-N. Hwang, and A. T. C. Chang, “Retrieval of snow parameters by iterative inversion of a neural network,” IEEE Trans.Geosci. Remote Sensing, 1993, July, vol. 31, pp. 842-851.
    [40]. Davidson, M.W.J.; Thuy Le Toan; Mattia, F.; Satalino, C.; Manninen, T.; Borgeaud, M., “On the characterization of agricultural soil roughness for radar remote sensing studies,”IEEE Trans. Geosci. Remote Sens., 38(2):630-640, March 2000.
    [41]. Denoth A. 1994. `An electronic device for long-term snow wetness recording', Annals of Glaciology 19: 104-106.
    [42]. Ding, K. H., and L. Tsang, “ Effective propagation constants and attenuation rates in media of densely distributed coated dielectric particles with size distributions,” Journal of Electromagnetic Waves and Applications, Vol. 5, No. 2, 117-142, 1991.
    [43]. E. Nyfors, “On the dielectric properties of dry snow in the 800 MHz to 13 GHz region,” Helsinki Univ. Technol., Radio Lab., Otaniemi, Finland, Rep. S135, 1983.
    [44]. E. R. Westwater and A. Cohen, “Application of Backus-Gilbert inversion technique in determination of aerosol size distributions from optical scattering measurements,” Appl. Opt., vol.12, pp. 1340-1348, 1973.
    [45]. E. Schanna, C. M?tzler, and K. Kunzi, “Microwave remote sensing of snow cover,” Int. J. Remote Sensing, 1983, vol.4, pp. 149-158.
    [46]. England, A. W., “Thermal Microwave Emission from a Scattering Layer,” J. Geophysical Res., vol. 80, 1975, pp. 4484-4496.
    [47]. Eni G. Njoku, Li Li. Retrieval of Land Surface Parameters Using Passive Microwave Measurements at 6-18GHz. IEEE Transactions on Geoscience and Remote Sensing, 1999, Vol.37, No.1: pp.79-93.
    [48]. Eom, H. J. (1981), Theoretical Scatter and Emission Models for Microwave Remote Sensing, Ph. D. Disseration, Electrical Engineering Department, University of Kansas, Lawrence, Kansas.
    [49]. F. T. Ulaby, R. K. Moore, and A. K. Fung, Radar Remote Sensing and Surface Scattering and Emission Theory, Microwave Remote Sensing: Active and Passive, vol. 2. Reading, MA: Addison-Wesley, 1982.
    [50]. Floyd M.Henderson, Anthony J.Lewis, Principles and Applications of Imaging Radar: 3rd Edition, New York, John Wiley & Sons, 1998
    [51]. Foster, J. L., D. K. Hall, A. T. C. Chang, A. Rango, W. Wergin, and E. Erbe, 1999: Effects of snow crystal shape on the scattering of passive microwave radiation, IEEE Transactions on Geoscience and Remote Sensing, 37(2):1165-1168.
    [52]. Foster, J. L., G. Liston, R. Koster, R. Essay, H. Behr, L. Dumenil, D. Verseghy, S. Thompson, D. Pollard, and J. Cohen, Snow cover and snow mass intercomparisons of general circulation models and remotely sensed data sets, J. Clim., 1996,9, 409-426.
    [53]. Foster, J. L., Hall, D. K., Chang, A. T. C., and Rango, A. (1984), An overview of passive microwave snow research and results. Rev. Geophys. Space Phys. 22(2):195-208.
    [54]. Foster, J. L., Hall, D.K., Chang, A. T. C., Rango, A., Wergin, W., & Erbe, E. Effects of snow crystal shape on the scattering of passive microwave radiation, IEEE Trans. on Geoscience and Remote Sensing, 1999, 37, 1165-1168.
    [55]. Foster, J.L., Hall, D. K., Chang, A. T. C., and Rango, A. 1984. An overview of passive microwave snow research and results, Rev. Geophys. Space Phys., 22(2), 195-208.
    [56]. Foster, J.L., Hall, D. K., Chang, A. T. C., and Rango, A. 1984. An overview of passive microwave snow research and results, Rev. Geophys. Space Phys., 22(2), 195-208.
    [57]. Fraser, K. S., N. E. Gaut, E. C. Reifenstein, II, and H. Sievering, Interaction mechanisms – Within the Atmosphere, in Manual of Remote Sensing, I, R. G. Reeves, ed., American Society of Photogrammetry, Falls Church, Virginia, Chapter 5, pp. 207-210.
    [58]. Frei, A., and D. A. Robinson, Nothern Hemisphere snow extent: Regional variability 1972-1994, Int. J. Clim., 1999, 19, 1535-1560.
    [59]. Fung, 1985, vol.GE-23, No.5
    [60]. Goodison, B. E., A. E. Walker and F.W. Thirkette. 1990. Determination of snow cover on the Canadian prairies using passive microwave data. In Proceedings of the International Symposium on Remote Sensing and Water Resources, Enschede, The Netherlands, August 1990, 127-136.
    [61]. Grant, I.P., and G. E. Hunt (1969), Discrete Space Theory of Radiative Transfer, I. Fundamentals, Proc. Roy Soc. (London), A-313, pp. 183-197.
    [62]. H. B. Howell and H. Jacobowitz, “Matrix method applied to the multiple-scattering of polarized light,” J. Atmos. Sci., vol. 27, pp. 1195-1206, Nov.1970.
    [63]. H. Rott and K.Sturm, “Microwave signature measurements of Antarctic and Alpine snow,” in Proc. 11th EARSeL Symp., Graz, Austria, 1991, pp.140-151.
    [64]. H. Rott, R. Armstrong et al. Working group A1: Snow. ESA/NASA International Workshop. 1994, pp. 651-656.
    [65]. Hall, D. K., J. L. Foster, V. V. Salomonson, A. G. Klein, and J. Y. L. Chien, Development of a Technique to Assess Snow- Cover Mapping Errors from Space, IEEE Trans. Geosci. Remote Sens., 39, 432–438, 2001.
    [66]. Hallikainen M, Ulaby FT, Abdelrazik N. 1982. Measurements of the dielectric properties of snow in 4±18 GHz frequency range. In 12th European Microwave Conference, Helsinki, Finland, 13±17 September 1982. Proceedings, p. 151±156.
    [67]. Hallikainen, M., F.T. Ulaby and T.E. Van Deventer, “Extinction Behavior of Dry Snow in the 18 to 90 GHz Range,” IEEE Trans. On Geoscience and Remote Sensing, vol.25, no.6, 1987, pp.737-745.
    [68]. Harrington, R. F., 1987, The method of moments in electromagnetics, J. Electromagnetic Waves and Application, vol. 1, no. 3, pp. 181-200.
    [69]. Ishimaru, A., and Y. Kuga, Attenuation constant of coherent field in a dense distribution of particles, J. Opt. Soc. Am., 72(10), 1317-1320, 1982.
    [70]. J. E. Hansen, “Multiple-scattering of polarized light in planetary atmospheres: Part I. The doubling method,” J. Atmos, Sci., vol. 28, pp. 120-125, Jan. 1971.
    [71]. J. N. Hwang, and C. H. Chan, “Iterative constrained inversion and its application,” in Proc. 24th Conf. Inform. Syst. And Sci, Princeton, NJ, Mar. 1990, pp. 754-759.
    [72]. J. N. Hwang, C. H. Chan, and R. J. Marks, II, “Frequency selective surface design based on iterative inversion of neural network,” in Proc. Int. Joint Conf. Neural Networks, San Diego, CA, June 1990, pp. 139-144.
    [73]. J. P. Hollinger, J. L. Pierce, and G. A. Poe, “SSM/I instrument evaluation,” IEEE Trans. Geosci, Remote Sensing, vol. 28, pp. 780-790, Sept. 1990.
    [74]. J. Pulliainen, J. Grandell, and M. Hallikainen, “HUT snow emission model and its applicability to snow water equivalent retrieval,” IEEE Trans. Geosci. Remote Sensing, vol. 37, pp. 1391–1395, May 1999.
    [75]. J. Pullianien and M. Hallikainen, Retrieval of regional snow water equivalent from space-borne passive microwave observations. Remote Sens. Environ. 2001, 75. pp. 76-85.
    [76]. J. Shi and J. Dozier, “Estimation of Snow Water Equivalence Using SIR-C/X-SAR, Part I: Inferring snow density and subsurface properties”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 6, pp. 2465-2474, Nov. 2000.
    [77]. J. Shi and J. Dozier, “Estimation of Snow Water Equivalence Using SIR-C/X-SAR, Part II: Inferring snow depth and particle size”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 6, pp. 2475-2488, Nov. 2000
    [78]. J. Shi, R. E. Davis, and J. Dozier, “Stereological determination of dry snow parameters for discrete microwave modeling”, Annals of Glaciology, vol.17, pp.295-299, 1993.
    [79]. J. T. Pulliainen, J. Grandell, and M. T. Hallikainen, “HUT snowemission model and its applicability to snow water equivalent retrieval,” IEEE Trans. Geosci. Remote Sensing, vol. 37, pp. 1378–1390, May 1999.
    [80]. J.L. Foster, A.T.C. Chang and D.K. Hall, “Comparison of snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and snow depth climatology,” Remote Sensing of Environment, vol. 62, pp. 132-142, 1997.
    [81]. J.T. Pulliainen, J. Grandell and M. T. Hallikainen, HUT snow emission model and its applicability to snow water equivalent retrieval, IEEE Trans. On Geoscience and RemoteSensing, 1999, 37(3), pp. 1378-1390.
    [82]. Jin Y. Q.. Radiative transfer of snowpack/vegetation canopy at the SSM/I channels and satellite data analysis[J]. Remote Sensing of Environment, 1997, 61: 55-63.
    [83]. Jin, Y. Q., 1988a, Some results from the radiative wave equation for a slab of random, densely-distributed scatterers, J. Quant. Spectrosc. And Radiat. Transfer, Vol. 39, No. 2, P. 83-98.
    [84]. Jin, Y. Q., 1988b, Multiple scattering from a randomly rough surface, J. Appl. Phys., vol. 63, No. 5, p. 1286-1292.
    [85]. Josberger, E. G., & Mognard, N. M. (2002). A passive microwave snow depth algorithm with a proxy for snow metamorphism. Hydrological Processes, 16(8), 1557-1568.
    [86]. Josberger, E., P. Gloersen, A. Chang, and A. Rango, Snowpack grain size variations in the upper Colorado River basin for 1984–1992, J. Geophys. Res., 101, 6679–6688, 1995.
    [87]. K. H. Ding, L. Zurk, and L. Tsang, "Pair distribution functions and attenuation rates for sticky particles in dense media, Journal of Electromagnetic Waves and Applications, 8(12), 1585-1604, 1994.
    [88]. Kelly, R.E. J., & Chang, A. T. C. (2003). Development of a passive microwave global snow depth retrieval algorithm for Special Sensor Microwave Imagery (SSM/I) and Advanced Microwave Scanning Radiometer-EOS (AMSR-E) data. Radio Science, 38(4), 1-11.
    [89]. Kelly, R.E. J., Chang, A. T., Tsang, L., & Foster, J. L. (2003). A prototype AMSR-E global snow area and snow depth algorighm. IEEE Transactions on Geoscience and Remote Sensing, 41(2), 1-13.
    [90]. Koike T, Suhama T, Passive microwave remote sensing of snow. Annals of Glaciology, 1993, 18:305-308
    [91]. Kristensson, G. and S. Strom, 1982, Electromagnetic scattering from geophysical targets by means of the Tmatrix approach, Radio Science, Vol. 17, No. 5, pp. 903-912.
    [92]. Kunzi, K. F., Patil, S., and Rott, H. (1982), Snow cover parameters retrieved from Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) data. IEEE Trans. Geosci. Remote Sens. GE-20(4):452-467.
    [93]. L. Kurvonen and M. T. Hallikainen, “Influence of Land-cover category on brightness temperature of snow”, IEEE Trans. Geosci. Remote Sens., Vol. 35, No. 2, pp. 367-377, March, 1997.
    [94]. L. Kurvonen, “Radiometer measurements of snow in sodankyla 1991–93,” Helsinki Univ. Technol., Lab. Space Tech. Rep. 16, pp. 34–35, Sept. 1994.
    [95]. L. M. Zurk, L. Tsang, J. Shi, and R. E. Davis, “Electromagnetic scattering calculated frompair distribution functions retrieved from planar snow sections,” IEEE Trans. Geosci. Remote Sens., vol. 35, pp. 1419-1428, 1997
    [96]. L. Tsang, “Dense media radiative transfer theory for dense discrete random media with particles of multiple sizes and permittivities,” Prog. Electromag. Res. 6, vol. 5, pp. 181-225, 1992.
    [97]. L. Tsang, “Passive remote sensing of dense montenuous media,” J. Electromag. Waves Appl., 1987, vol. 1, no. 2, pp. 159-173.
    [98]. L. Tsang, C. Mandt, and K. H. Ding, “Monte Carlo simulations of extinction rate of dense media with randomly distributed spheres based on solution of Maxwell’s equations,” 1992, Opt. Lett., vol. 17, no. 5, pp. 314-316.
    [99]. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing. New York: John Wiley and Sons, 1985.
    [100]. L. Tsang, K. Ding, and S. Shih, “Monte Carlo simulations of scattering of electromagnetic waves from dense distributions of nonspherical particles”, in Proc. IGARSS Singapore 1997, pp. 919-921.
    [101]. L. Tsang, Z. Chen, S. Oh, R. J. Marks, II, and A. T. C. Chang, “Inversion of snow parameters from passive microwave remote sensing model,” IEEE Trans.Geosci. Remote Sensing, 1992, vol 30, no.5, pp. 1015-1024.
    [102]. Lax, M., 1951, Multiple scattring of waves, Rev. Modern Phys., vol. 23, no. 4, p. 287-310.
    [103]. Lax, M., 1952, Multiple scattring of waves II. The effective field in dense systems, Phys. Rev., vol.85, no. 4, p. 621-629.
    [104]. Lax, M., 1973, Wave propagation and conductivity in random media, SIAM-AMS Proceedings, vol. 6, p 35-95.
    [105]. Li Xin, Chen Xianzhang, Lu Ling, et al. Validation of SSM/I snow depth algorithm in the Qinghai-Tibet Plateau using spatial statistics and ground-based measurements [A]. Proceedings of the First International Workshop on GAME-Tibet [C], 1999, 45-49.
    [106]. Lu, C. C., W. C. Chew, and L. Tsang, The application of recursive aggregate T-matrix algorithm in the Monte Carlo simulations of the extinction rate of random distribution of particles, Radio Sci, 30(1), 25-28, 1995.
    [107]. Lucas R M, Harrison A R, Snow observation by satellite: A review. Remote Sensing Reviews, 1990, 4(2), 285-348.
    [108]. M. Grippa, N. Mognard, T. Le Toan, E. G. Josberger. Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm. Remote Sensing of Environment, 2004, 93: 30-41.
    [109]. M. T. Hallikainen and P. Jolma, “Comparison of algorithms for retrieval of snow water equivalent from Nimbus-7 SMMR data in Finland,” IEEE Trans. Geosci. Remote Sensing, vol. 30, pp.124-131, 1992
    [110]. M.Zribi, J.Paille, C.Ciarletti et al., “modelisation o froughness and microwave scattering of bare soil surfaces based on fractal Brownian geometry”, IGARSS’98, pp1213-1215
    [111]. M?tzler C. 1996. `Microwave permittivity of dry snow', IEEE Transactions on Geoscience and Remote Sensing 34: 573±581.
    [112]. M?tzler C., "Microwave properties of ice and snow", in B. Schmitt et al. (eds.) ”Solar System Ices”, Astrophys. and Space Sci. Library, Vol. 227, Kluwer Acad. Publ., Dordrecht, pp. 241-257,1998.
    [113]. M?tzler, C and A. Wiesmann. Extension of the microwave emission model of layered snowpacks to coarse-grained snow. Remote Sensing Environ., 1999, 70(3), pp. 317-325.
    [114]. M?tzler, C. and R. Huppi. 1989. Review of Signatures studies for Microwave Remote Sensing of Snow Packs. Advanced Space Research, Vol. 9, No. 1, pp. 253-265.
    [115]. Mei, K. K. 1987, Unimoment method for electromagnetic wave scattering, J. Electromagnetic Waves and Application, vol. 1, no. 3, pp. 201-222.
    [116]. Michael S.Dawson,Adrian K.Fung and Michael T.Manry(1997),A Robust Statistical-Based Estimator for Soil Moisture Retrieval from Radar Measurements.IEEE Trans Geosci and Remote Sensing.Vol.35.No.1
    [117]. Mishima, O., D. Klug, and E. Whalley, The far-infrared spectrum of ice in the range 8 – 25 cm-1: Sound waves and difference bands, with application to Saturn’s rings, J. Chem. Phys., 78, 6399-6404, 1983.
    [118]. N. Kruopis, J. Praks, A. N. Arslan, H. M. Alasalmi, J. T. Koskinen, and M. T. Hallikainen, “Passive microwave measurements of snow-covered forest areas in EMAC’95,” IEEE Trans. Geosci. Remote Sensing, vol.37, pp. 2699–2705, Nov. 1999.
    [119]. Njoku, Eni G. AMSR Land Surface Parameters: ALGORITHM THEORETICAL BASIS DOCUMENT Version 2.0,November 10, 1997
    [120]. P. Waldner, C. Huebner, M. Schneebeli, A. Brandelik, F. Rau. Continuous measurements of liquid water content and density in snow using TDR, Proceedings of the Second International Symposium and Workshop on Time Domain Reflectometry for Innovative Geotechnical Applications, Charles H. Dowding (Ed.), Sept 5-7, 2001, pp.446-456.
    [121]. Peake, W. H., 1959, Interaction of electromagnetic wave with some natural surfaces, IRE Trans. Ant. Prop., AP-7, p. 324-329.
    [122]. Plulliainen, J., K. Tigerstedt, W. Huining, M. Hallikainen, C. M?tzler, A. Wiesmann, and C.Wegmuller, Retrieval of geophysical parameters with integrated modeling of land surfaces and atmosphere (models/inversion algorightms), final report, Eur. Space Agency/Eur. Space Res. And Technol. Cent., Nordwijk, Netherlands, 1997.
    [123]. Pulliainen, J.T., J. Grandell and M.T. Hallikainen, 1997: Retrieval of surface temperature in boreal forest zone from SSM/I data. IEEE Trans. GRS, 35, 1188-1200.
    [124]. R. Hofer and C. M?tzler, “Investigation of snow parameters by radiometry in the 3- to 60-mm wavelength region,” J. Geophys. Res., 1980, vol. 85, pp.453-460.
    [125]. R.L. Armstrong and M. J. Brodzik, “Recent Northen Hemisphere snow extent: A comparison of data derived from visible and microwave satellite sensors,” Geophys. Res. Lett., 2001, vol. 28, p.3673-3676.
    [126]. R.P. Lippmann, “Introduce to computing with neural nets,” IEEE Trans. Acoust., Speech, Signal Processing, pp. 4-22, Apr. 1987.
    [127]. Rango, “Progress of snow hydrology remote sensing research”, IEEE Trans. on Geoscience and Remote Sensing, vol. 24, No. 7, pp.47-53.
    [128]. Rango, A. T. C. Chang, and J. L. Foster, “The utilization of spaceborne microwave radiometers for monitoring snowpack properties,” Nord. Hydrol., 1979, vol. 10, pp. 25-40.
    [129]. Rango, A., Chang, A.T.C. and Foster, J.L., 1979, The utilization of spaceborne microwave radiometers for monitoring properties, Nordic Hydrology, 10: 25-40.
    [130]. Reber B., 1990: “Distinct Microwave Signatures of Snow and Soil Related to Model Theory”, Ph. D. thesis, University of Bern.
    [131]. Retrieval of Geophysical Parameters with Integrated Modeling of land Surfaces and Atmosphere (models/Inversion Algorithms) Final Report
    [132]. Retrieval of Geophysical Parameters with Integrated Modeling of land Surfaces and Atmosphere (models/Inversion Algorithms) Final Report
    [133]. Retrieval of Geophysical Parameters with Integrated Modeling of land Surfaces and Atmosphere (models/Inversion Algorithms) Final Report
    [134]. S. Evans, “Dielectric properties of ice and snow - A review,” J. Glaciol., vol. 5, pp. 773-792, 1965.
    [135]. S. Twomey, Doubling and superposition methods in the presence of thermal emission, J. Quant. Spectrosc. Radiat. Transfer, vol.22, pp. 355-363, 1979.
    [136]. S. Twomey, Explicit calculation of layer absorption in radiative transfer computations by doubling methods, J. Quant. Spectrosc. Radiat. Transfer, vol. 15, pp. 775-778, 1975.
    [137]. Schneebeli M, Colea uo C, Touvier F, Lesa.re B. 1998. `Measurement of density and wetness in snow using time-domain reflectometry', Annals of Glaciology 26: 69±72.
    [138]. Schwank M. “Air-to-soil transmission model”, in this book …(2004).
    [139]. Stiles et al, 1981. Microwave measurements of snowpack properties. Nordic Hydrology, 1981, 12, 143-166.
    [140]. Stratton, J. A., 1941, Electromagnetic Theory, McGraw-Hill Book Co., N. Y.
    [141]. Strom, S. and W. Zheng, 1988, The null field approach to electromagnetic scattering from composite objects, IEEE Trans. Ant. Prop., AP-36, No. 3, pp. 376-383.
    [142]. Sturm, M., J. Holmgren, and G. E. Liston, A seasonal snow cover classification system for local to global applications, J. Clim., 8, 1261–1283, 1995.
    [143]. Sun, C., Neale, C. M. U. And McDonnell, J. J. 1995, “Relationship between snow wetness and air temperature and its use in the development of an SSM/I snow wetness algorithm’, in Proc. AGU 15th Ann. Hydrology Days, pp. 171-180.
    [144]. Sun, C.Y, C.M.U. Neale and J.J. McDonnell, 1996: Snow wetness estimates of vegetated terrain from satellite passive microwave data. Hydrological Processes, 10, 1619- 1628.
    [145]. T.J. Jackson and P.E. O’Neill, “Attenuation of soil microwave emission by corn and soybeans at 1.4 and 5GHz,” IEEE Geosci. Remote Sensing, vol.28,pp.978–980, 1990.
    [146]. T.J. Jackson and T.J. Schmugge. Vegetation effects on the microwave emission from soils. Remote Sens. Environ., 1991, Vol.36, pp. 203-210.
    [147]. Tedesco, M., Pulliainen, J., Takala, M., Hallikainen, M., & Pampaloni, P. (2004). Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data. Remote Sensing of Environment, 90(1), 76-85.
    [148]. Thomas G.E. and K. Stamnes, “Radiative Transfer in the Atmosphere and Ocean”, Cambridge Atmos. Space Sci. Lib. Series, Cambridge, UK (1999).
    [149]. Tiuri, M. E., A. H. Sihvola, E. G. Nyfors, and M. T. Hallikaiken, The complex dielectric constant of snow at microwave frequencies, IEEE J. Oceanic Eng., OE-9, 377-382, 1984.
    [150]. Tsang, L. and A. Ishimaru, 1987, Radiative wave equations for vector electromagnetic propagation in dense nontenuous media, J. of Electromagnetic Wave and Application, vol. 1, no.1, p. 59-72.
    [151]. Tsang, L. and J. A. Kong, “The brightness temperature of a half-space random medium with nonuniform temperature profile,” Radio Science, 10, 1975, pp. 1025-1033.
    [152]. Tsang, L. and J. A. Kong, 1980, Multiple scattering of electromagnetic waves by random distribution of discrete scatterers with coherent potential and quantum mechanical formulism, J. Appl. Phys., vol. 57, no. 7, p.3465-3485.
    [153]. Tsang, L. and J. A. Kong, 1980b, Thermal microwave emission from a three-layer random medium with three-dimensional variations, IEEE Trans. Geosci. Rem. Sens., GE-18, no.2, p.212-216.
    [154]. Tsang, L. and J.A. Kong, 1992: Scattering of electromagnetic waves from a dense medium consisting of correlated Mie scatterers with size distributions and applications to dry snow. J. EM Waves and Applications, 6, 265-286
    [155]. Tsang, L. and J.A. Kong, 1992: Scattering of electromagnetic waves from a dense medium consisting of correlated Mie scatterers with size distributions and applications to dry snow. J. EM Waves and Applications, 6, 265-286
    [156]. Tsang, L., “Dense media radiative transfer theory for dense discrete random media with particles of multiple sizes and permittivities.” Progress in Electromagnetic Research, 1992, vol. 6, New York: Elsevier, ch.5.
    [157]. Tsang, L., and J. A. Kong, and R. Shin, Theory of Microwave Remote Sensing, Wiley-Interscience. New York, 1985.
    [158]. Tsang, L., C. E. Mandt, and K. H. Ding, Monte Carlo simulations of the extinction rate of dense media with randomly distributed dielectric spheres based on solution of Maxwell’s equations. Opt. Lett., 17(5), 314-316, 1992.
    [159]. Twomey, S., H. Jacobowitz and H. B. Howell, Matrix methods for multiple-scattering problems, J. Atmos. Sci., 1966, vol.23:289-296.
    [160]. Twomey, S., H. Jacobowitz and H. B. Howell, Matrix methods for multiple-scattering problems, J. Atmos. Sci., 1966, vol.23:289-296.
    [161]. Ulaby, F. T., Moore, R. K.,&Fung, A., 1981, Microwave remote sensing. Reading, MA: Addison-Wesley-Longman.
    [162]. V. Roy, K. Goita, A. Royer, A.E. Walker, B. Goodison, Snow water equivalent retrieval in a Canadian boreal environment from microwave measurements using the HUT snow emission model, IEEE Trans. On Geoscience and Remote Sensing,2004, 42(9), pp. 1850-1858.
    [163]. Van de Hulst H. C. “Scattering in a Planetary Atmosphere”, Astrophys. J. Vol. 107, pp.220-246, 1948.
    [164]. W. Cumming, “The dielectric properties of ice and snow at 3.2 centimeters,” J. Appl. Phys., vol. 23, pp. 768-773, 1952.
    [165]. W. H. Stiles and F. T. Ulaby, “The active and passive microwave response to snow parameters: Part 1—Wetness,” J. Geophys Res., vol.85, pp. 1037-1044, 1980.
    [166]. W. H. Stiles and F. T. Ulaby, “The active and passive microwave response to snow parameters: Part 2—Water equivalent,” J. Geophys Res., vol.85, pp. 10457-11049, 1980.
    [167]. Waterman, P. C., 1965, Matrix formulation of electromagnetic scattering, Proc. IEEE, vol.53, pp. 805-814.
    [168]. Weise, T., Radiomeric and structural measurements of snow, Ph. D. thesis, Inst. Of Appl. Phys., Univ. of Bern, Bern, Switzerland, 1996a.
    [169]. Weise, T., Radiometeric data (11-94 GHz) and autocorrelation functions of dry snow samples, Res. Rep. IAP 96-2, Inst.of Appl. Phys., Univ. of Bern, Bern, Switzerland, 1996b.
    [170]. Wen. B., L. Tsang, D. P. Winebrenner, and A. K. Fung, Dense medium radiative transfer theory: Comparison with experimental and application to microwave remote sensing and polarimetry, 1990, IEEE Trans. Geosci. Remote Sens.,vol. 28, no.1, pp.46-59.
    [171]. Wiesmann A., C. Fierz and C. M?tzler, Simulation of microwave emission from physically modeled snowpacks, Annals of Glaciol. (Vol. 31), pp. 397-405, 2000.
    [172]. Wiesmann A., C. M?tzler, T. Weise: Radiometric and Structural Measurements of Snow Samples, Radio Science, Radio Science, Vol. 33, No. 2, pp. 273 - 289, March-April 1998.
    [173]. Wiesmann A., W. Amacher and C. M?tzler, 1995:”PORA Manual”, Research Report 95-2, Institute of Applied Physics, University of Bern, Siedlerstr. 5, 3012 Bern, Switzerland.
    [174]. Wiesmann, A., Stozzi, T., and Weise, T. (1996), Passive microwave signature catalogue of snowcovers at 11, 21, 35, 48 and 94 Ghz, IAP Research Report 96-8, University of Bern, Switzerland
    [175]. Wiesmann, A., Stozzi, T., and Weise, T. (1996), Passive microwave signature catalogue of snowcovers at 11, 21, 35, 48 and 94 Ghz, IAP Research Report 96-8, University of Bern, Switzerland.
    [176]. Wigneron, J. P, L. Laguerre, and Y. H. Kerr, A simple parameterization of the L-band microwave emission from rough agricultural soil, IEEE Trans. Geosci. Remote Sens., 39(8):1697-1707, August, 2001.
    [177]. Williams, C.N., Basis, A., Peterson, T.C. and Grody, N. 2000 Calibration and verification of land surface temperature anomalies derived from the SSM/I, Bull. Am. Met. Soc., 81, 2141-2156.
    [178]. Wiscombe, W. J. (1976), Extension of the Doubling Method to Inhomogeneous Sources, J. Quart. Spectrosc. Rad. Transfer, 16, pp. 477-489.
    [179]. Yann H. Kerr, and Eni G. Njoku, “A semi-mpirical model for interpreting microwave emission from semiarid land surfaces as seen from spaces”, IEEE Transactions on Geoscience and Remote Sensing, vol. 28 No.3, pp. 384-393, 1990,
    [180]. Z. Chen, D. T. Davis, L. Tsang, J. N. Hwang, and A. T. C. Chang, “Inversion of snow parameters by neural network with iterative inversion”. Proc. Int. Geosci. Remote Sensing Symp., Houston, TX, vol. 2, 1061-1063, 1992.
    [181]. 柏延臣,冯学智,李新,陈贤章。基于被动微波遥感的青藏高原雪深反演及其结果评价。遥感学报,5(2):161-165,2001。
    [182]. 曹梅盛,李培基,Robinson D.A.等。中国西部积雪 SMMR 微波遥感的评价与初步应用。环境遥感,8(4):260-269,1993。
    [183]. 曹梅盛,李培基。中国西部积雪微波遥感监测。山地研究,12(4):230-234,1994。
    [184]. 车涛,李新。被动微波遥感估算雪水当量研究进展与展望。地球科学进展,19(2),204-210,2004。
    [185]. 陈爱军,刘玉洁,杜秉玉。HIJK 资料监测新疆雪盖范围的初步应用。南京气象学院学报,26(6),759-767,2003。
    [186]. 高峰等。被动微波遥感在青藏高原积雪业务监测中的初步应用。遥感技术与应用,18(6),2003。
    [187]. 金亚秋。电磁散射和热辐射的遥感理论。科学出版社,1998。
    [188]. 王志良,任伟。电磁散射理论。四川科学技术出版社,1994,1.
    [189]. 杨虎,郭华东,王长林,李新武,岳焕印。基于神经网络方法的极化雷达地表参数反演。遥感学报,12,451-455,2002。
    [190]. 张钟军,覆盖植被的地表微波辐射模型研究,北京师范大学博士论文,2004。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700