星载合成孔径雷达干涉成像的信息处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干涉合成孔径雷达(InSAR)成像技术是在合成孔径雷达(SAR)技术基础上发展起来的雷达成像技术。它既继承了SAR的全天候、大范围、有一定穿透能力等优点,又具有对目标三维地貌进行高精度成像、对目标地面的慢速动目标和地壳微小移动作高精度检测等的能力。因此,该技术在军事、国民经济建设中,有着极其广泛的应用。
     论文首先介绍了星载合成孔径雷达干涉测量三维成像技术的发展历程,简述了国内外有关干涉合成孔径雷达发展现状。论述了干涉合成孔径雷达三维成像的基本原理。分析了合成孔径雷达干涉测量系统模型,说明了星载InSAR获取地形信息的数据处理流程和合成孔径雷达差分干涉测量技术。
     论文在研究了干涉数据图像进行相关配准、最大谱配准方法的基础上,提出了一种将相关配准与最大谱配准相结合的配准方法。在满足配准要求的条件下,减少了配准计算的工作量,并通过截取真实SAR数据进行实验,结果验证了该算法的有效性。论文分析了配准误差来源,给出了相干系数和干涉相位方差、干涉相位的概率密度分布之间的关系,以有效衡量两幅SAR图像的配准精确度。
     论文论述了InSAR成像技术中干涉纹图的平地效应形成的原因,在简述消除平地效应常用方法的基础上,基于时域内乘以复指数的原理,提出了一种采用多次样条插值算法求取精确的平均空间频率,较好地达到消除平地效应的目的。实验表明:该算法与常用的消除平地效应方法相比较,能够更好地减少干涉相位图中的残差点。
     论文分析了干涉纹图的噪声来源和干涉纹图的特性。根据常用的圆周中值滤波方法和圆周均值滤波方法,从小波变换理论出发,将小波分析和小波包分析应用于干涉纹图的滤波中,提出了一种基于小波分析和中值滤波相结合的滤波方法。并利用该方法对实际的干涉纹图数据进行实验,给出了将小波分析和中值滤波相结合方法用于干涉纹图滤波和小波包分析用于干涉纹图滤波的实验结果。结果表明该方法在减少残差点和保持干涉相位图的边缘细节方面具有有效性。
     论文研究了经典的分支切割相位解缠算法和最小二乘相位解缠算法。在分析经典的分枝切割相位解缠方法的基础上,针对分枝切割算法的特点,提出了一种旨在加快形成分枝切割线速度的基于映射的分枝切割相位解缠的改进算法。实验证明了该算法形成分枝切割线所需计算时间比采用经典的分枝切割相位解缠方法形成分枝切割线所需时间大大减少,而两种方法的解缠效果基本相同。同时,论文还分析了获取相对数字高程模型(DEM)的方法。
Interferometric Synthetic Aperture Radar(InSAR) image technique is a new radar image technique developed from Synthetic Aperture Radar (SAR).Carried forward the merit of SAR, InSAR can create high resolution DEM and accomplish change detection, such as slow-moving targets or subtle shift of the earth's surface. It can be applied to many areas of military and civil.
    The history developing of InSAR is reviewed, and the actual state of InSAR is depicted briefly in the thesis. The basic principle of InSAR imaging technique is introduced in the thesis firstly. Then, the system model of InSAR is analyzed. The flow of data processing for InSAR is discussed, and the differential InSAR is introduced in the thesis.
    The InSAR complex images registration methods of correlation matching and spectral maximum matching are discussed in the thesis, and a new method of InSAR complex images registration using correlation matching combined with spectral maximum matching is presented. Compared with other method, the merit of this new method is less time spending on calculating for complex images registration on the condition that is up to complex images registration precision, and the results of experiment show that this new method was resultful. The error sources of complex images registration is analyzed, and the relation between the correlation coefficient, the differential of interferometric phase and the PDF.
    The reasons to form the horizontal ground effect of interference pattern in InSAR imaging technique were discussed in this thesis, and the common methods of eliminating the horizontal ground effect were explained suitably. One method was to multiply the phase signal of interference pattern by a complex exponent changed with the time, and the other one was moving the center of frequency spectral to the zero frequency spectral. A new algorithm to obtain a precision frequency based on linearity interpolation technique was advanced, and the results of experiment show that the algorithm was effective.
    By analyzing the noise sources and the characteristic of interferogram phase, the average-value-filter and the median-value-filter are employed usually in interferogram phase filter. An algorithm of interferometric phase filter of InSAR based on wavelet analysis filter algorithm combined with median filter algorithm is advanced to
引文
[1] 刘永坦.雷达成像技术.哈尔滨:哈尔滨工业大学出版社,1999
    [2] C.W. Sherwin, J. P. Ruina and R. D. Rawcliff. Some early developments in synthetic aperture radar system. IRE Trans. on Military Electronics, 1962, 6(2): 110-115
    [3] D.A. Ausherman, A. Kozma, J. L. Walker, et al. Developments in radar imaging. IEEE Trans. Aerosp. Elec. Syst., 1984, 20(4): 363-400
    [4] W.M. Brownm and L. J. Porcello. An introduction to synthetic aperture radar. IEEE Spectrum, 1969, 6(9): 52-62
    [5] L.J. Cutrona, E. N. Leith, L. J. Porcello, et al. On application of coherent optical processing techniques to synthetic aperture radar. Proc. of IEEE, 1966, 54(8): 1026-1032
    [6] J.F. McCauley, et al. Subsurface valleys and geoarcheology of the Eastern Sahara revealed by Shuttle radar. Science, 1982, 218:1004-1020
    [7] E.P.W. Attema. The active microwave instrument on-board the ERS-1 satellite. Proc. of IEEE, 1991, 79(6): 791-799
    [8] A.P. Luscombe, I. Ferguson, N. Sheherd, et al. The Radarsat synthetic aperture radar development. Canadian J. of Remote Sensing, 1993, 19(4): 298-310
    [9] 张澄波.综合孔径雷达原理、系统分析与应用.北京:科学出版社,1989
    [10] 魏钟铨.合成孔径雷达卫星.北京:科学出版社,2001
    [11] 吴一戎,朱敏慧.合成孔径雷达技术的发展现状与趋势.遥感技术与应用,2000,15(2):121-123
    [12] 郭华东,徐冠华.星载雷达应用研究.北京:中国科学技术出版社,1996
    [13] 潘习哲.星载SAR图象处理.北京:科学出版社,1996
    [14] 王超,张红,刘智.星载合成孔径雷达干涉测量.北京:科学出版社,2002
    [15] 王超.利用航天飞机成像雷达干涉数据提取数字高程模型.遥感学报,1997,1(1):46-49
    [16] L.C. Graham. Synthetic interferometric radar for topographic mapping. Proc. of IEEE, 1974, 62(6): 763-768
    [17] A.K. Gabriel and R. M. Goldstein. Crossed orbit interferometry: theory and experimental results from SIR-B. Int. J. Remote Sensing, 1988, 9(5): 857-872
    [18] R.M. Goldstein, H. A. Zebker and C. L. Werner. Satellite radar interferometry:??two-dimensional phase unwrapping. Radio Science, 1988, 23(4): 713-720
    [19] F. K. Li and R. M. Goldstein. Studies of multibaseline spaceborne interferometric synthetic aperture radars. IEEE Trans. Geosci. Remote Sensing, 1990, 28(1): 88-97
    [20] Q. Lin, J. F. Vesecky and H. A. Zebker. New approaches to SAR interferometric processing. IEEE Trans. Geosci. Remote Sensing, 1992, 30(3): 560-567
    [21] E. Rodriguez and J. M. Martin. Theory and design of interferometric synthetic aperture radars. IEE Proceedings-F, 1992, 139(2): 147-159
    [22] H. A. Zebker and J. Villasenor. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sensing, 1992, 30(5): 950-959
    [23] C. Prati and F. Rocca. Improving slant-rang resolution with multiple SAR surveys. IEEE Trans.on AES, 1993,29(1):135-143
    [24] D. C. Ghiglia and L. A. Romero. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. J.Opt. Soc. Am. A, 1994,11(1): 107-117
    [25] M. D. Pritt and J. S. Shipman. Least-squares two-dimensional phase unwrapping using FFT's. IEEE Trans. Geosci. Remote Sensing, 1994, 32(3): 706-708
    [26] J. Gatelli, A. M. Guarnieri, et al. The wavenumber shift in SAR interferometry. IEEE Trans. Geosci. Remote Sensing, 1994, 32(4): 855-865
    [27] D. Just and R. Bamler. Phase statistics of interferograms with applications to synthetic aperture radar. Applied Optics, 1994, 33(20): 4361-4368
    [28] R. J. A. Tough, D. Blacknell and S. Quegan. Estimators and distributions in single and multi-look polarmetric and interferometric data. Proc. IGARSS'94, California Institute of technology, Pasadena, California, USA, 8-12, August, 1994,2176-2178
    [29] H. A. Zebker, C. L. Werner, P. A. Rosen et al. Accuracy of topographic maps derived from ERS-1 interferometric radar. IEEE Trans. Geosci. Remote Sensing, 1994, 32(4): 823-836
    [30] J. Moreira, M. Schwabisch, G. Fornaro, et al. X-SAR interferometry: first results. IEEE Trans. Geosci. Remote Sensing, 1995, 33(4): 950-956
    [31] M. Schwbisch and D. Geudtner. Improvement of phase and coherence map quality using azimuth prefiltering: Examples from ERS-1 and X-SAR. Proc. of IGARSS'95. Florence, 1995
    [32] R. Touzi and A. Lopes. Statistics of the stokes and of the complex coherence ??parameters in one-look and multi-look speckle fields. IEEE Trans. Geosci. Remote Sensing, 1996, 34(2): 519-531
    [33] G. Fornaro, G. Franceschetti and R. Lanari. Interferometric SAR phase unwrapping using green's formulation. IEEE Trans. Geosci. Remote Sensing, 1996, 34(3): 720-727
    [34] V. Mrstik, G. VanBlaricum, et al. Terrain height measurement accuracy of interferometric synthetic aperture radars. IEEE Trans. Geosci. Remote Sensing, 1996,34(1):219-228
    [35] R. Lanari, G. Fornaro, D. Riccio, et al. Generation of digital elevation models by using SIR-C/X-SAR multifrequency two-pass interferometry: the Etna case study. IEEE Trans. Geosci. Remote Sensing, 1996, 34(5): 1097-1114
    [36] S.R. Cloude and K. P. Papathanassiou. Polarimetric radar interferometry. In: Proc. SPIE'97. San Diego, 1997
    [37] J.S. Lee, K. P. Papathanassiou, et al. A new technique for noise filtering of SAR interferometric phase images. IEEE Trans. Geosci. Remote Sensing,1998, 36(5): 1456-1465
    [38] L.M.H. Ulander and P. Frolind. Ultra-wideband SAR interferometry. IEEE Trans. Geosci. Remote Sensing, 1998, 36(5): 1540-1550
    [39] 李德仁,周月琴,马洪超.卫星雷达干涉测量原理与应用.测绘科学,2000,25(1):9-12
    [40] 郭华东.航天多波段全极化干涉雷达的地物探测.遥感学报,1997,1(1):32-39
    [41] 杨清友,王超.干涉雷达复图象配准与干涉纹图的增强.遥感学报,1999,3(2):122-127
    [42] 向茂生,李树楷.一种基于梯度估值的LMS相位解缠方法.遥感学报,1999,3(2):94-97
    [43] 张永红,张继贤,林宗坚.由星载InSAR生成DEM的理论误差分析.遥感信息,1999,14(2):12-15
    [44] 张红,王超,刘智.获取张北地震同震形变场的差分干涉测量技术.中国图象图形学报,2000,5(A6):497-500
    [45] 穆冬,朱兆达,张焕春.干涉合成孔径雷达成象技术研究.遥感技术与应用,2000,15(4):256-260
    [46] 曾琪明,焦健.合成孔径雷达遥感原理及应用(四).遥感信息,1998,13(3):42-46
    [47] 路中.Satellite radar interferometry and its application to detection of volcanic??defomation.遥感信息,1999,14(1):18-23
    [48] R. M. Goldstein and H. A. Zebker. Interferometric Radar Measurement of Ocean Surface Currents. Nature, 1987, 328:707-709
    [49] R.M. Goldstein, H. Engelhardt, B. Kamb and R. M. Frolich. Satellite Radar Interferometry for Monitoring Ice Sheet Monition: Aplication to An Antarctic Ice Stream. Science, 1993,262:1525-1530
    [50] N. Marechal. Tomographic formulation of interferometric SAR for terrain elevation mapping. IEEE Trans. On Geosci. And Remote Sensing, 1995,33 (3):726-739
    [51] 王超,张红,刘智等.苏州地区地面沉降的星载合成孔径雷达差分干涉测量监测.自然科学进展,2000,12(6):621-624
    [52] H. A. Zebker, P. A. Rosen, R. M. Goldstein, et al. On the Derivation of Coseismic Displacement Fields Using Differential Radar Interferometry: The Lander Earthquake. J. Geophys. Res, 1994,99(B10): 19617-19634
    [53] G. Peltzer, K. Hudnut and K. Fiegl. Analysis of Coseismic Surface Displacement Gradients Using Radar Interferometry: New Insights into the Landers Earthquake. J. Geophys. Res, 1994, 99:21971-21981
    [54] D. Massonnet, P. Briol, A. Arnaud. Deflation of Mount Etna Monitored by Spaceborne Radar Interferometry. Nature, 1995, 375:567-570
    [55] G. Peltzer, P. Rosen. Surface Displacement of the 17 May 1993 Eurka Vally. Califorlia, Earthquake Observed by SAR Interferometry. Science, 1995, 268: 1333-1336
    [56] K. L. Feigl, A. Sergent, D. Jacq. Estimation of An Earthquake Focal Mechanism from A Sarellite Interferogram: Application to the December 4,1992 Landers Aftershock. Geophys. Res. Lett, 1995, 22(9):1037-1040
    [57] H.A. Zebker, P. A. Rosen, S. Hensly. Atmospheric Effects in Interferometric Synthetic Aperture Radar Surface Deformation and Topographic Maps. J. Geophys. Res, 1997, 102(B4): 7547-7563
    [58] D. Massonnet, K. L. Feigl. Radar Interferometry and Its Application to Changs in the Earth's Surface. Reviews of Geophysics, 1998, 36(4): 441-500
    [59] 王超,刘智,张红等.张北—尚义地震同震形变场雷达差分干涉测量.科学通报,2000,39(1):8-20
    [60] S. N. Madsen, H. A. Zebker, J. Martin. Topographic Mapping using radar interferometry: Processing technique. IEEE Trans. Geosci. Remote Sensing, 1993, 31(1): 246-256[61] D. Geudtner, P. W. Vachon, K. E. Mattar, B. Schattler, A. L. Gray. Interferometric analysis of RADARSAT strip-map mode data. Canadian Journal of Remote Sensing, 2001,27(2): 95-108
    [62] H. A. Zebker, S. N. Madsen, J. Martin, K. B. Wheeler, T. Miller, Y. Lou, G. Alerti, S. Vetrella, A. Cucci. The TOPSAR interferometric radar topographic mapping instrument. IEEE Trans. Geosci. Remote Sensing, 1992, 30(5):933-940
    [63] N. F. Stevens, G. Wadge, C. A. Williams. Post-emplacement lava subsidence and the accuracy of ERS InSAR digital elevation models of volcanoes. Int. J. Remote Sensing, 2001,22(5): 819-828
    [64] H. Kimura, Y. Yamaguchi. Detection of landslide areas using satellite radar interferometry. Photogrammetric Engineering & Remote Sensing, 2000, 66(3): 337-344
    [65] A. Ferretti, C. Prati, F. Rocca. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sensing,2000, 38(5): 2 202-2 212
    [66] I. R. Joughin, D. P. Winebrenner, M. A. Fahnestock. Observations of i ce-sheetmotion in Greenland using satellite radar interferometry. Geophys. Res. Lett, 1995,22(5): 571-574
    [67] E. Rignot, K. C. Jezek. H. G. Sohn. Ice flow dynamics of the Greenland ice sheet from SAR interferometry. Geophys. Res. Lett, 1995,22(5): 575-578
    [68] E. Rignot, S. P. Gogineni, W. B. Krabill, S. Ekholm. North and northeast Greenland ice discharge from satellite radar interferometry. Science, 1997, 276(5314): 934-937
    [69] J. J. Mohr, N. Reeh, S. N. Madsen. Three-dimensional glacial flow and surface elevation measured with radar interferometry. Nature, 1998, 391(6664): 273-276
    [70] E. W. Hoen, H. A. Zebker. Penetration depths in inferred from interferometric volume decorrelation observed over the Greenland ice sheet. IEEE Trans. Geosci. Remote Sensing, 2000, 38(6): 2571-2582
    [71] Dan Johan Weydahl. Ananlysis of ERS tandem SAR coherence from glaciers. valleys. and Fjord ice on Svalbard. IEEE Trans. Geosci. Remote Sensing, 2001, 39(9): 2029-2039
    [72] M. Marom, R. M. Goldstein, E. B. Thornton, L. Shemer. Remote sensing of ocean wave spectra by interferometric synthetic aperture radar. Nature, 1990,??345: 793-795
    [73] R. M. Goldstein, T. P. Barnett, H. A. Zebker. Remote sensing of ocean currents. Science, 1989,246:1282-1285
    [74] R. Romeiser, Spectral properties of radar return from the ocean surface according to a Bragg-based composite surface model. In Proc. International Geoscience and Remote Sensing Symposium (IGARSS'95), 1875-1877. IEEE. Piscataway. NJ. USA
    [75] H. C. Graber, D. R. Thompson, R. E. Carande. Ocean surface features and currents measured with synthetic aperture radar interferometry and HF radar. J. Geophys. Res, 1996, 101(11): 25813-25832
    [76] M. Q. Bao, C. Bruning, W. Alpers. A ner nonlinear integral transform relating ocean wave spectra to phase image spectra of an along track interferometric synthetic aperture radar. IEEE Trans. Geosci. Remote Sensing, 1999, 37(1): 461-466
    [77] P. W. Vachon, J. W. M. Campbell, A. L. Gray, F. W. Dobson. Validation of along-track interferometric SAR measurements of ocean surface wave. IEEE Trans. Geosci. Remote Sensing, 1999, 37(1): 150-162
    [78] D. Moller, S. J. Frasier, D. L. Porter, R. E. Mclntosh. Radar-derived interferometric surface currents and their relationship to subsurface current structure. J. Geophys. Res, 1998, 103(C6): 12839-12852
    [79] J. Schulz-stellenfleth, S. Lehner. Ocean wave imaging using an airborne single pass cross track interferometric SAR. IEEE Trans. Geosci. Remote Sensing, 2001, 39(1): 38-44
    [80] J. Schulz-stellenfleth, J. Horstmann, S. Lehner, W. Rosenthal. Sea surface imaging with an across-track interferometric synthetic aperture radar: the SINEWAVE experiment. IEEE Trans. Geosci. Remote Sensing, 2001, 39(9): 2017-2028
    [81] J. T. Koskinen, J. T. Pulliainen, J. M. Hyyppa, M. E. Engdahl, M. T. Hallikainen. The seasonal behavior of interferomotric coherence in Boreal forest. IEEE Trans. Geosci. Remote Sensing, 2001, 39(4):820-829
    [82] D. H. Hoekman, Chris Varekamap. Observation of tropical rain forest trees by airborne high-resolution interferometric radar. IEEE Trans. Geosci. Remote Sensing, 2001, 39(3):584-593
    [83] Y. Kobayshi, K. Sarabandi, L. Pierce, M. C. Dobson. An evalution of the JPL TOPSAR for extracting tree heights. IEEE Trans. Geosci. Remote Sensing,??2000, 38(6): 2446-2453
    [84] K. Sarabandi, Y. C. Lin. Simulation of interferometric SAR response for characterizing the scattering phase center statistics of forest canopies. IEEE Trans. Geosci. Remote Sensing, 2000, 38(1): 115-125
    [85] U. Wegmuller, C. L. Werner. Retrieval of vegetation parameters with SAR interferometry. IEEE Trans. Geosci. Remote Sensing, 1997, 35(1): 18-24
    [86] 李景文,李春升,周荫清.三孔径InSAR动目标检测和成像.电子学报,1999,27(6):373-376
    [87] 毛建旭.合成孔径雷达干涉三维成像处理技术研究:[湖南大学博士论文],长沙:湖南大学电气与信息工程学院,2002,91-94
    [88] 邵玉龙.干涉合成孔径雷达成象研究:[南京航空航天大学博士论文],南京:南京航空航天大学,1998,68-76
    [89] Ramon Hanssen, Richard Bamler. Evluation of interpolation kernels for SAR interferometry. IEEE Trans. Geosci. Remote Sensing, 1999, 37(1): 318-321
    [90] R. Touzi, A. Lopes, J. Bruniquel, P. W. Vachon. Coherence estimation for SAR imaginery. IEEE Trans. on Geosci. Remote Sensing, 1999, 37(1): 135-149
    [91] A.M. Guarnieri, C. Prati. SAR interferometry: A "quick anddirty" coherence estimator for data browsing. IEEE Trans. Geosci. Remote Sensing, 1997, 35(3): 660-669
    [92] J. Xu, An adaptive range filter in synthetic aperture sonar interferometry, China-Japan Joint Conference on Acoustics, 2002.11
    [93] H.A. Zebker, J. Villasenor. Decorrelation in interferometrie radar echoes. IEEE Trans. Geosci. Remote Sensing, 1992, 30(5): 950-959
    [94] R. Bamler, R. Hanssen. Phase statistics and decorrelation in SAR interferograms. In international Geoscience and Remote Sensing Aymposium, Tokyo, Japan, 18-21 August 1993, 980-984.
    [95] M. S. Seymour, I. G. Cumming. Maximum likelihood estimation for SAR interferometry. Proc.IGARSS'94, California Institute of technology, Pasadena, California, USA, 8-12, August, 1994, 2272-2275
    [96] E. Trouve, J. M. Nicolas, H. Maitre. Improving phase unwrapping techniques by the use of local frequency estimates. IEEE Trans. Geosci. Remote Sensing, 1998, 36(6): 1963-1972
    [97] P. M. Dare, I. J. Downman. A new approach to automatic feature based registration of SAR and SPOT images. Int. Archives of Photog. Rrmote Sensing, 2000,33(132): 125-130[98] 穆冬.干涉合成孔径雷达成像技术研究:[南京航空航天大学博士论文],南京:南京航空航天大学,2001,71-75
    [99] P. H. Eichel, D. C. Ghiglia, et al. Spotlight SARinterferometry for terrain elevation mapping and interferometric chang detection. Sandia National Labs Tech. Repport, SAND93,December 1993,2539-2546.
    [100] 程正兴.小波分析算法与应用.西安:西安交通大学出版社,2002
    [101] 胡昌华,张军波,夏军,张伟.基于MATLAB的系统分析与设计—小波分析.西安:西安电子科技大学出版社,1999
    [102] 岳焕印.基于小波变换的干涉SAR数据处理方法研究:[中国科学院博士论文],北京:中国科学院遥感应用研究所,2002,39-57
    [103] W.Xu and I.Cumming. A region-growing algorithm for InSAR phase unwrapping. IEEE Trans.on Geosci. Remote Sensing, 1999,37(1): 124-134
    [104] A.Collaro,G.Franceschetti,et al. Phase unwrapping by means of genetic algorithms. J.Opt.Soc.Am.A, 1998,15(2):407-418
    [105] J.R.Buckland,J.M.Huntley and S.R.E.Turner. Unwrapping noisy phase maps by use of a minimum-cost-matching algorithm. Applied Optics, 1995, 34(23): 5100-5108
    [106] M.Costantini. A phase unwrapping method based on Network programming. Proc. Fringe'96 Workshop ERS SAR interferometry. Zurich. Switzerland. 1996.
    [107] M.Costantini. A novel phase unwrapping method based on Network programming. IEEE Trans. Geosci. Remote Sensing, 1998,36(3):813-831
    [108] D.C.Ghiglia and L.A.Romero. Robust two-dimensional weighted and unweighted phase unwrapping that usesfast transforms and iterative methods. J. Opt. Sco. Am. A, 1994, 11(1): 107-117

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700