喜马拉雅旱獭不同地理种群的遗传多态性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用限制性内切酶Sau3A I酶切喜马拉雅旱獭基因组DNA,从低熔点琼脂糖凝胶中回收长度200-1000bp的片段,与用碱裂解法提取的经BamH I限制性内切酶酶切的质粒pUC19连接,转化用CaC1_2法制备的大肠杆菌DH5α感受态细胞。用蓝白斑方法结合以(CA)_8寡聚核苷酸引物和pUC19质粒多克隆位点两侧的M13primers M3和RV分别配对筛选阳性克隆,通过对经过鉴定的4000多个克隆的筛选,获得61个可能含有微卫星的重组阳性克隆。测定这61个阳性克隆的序列,其中9个克隆共含有13个明显的微卫星序列。9个克隆序列已在GenBank注册,序列号分别为EF555518~EF555519,EF676084~EF676090。利用BLAST序列分析软件对GenBank数据库进行检索,没有发现高度同源性的微卫星序列,表明本文得到的喜马拉雅旱獭的微卫星序列都是首次发现。
     根据所测微卫星序列,利用Primer 5.0和Oligo 6.0软件设计微卫星序列引物,并事先设计好相应的参数,共设计出13对不含茎环和二级结构的引物,长度在20bp左右。用PCR法、琼脂糖凝胶电泳和聚丙烯酰胺凝胶电泳分析青藏铁路沿线4个不同地理种群喜马拉雅旱獭的多态性。统计分析结果表明,13个微卫星位点在4个种群中观察到的等位基因和有效等位基因数目分别达到2~6个、0.166~3.073个。多态信息含量显示6个微卫星位点(SSR2、SSR3、SSR4、SSR7、SSR10、SSR12)为高度多态(PIC>0.5),6个位点(SSR1、SSR5、SSR8、SSR9、SSR11、SSR13)为中度多态(0.5>PIC>0.25),1个位点(SSR6)为低度多态(PIC<0.25)。除了SSR1和SSR6外,其它位点Shalmon指数都较高,最高为1.188。各位点平均杂合度大小波动范围为0.164~0.672。4个种群在所有位点的平均Shannon指数均大于0.8,平均PIC均大于0.45,平均观察杂合度较高,显示4个种群都处于高度多态。UPGMA聚类分析显示四个地理种群遗传进化关系明确。德令哈种群与乌兰种群遗传距离最近(0.1504),可归为一个类群。其次,沱沱河种群与这两个种群遗传距离较近。四个种群中,沱沱河种群与安多种群遗传距离最远(0.5104)。因此,这12个微卫星标记(除SSR6外)可用于喜马拉雅旱獭的遗传多态性分析,为进一步开展喜马拉雅旱獭的种群分子生态学研究及其近缘种群的分子生物学研究奠定了基础。
Marmota himalayana belongs to Rodentia,Sciuridae,Marmota.Plague plots virus usually are carried and diffused by Marmota himalayana.However,no researches of Marmota himalayana in the field of molecular ecoloy have been found so far.Meanwhile,the construction of a genomic library is essential to researches on genome structure and function.A comprehensive genomie library makes it possible to screen and isolate any DNA fragments from it.
     In this paper,part of the genomie library of Marmota himalayana in four different geographical populations was constructed.The sampling localities include Delingha,Wulan, Tuotuohe,and Anduo,all were alongside the Qinghai-Tibet railway.Genomic DNA extracted from Marmota himalayana by Improved Method of Phenol-Chloroform.Genomic DNA digested by restriction endonuclease Sau3AI.Recovery 200-1000bp fragments from low melting point agarose gel.Plasmid pUC19 was extracted by alkaline lysis method and digested by restriction endonuclease BamH I to come into being the carriers.The fragments and the carriers were linked and transformed into the E.coli DH5αfeel competent cells which were prepared by CaCl_2 method.The positive clones were screened by two methods.One is the blue and white plots screening.The other is screening the positive clones by PCR with oligonucleotide primer(CA) _8 and pUC 19 multiple cloning sites bilateral M13 primers(M3 and RV).4000 clones were screened,61 recombinants were obtained.The sequences of the recombinants were identified. Then nine colones including thirteen high various microsatellite loci were submitted to the GenBank and admitted,recorded.Genbank accession numbers were EF555518~EF555519, EF676084~EF676090.High homologous microsatellite sequences have not been found in Genbank.Indicated the thirteen microsatellite loci were first found.
     The corresponding primers were designed and synthesized as molecular markers to detect genetic diversity of the Marmota himalayana in the four populations.The analysis shows that the numbers of the alleles and the effective alleles of all loci are 2~6 and 1.166~3.073.The polymorphism information content(PIC)of all loci show that six loci are high polymorphism (PIC>0.5)and six loci are middle polymorphism(0.5>PIC>0.25)and only one locus is low polymorphism(PIC<0.25).Average heterozygosity(Het)and Sharmon index(Ⅰ)reveal the same results.PIC and I and Her also show that all of the four populations are high polymorphic populations.The Cluster Analysis based unweighted pair-group method using arithmetic averages show the theorical phylogenetic tree is consistent to the actuátl geographical situation. The genetic distance between Delingha populations and Wulan populations is the smallest value (0.1504).Then the genetic distance between Tuotuohe population and the two is nearer than that of the Anduo and the two.The genetic distance between Anduo population and Tuotuohe population is the biggest value(0.5104).Therefore twelve micro satallite lo ci(except SSR6)and the four populations may be used to the researches of genetic diversity ofMarmota himalayana.
引文
[1]范薇.盐酸氯胺酮对喜马拉雅旱獭制动性麻醉的效果[J].中国人兽共患病学报,2007,23(4):418
    [2]王淑纯,宋延富.鼠疫研究进展.北京:中国环境科学出版社,1988:214.
    [3]汪诚信.我国鼠害及其防治对策[J].中国媒介生物学及控制杂志,1996,7,(1):62-65.
    [4]李敏.1954-1996年喜马拉雅旱獭鼠疫疫源地动物鼠疫流行态势.地方病通报,1999,5,14(2):25-26.
    [5]毛继山,卓玛杰.1998年青海省兴海县河卡地区旱獭洞干蚤调查.地方病通报,2000,8,15(3)文章编号100023711(2000)0320039201
    [6]张荣广,吴德强,邓开泽.甘肃省喜马拉雅旱獭体外寄生蚤生态研究.地方病通报,1995,8,10(3):52-55
    [7]王兆芬,于守鸿,祁芝珍.青海省同德县喜马拉雅旱獭鼠疫血清流行病学调查报告.地方病通报,1991,5,6(2):91-92
    [8]刘寿鹏,汪文焕,黄孝龙.青海喜马拉雅旱獭类人乙型肝炎病毒的发现.地方病通报,1985,(2):41
    [9]张安宁,马世宽,秦万龙.张掖地区动物鼠疫地理分布和流行特征的调查研究[J].中国地方病防治杂志,2000,15(5):300.
    [10]张安宁,王鸿英,秦万龙.甘肃张掖地区1982-2000年动物鼠疫流行研究[J].地方病通报,2002,17(3):34-36.
    [11]张安宁,谭多兴,马得忠.张掖地区喜马拉雅旱獭鼠疫自然疫源地动物鼠疫防治概况[J].中国地方病防治杂志,2003,18(2):105-106.
    [12]张安宁,刘麟,张玉贞.东祁连山某部喜马拉雅旱獭蚤类数量观察[J].中国地方病防治杂志,2002,17(6):369-371.
    [13]纪树立,张海峻,刘云鹏等.我国鼠疫菌分型及其生态学、流行病学意义[C].鼠疫论文专刊,1983,1.
    [14]方喜业主编.中国鼠疫自然疫源地.北京:人民卫生出版社,1990:52
    [15]张荣广,吴得强,邓开泽等.甘肃省1959-1988人间鼠疫流行病学特征及控制措施的研究[J].地方病通报,1994,9(4):22-26
    [16]王兆芬,于守鸿,祁芝珍.青海省同德县喜马拉雅旱獭鼠疫血清流行病调查报告[J].地方病通报,1991,6(2):91-92.
    [17]常兰.喜马拉雅旱獭泌尿器官组织学观察.试验研究,2004,8,Vol.31,Sum165:28
    [18]叶于聪,陈钦铭.喜马拉雅旱獭和大白鼠的心肌结构及功能的比较研究[J].兽类学报,1990,10(3):197-202.
    [19]陈钦铭.不同年龄喜马拉雅旱獭肾上腺皮质超微结构与功能的比较研究[J].兽类学报,1993,13(2):92-96.
    [20]贾荣莉.低氧适应动物喜马拉雅旱獭的组织学观察[J].四川动物与兽类科学,2001,2Vol.28 Sum 120:24.
    [21]陈钦铭,叶于聪,夏寅明.对不同年龄喜马拉雅旱獭大脑皮质结构与血液气体测定的比较研究[J].兽类学报,1992,12(1):25-30.
    [22]王治军,喜马拉雅旱獭冬眠期生态观察,地方病通报,1992,7(4):51-54
    [23]黄孝龙,王治军,吴驾淞.青海省安县热水滩和乌兰脑滩喜马拉雅旱獭的繁殖生物学特征.兽类学报,1986,11,6(4):307-310.
    [24]王懋钦,尹敬如,李芳等.喜马拉雅旱獭核型研究[J].兽类学报,1989,9(3):161-167.
    [25]尹敬如,朱慧君.喜马拉雅旱獭G带核型研究[J].青海医学院学报,1996,17(4): 223-225.
    [26]卢银平,王宝菊,黄红平.中国旱獭干扰素α家族家族基因在真核细胞和原核细胞中的表达[J].中华肝脏病杂志2006,14(2):124-128
    [27]卢银平,王宝菊,黄红平等.中国旱獭干扰素α家族基因的克隆及序列分析[J].中华微生物学和免疫学杂志2006,26(3):269-273
    [28]黄孝龙.大型冬眠动物喜马拉雅旱獭的实验动物化研究.中国实验动物学杂志,1986,6(2):70-72
    [29]陶元清,王忠东.喜马拉雅旱獭的动物实验基本技术和方法的建立.四川动物,2007,26(3):704-705
    [30]董桂琴,孟丽华.喜马拉雅旱獭饲养繁殖的观察.地方病通报,2(3):54-57
    [31]王治军,岳珊珑,马英等.喜马拉雅旱獭油治疗烧伤动物模型复制及疗效观察.动物学杂志,2000 35(4):30-32
    [32]Goossens.B,Chikhi.L,Taberlet P,et al.Microsatellite analysis of genetic variation among and within Alpine marmot populations in the French Alps[M].Molecular Ecology,2001,10:41-52
    [33]S.Hanslik and Krukenhauset.Microsatellite loci for two European sciurid species(Marmota marmota,Spermophilus citellus)[M].Molecular Ecology Notes(2004),4:749-751.
    [34]Goossens,B,Graziani.L,Waits LP,et al.Extra-pair paternity in the monogamous Alpine marmot reveald by nuclear DNA microsatellite analysis[J].Behavioral Ecology Sociobiology,43,281-288.
    [35]C.J.Kyle,T.J.Karels,B.Clark,et al.Isolation and characterization of microsatellites markers in hoary marmots(Marmota caligata)[M].Molecular Ecology Notes(2004)4,749-751.
    [36]A.Da Silva,G..Luikart,D.Allaine,et al.Isolation and characterization of microsatellites in European alpine marmots(Marmota marmota)[M].Molecular Ecology Notes(2003)3,189-190.
    [37]河北省志.自然资源与社会资源.wsbl.hebei.net.cn/jjfz/jj1-1.htm
    [38]Miesfeld R,Krystal M,Arnheim N.A member of a new repeated sequence family which is conserved throughout eucaryotic evolution is found between the human delta and beta globin genes[J].Nucleic Acids Res.1981,9(22):5931-5947.
    [39]Hamada H,Petrino MG,Kakunaga T.Molecular structure and evolutionary origin of human cardiac muscle actin gene[J].Proc Natl Acad Sci USA.1982,79(19):5901-5905.
    [40]Tautz D,Renz M.Simple sequences are ubiquitous repetitive components of eukaryotic genomes[J].Nucleic Acids Res.1984,12(10):4127-4138
    [41]Litt M,Luty JA.A hypervariable microsatellite revealed by invitro amplification of a dinucleotide repeat within the cardiac muscle actin gene[J].Am J Hum Genet.1989,44(3):397-401.
    [42]Sarkar G,Paynton C,Sommer S.Segments containing alternating purine and pyrimidine dinucleotides:patterns of polymorphism in humans and prevalence throughout phylogeny[J].Nucl.Acids Res,1991,19:631-636.
    [43]LagercrantzU,EllegrenH,AnderssonL.The abundance of various polymoriphic microsatellites motifs differ between plants and vertebrates[J].NuclAcidRes,1993,21:1111-1115.
    [44]Travis CG,Ryan SO,Wolfgang S,et al.Microsatellite DNA loci for genetic studies of Cranes[J].Proc north Am Crane Workshop,1997,7:36-45.
    [45]WeberJL,MayPE.Abundane class of human DNA polymorphism which canbe typed using polymerase chainreaction[J].AmJHumGenet,1989,44:388-396.
    [46]WeberJL.Informativeness of human(dC-dA)n(dg-dT)n polymorphisms.Genomics,1990,7:524-530.
    [47]Wang Z,Weber JL,Zhong G,Tanksley SD.Survey of plant short tandem DNA repeats[J].TheorAppl Genet,1994,88:1-6.
    [48]WeberJL.Informativeness of human(dC-dA)n(dg-dT)n polymorphisms.Genomics,1990,7:524-530.
    [49]Levinson G,Gutman GA.Slipped stand mispairing:a major mechamism for DNA sequence evolution[J].Mol Biol Evol,1987,4:203-221.
    [50]张云武,张亚平.微卫星及其应用[J].动物学研究,2001,22(4):315-320.
    [51]Amos W,Sawcer SJ,Feades RW,et al.Microsatellites show mutational bias and heterozygote instability[J].Nature Genetics,1996,13:390-391.
    [52]Primmer CR,Ellegren H,Salno N,et al.Directional evolution in germline microsatellite mutations[J].Nature Genetics,1996,13:391-393.
    [53]Rubinsztein DC,Amos W,Leggo J,et al.Microsatellite evolution evidence for directionality and variation in rate between species[J].Nature Genetics,1995,10:337-343.
    [54]Ellegren H,Johansson M,Sandberk K et al.Cloning of highly polymorphic microsatellite in the horse[J].Anim Genetics,1992,23:133-142.
    [55]Wierdle M,Dominska M,Petes T D.Microsatellite instability inyeast:dependence on the length of the microsatellite[J].Genetics,1997,146(3):769-779.
    [55]Ellegren H.Microstellite mutations in the germline:implications for evolutionary inference[J].Trends Genet.,2000,16(12):551-558.
    [56]Endle JA.Genetic heterogeneity and ecology[A].In:Berry R J eds.Genes in Ecology(first published in 1992)[C].Oxford:Blackwell Scientific Publications,1994
    [57]Lee JS,Hartford MG,Genova JL,et al.Relative stadsbilities of dinucleotide repeats in cultured mannalian cells[J].Hum.Mol.Genet.,1999,8:2567-2572.;
    [58]Grant V.The Evolutionary Process:A Critical Study of Evolutionary Theory(2nd ed.)[M].New York:Columbia University Press.1991,1-480.
    [59]Hayden MJ,SharpPJ.Sequence-tagged microsatellite profiling(STMP):a rapid technique for developing SSR markers[J].Nucleic Acids Research,2001,Vol.29,No.843.
    [60]Heale SM,Petes TD.The stabilization of repetitive tracts of DNA by variant repeats requires a functional DNA mismatch repair system[J].Cell,1995,83:539-545.
    [61]Gacy AM,Goellner G,Juranic N,Macura S,Mc Murray CT.Trinucleotide repeats that expand in human disease form hairpin structures in vitro[J].Cell,1995,81(4):533-540.
    [62]Moore H,Greenwell PW,Liu CP,Arnheim N,Petes TD.Tripletre repeats form secondary structures that escape DNA repair in yeast[J].Proc.Natl.Acad.Sci.USA.1999,96(4):1504-1509.
    [63]安瑞生,谭声江,陈晓峰.微卫星DNA在分子遗传标记研究中的应用[J].昆虫知识,2002,39(3):165-172.
    [64]方盛国.大山雀两亚种基因指纹图的比较研究[J].生物多样性,1996,4(4):207-210.
    [65]高军,任军,陈克飞等.猪PAC克隆的微卫星DNA分离研究[J].遗传,2003,25(6):660-662.
    [66]黄磊,王义权.扬子鳄种群的微卫星DNA多态及其遗传多样性保护对策分析[J].遗传学报,2004,31(2):143-150.
    [67]杨官品,M.A.Saghai Maroof等.水稻一多拷贝微卫星DNA多态性分析[J].遗传,1998,20(2):27-30.
    [68]Serikawa T,Kuramoto T,Hilbert P,et al.Rat gene mapping using PCR-analyzed rnicrosatellites[J].Genetics,1992,131(3):701-721.
    [69]Serikawa T,Montagutelli X,Simon-Chazottes D,Guenet JL.Polymorphisms revealed by PCR with single,short-sized,arbitrary primers are reliable markers for mouse and rat gene mapping[J].Mamm Genome,1992;3(2):65-72.
    [70]徐鹏,周令华,田丽萍等.从中国对虾ESTs中筛选微卫星标记的研究[J].水产学报,2003,27(3)213-218.
    [71]李斌,夏庆友,鲁成等.蜜蜂EST中的微卫星分析.遗传学报,2004,31(10):1089-1094.
    [72]晏鹏,吴孝兵,史燕等.微卫星多态性检测技术及其在保护遗传学中的应用[J].应用生态学报,003,14(3):461-464.
    [73]Ruyter-Spira CP,Koning de DJ,Groenen M A M,et al.Developing microsatellites markers from cDNA:a tool for adding expressed sequence tags to the genetic linkage map of the chicken[J].Animal Genetics,1998,29:85-90.
    [74]Westmenal,Kresovichs.The potential for crosstaxa simple sequence repeat(SSR)amplification between Arabidopsist haliana L.and crop brassicas[J].TheorApplGenet,1998,96:272-281.。
    [75]Brownp Tanksleysd.Characterization and genetic mapping of simple repeat sequences in the tomato genome[J].MolGenGenet,1996,250:39-49
    [76]Zhao X,Kochertg.Characterization and genetic map pingo fashort highly repeated interspersed DNA sequence fromrice(Orizasativa)[J].Mol Gen Genet,1992,231:353-359.
    [77]张于光,李迪强,饶力群等.东北虎微卫星DNA遗传标记的筛选及在亲子鉴定中的应用[J].动物学报,2003,49(1):118-123.
    [78]安瑞生,谭声江,陈晓峰.微卫星DNA在分子遗传标记研究中的应用[J].昆虫知识,2002,39(3):165-172.
    [79]MacHugh DE,Loftus RT,Bradley DG,et al.Microsatellite DNA variation within and among European cattle breeds[J].ProcRSocLondB,1994,256:25-31.
    [80]Saitbekova N,Gaillard C,Oberex-Ruff G,et al.Genetic diversity in Swiss goat breeds based on microsatellites analysis[J].Animal Genetics,1999,30:36-41.
    [81]Zajc I,Sampson J.Utility of canine microsatellites in revealing the relationship of pure bred dogs[J].The Journal of Heredity,1999,90(1):104-107.
    [82]张细权,吕雪梅,杨玉华等.用微卫星多态性和RAPD分析广东地方鸡种的群体遗传变异[J].遗传学报,1998,25:(2)112-119.
    [83]李军林,魏泓,张耀光等.应用40对微卫星引物对6种近交系小鼠遗传背景进行监测的研究.四川动物,2001,20(3):119-122.
    [84]Zhivotovsky LA,Bennett L,Bowcock AM,Feldman MW.Human population expansion and microsatellite variation[J].Mol Biol Evol.,2000,17(5):757-767.
    [85]Ellegren H,Johansson M,Sandberk K et al.Cloning of highly polymorphic microsatellite in the horse[J].Anim Genetics,1992,23:133-142.
    [86]Norin M,Haeffner F,Achour A,Norin T,Hult K.Computer modeling of substrate binding to lipases from Rhizomucor miehei,Humicola lanuginosa,and Candida rugosa[J].Protein Sci.1994 Sep;3(9):1493-503.
    [87]张亚平,王文,宿兵等.大熊猫微卫星DNA的筛选及其应用[J].动物学研究,1995,16(4):301-306.
    [88]王文,吴春花,宿兵等.我国西南地区珍稀濒危动物的进化和保护遗传学研究[J].大自然探索,1995,14(54):28-32.
    [89]Ashley CT,Warren ST.Trinucleotide repeats expansion and human disease[J].Annu Rev Genet,1995,29:703-28.
    [90]Maddox J.Triplet repeat genes raise question[J].Nature,1994,368(647):685.
    [91]邱芳,伏健民,金德敏等.遗传多样性的分子检测[J].生物多样性,1998,6(2):143-150.
    [92]何平.真核生物中的微卫星及其应用[J].遗传,1998,20(4):42-47.
    [93]Joseph Sambrook.《分子克隆实验指南》(第二版)[M]Cold Spring Harbor
    [94]黄生强,欧阳叙向,袁峥嵘等.湘东黑山羊BM1329微卫星标记的遗传多态性研究[J].Acta Ecologiae Animalis Domastici,2007,28(4):74-77
    [95]苑存忠,王建民,马月辉等.山东省地方绵羊品种微卫星遗传多态性.应用生态学报,2006,17(8):1459-1464
    [96]陈红菊.利用微卫星标记分析山东地方鸡品种的遗传多样性.2002硕士论文
    [97]张涛 陈玉林 张恩平.南江黄羊4个微卫星位点遗传多态性研究.安徽农业科学,2005,33(4):650-651
    [98]卢圣栋.现代分子生物学试验技术(第二版)[M].北京:科学出版社,1992.
    [99]储明星,程金华,过纬.微卫星标记OarAE101和BM1329在五个绵羊品种中的初步研究[J].遗传学报,2001,28(6):510-517
    [100]Nei,M.Molecular Population Genetics and Evolution(American Elsevier Pub.Co.1975)ISBN 0-44-410751-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700