无机纳米空心球的制备及其功能化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机纳米空心球与实心球材料相比有较小的密度、较大的比表面积、中空结构、高的热稳定性能,并且具有特殊的电、光、磁等特性,并且空心球的壳层具有吸附、选择性渗透等特性,主要应用在化学储存、光子晶体、药物控制释放、催化载体以及作为填料等领域。到目前为止,人们已经通过不同的方法制备出很多不同的空心球材料,如:碳空心球、金属空心球、陶瓷空心球、无机纳米半导体空心球、金属氧化物空心球等等。但有关无机复合空心球和稀土纳米空心球研究较少。
     本论文以聚苯乙烯纳米微球为模板,不同的目标前躯体,利用溶胶-凝胶法和煅烧法分别制备出SiO_2、SiO_2/TiO_2、Y_2O_3和CeO_2空心球,并研究其功能化性能。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、红外光谱分析(FTIR)、X射线衍射(XRD)等测试对所制备纳米空心球的结构进行表征,主要研究结果如下:
     1.利用两阶段种子乳液聚合法制备出单分散的丙烯酸共聚苯乙烯P(St-AA)微球,得到的微球具有单分散好、粒径分布可控、表面易于功能化等优点,第一阶段种子的粒径大小约为120nm左右,第二阶段粒径大小为250nm左右。
     2.以P(St-AA)微球作为模板,以正硅酸乙酯(TEOS)作为硅源,利用溶胶-凝胶法制备出P(St-AA)/SiO_2复合微球,于550oC下高温煅烧5h去除模板得到SiO_2空心球;将P(St-AA)/SiO_2复合微球作为模板,采用溶胶-凝胶法制备出P(St-AA)/SiO_2/TiO_2复合微球,再在550oC高温煅烧5h,制备出SiO_2/TiO_2复合空心球。对SiO_2/TiO_2复合空心球进行各种表征的结果表明,以P(St-AA)作为模板,溶胶凝胶法制备的SiO_2空心球和SiO_2/TiO_2空心球的球形度较好,微球表面比较光滑、粒径比较均一、SiO_2空心球粒径大小约为280nm,壳层厚度约为20nm,SiO_2/TiO_2空心球的粒径约为290nm,壳层厚度约为20nm,SiO_2/TiO_2空心球相对于SiO_2空心球的粒径略微稍有收缩。
     3.以六水硝酸钇作为钇源,采用三乙醇胺作为沉淀剂,浓氨水作为水解硝酸钇的物质,以(NH4)2SO4作为表面改性剂,于900℃下高温煅烧去除P(St-AA)微球模板,成功的制备出Y_2O_3空心球,其粒径约为100nm,壁厚约为20nm。Y_2O_3空心球与橡胶进行复合制备出聚合物-Y_2O_3复合材料,该材料具有良好的低频吸声性能。
     4.以P(St-AA)作为模板,六水硝酸铈作为铈源,采用尿素作为沉淀剂,以PVP作为表面改性剂,于600℃下高温煅烧去除P(St-AA)微球模板,成功的制备出CeO_2空心球, CeO_2空心球的晶型完好,其粒径约为250nm,壁厚约为10nm。将CeO_2空心球,进行废水模拟实验,发现CeO_2空心球对甲基蓝溶液具有良好的脱色性能。
Compared with solid spheres, Inorganic nano hollow spheres has low density, large surface area, hollow structure, high thermal stability, so it can be applied to chemical storage, photonic crystals, drug controlled release systems, catalysis as well as the fillers and the other fields. So far, it has been prepared by many different methods of hollow spheres of different materials, such as: carbon hollow spheres, metal spheres, ceramic spheres, hollow spheres of inorganic semiconductor nanoparticles, metal oxide hollow spheres and so on. But less research on composite hollow spheres and nano rare earth hollow spheres.
     In this paper, SiO_2、SiO_2/TiO_2、Y_2O_3 and CeO_2 hollow spheres were prepared by using nano polystyrene spheres as the template, basic on different taget substrate, sol-gel and calcining method. The synthesized products were characterized by Scanning electron microscopy (SEM), Transmission Electron Microscope (TEM), Fourier infrared spectroscopic analysis (FTIR) and X-ray Diffraction (XRD) etc. The main study results as follows:
     1. Using two-stage seeded emulsion mathod to prepare monodisperse polystyrene P(St-AA) microspheres, the obtained P(St-AA) spheres with a good monodisperse, particle size distribution was controllable, surface easy to functional, etc. The first phase of the seed particle size was approxmate 120nm, the second phase particle size is about 250nm.
     2. Used the P(St-AA) microspheres as the templates, TEOS as silicon resource, use the sol-gel method to prepare P(St-AA)/SiO_2 composite microspheres, then they were calcined at 550℃for 5h to removal the P(St-AA) template to form SiO_2 hollow spheres; Used P(St-AA)/SiO_2 composite microspheres as the template by sol-gel method to prepare P(St-AA)/SiO_2/TiO_2 composite microspheres, and then calcined at 550℃for 5h, then we get the SiO_2/TiO_2 composite hollow spheres. The various characterization results of SiO_2/TiO_2 composite hollow spheres showed that using the P(St-AA) as the template, sol-gel method to prepare SiO_2 hollow spheres and SiO_2/TiO_2 hollow spheres had good sphericity, smooth surface, relatively homogeneous particle size, SiO_2 hollow sphere particle size was about 280nm, shell thickness was about 20nm, SiO_2/TiO_2 hollow microsphere particle size was about 290nm, shell thickness was about 20nm, SiO_2/TiO_2 hollow spheres relative to the size of SiO_2 hollow spheres shrink slightly.
     3. Used yttrium nitrate hexahydrate as the yttrium resource, triethanolamine as precipitating agent,concentrated ammonia as the material to hydrolysis nitricyttrium, and (NH4)2SO4 as a surface modification agent, then were calcined at 900℃to removal P(St-AA) microspheres and successfully prepared Y_2O_3 hollow spheres. The particles size was about 100nm, the wall thickness was about 20nm. Used the Y_2O_3 hollow spheres composited with rubber polymer to prepare the Y_2O_3 hollow sphere/ rubber polymer composite material, and the obtened material have a very good property of low frequency sound absorption.
     4. The P(St-AA) as template-agent, cerium nitrate hexahydrate as the cerium resource, urea as precipitating agent and PVP as surface modification agent to prepare P(St-AA)/CeO_2 composite spheres. Then they were calcined at 600℃to removal P(St-AA) spheres were successfully prepared the CeO_2 hollow spheres. The CeO_2 hollow spheres were perfect with crystals, theirs size was about 250nm, the wall thickness was about 10nm. We use the CeO_2 hollow spheres to degrade simulation dye effluents with methylene blue with a good bleaching performance.
引文
[1]刘吉平,郝向阳.纳米科学与技术.北京:科学出版社,2002.
    [2]张立德,牟季美.纳米材料与纳米结构.北京:科学出版社,2001.
    [3]严冬生,冯端.材料新星-纳米材料科学.长沙:湖南科学技术出版社,1998.
    [4]杜仕国,施冬梅,邓辉.纳米材料的特异效应及应用.自然杂志,1999, 22(2):101-106.
    [5]张志琨,崔作林.纳米技术与纳米材料.北京:国防工业出版社,2000.
    [6] J Bao, K Wang, Z Xu, et al. A novel nanostructure of nickel nanotubes encapsulated in carbon nanotobes[J]. Chemical Communications, 2003, 21(2): 208-209.
    [7] J Hu, X Meng, Jiang Y, et al. Fabrication of germanium-filled silica nanotobes and aligned silica nanofibers, Advanced Materials, 2003, 15(1): 70-73.
    [8] A E Ostafin, M Siegel, Q Wang, et al. Fluorescence of cascade blue (TM) inside nano-sized porous shells of silicate[J]. Microporous Mesoporous Mater, 2003, 57: 47-55.
    [9] O V Makarova, A E Ostafin, H Miyoshi, et al. Adsorption and encapsulation of fluorescent probes in nanoparticles [J]. The Journal of Physical Chemistry B, 1999, 103: 9080-9084.
    [10] H Huang, E E Remsen, T Kowalewski, et al. Nanocages derived from shell cross-linked micelle templates [J]. Journal of the American chemical society, 1999, 121: 3805-3086.
    [11] H Bamnolker, B Nitzan, S Margel, et al. New solid and hollow, magnetic and non-magnetic, organic-inorganic monodispersed hybrid microspheres: synthesis and characterization [J]. Journal of Materials Science Letters, 1997: 1412-1415.
    [12] J Jang, X Li, J H Oh. Facile fabrication of polymer and carbonnanocapsules using polypyrrole core/shell nanomaterials[J]. Chemical Communications, 2004, 7: 794-795.
    [13] H Lv, Q Lin, K Zhang, et al. Facile fabrication of monodisperse polymer hollow spheres. Langmuir 2008, 24: 13736-13741.
    [14] X M Sun, J F Liu, Y D Li. Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres [J]. Chemistry A European Journal, 2006, 12: 2039-2047.
    [15] L X Hao, Z W Wen, Z Lin. A growth model of single crystalline hollow spheres: oriented attachment of Cu2O nanoparticles to the single crystalline shell wall. Crystal Growth & Design, 2008, 8(10): 3486-3489.
    [16] J H Huang, R Z Ma, Y Ebina, et al. Layer-by-Layer assembly of TaO3 nanosheet/polycation composite nanostructures: multilayer film, hollow sphere, and its photocatalytic activity for hydrogen evolution. Chemistry of Materials, 2010, 22: 2582-2587.
    [17] J G Yu, X X Yu, B B Huang, et al. Hydrothermal synthesis and visible-light photocatalytic activity of novel cage-like ferric oxide hollow spheres. Crystal Growth & Design, 2009, 9(3): 1474-1480.
    [18] Z B Huang, F Q Tang. Hematite nanoparticles as polystyrene microsphere coatings and hollow spheres: preparation and characterization. Colloid and Polymer Science, 2004, 282: 1198-1205.
    [19] Y F Zhu, E Kockrick, T Ikoma, et al. An efficient route to rattle-type Fe3O4@SiO_2 hollow mesoporous spheres using colloidal carbon spheres templates. Chemistry of Materials, 2009, 21: 2547-2553.
    [20] Y J Zhang, Q Yao, T Y Cui, et al. Solvothermal synthesis of magnetic chains self-assembled by flowerlike cobalt submicrospheres. Crystal Growth & Design, 2008, 8(9): 3206-3212.
    [21] G T Duan, W P Cai, Y Li, et al. Transferable ordered Ni hollow sphere arrays induced by electrode position on colloidal monolayer [J]. Journal of Physical Chemistry B, 2006, 110: 7184-7188.
    [22] Y B Chen, L Chen, L M Wu, Water-Induced thermolytic formation of homogeneous core-shell CuS microspheres and their shape retention on desulfurization. Crystal Growth & Design, 2008, 8(8): 2736-2740.
    [23] J Geng, B Liu, L Xu, et al. Facile route to Zn-based II-VI semiconductor spheres, hollow spheres, and core/shell nanocrystals and their optical properties[J]. Langmuir 2007, 23: 10286-10293.
    [24] Y Hu,J F Chen, W M Chen, et al. Synthesis of novel nickel sulfide submicrometer hollow spheres [J]. Advanced Materials, 2003, 15: 726-729.
    [25] P Wang, D Chen, F Q Tang. Preparation of titania-coated polystyrene particles in mixed solvents by ammonia catalysis [J]. Langmuir, 2006, 22: 4832-4835.
    [26] Z B Huang, F Q Tang, Zhang L. Morphology control and texture of Fe3O4 nanoparticle-coated polystyrene microspheres by ethylene glycol in forced hydrolysis reaction [J].Thin Solid Films, 2005, 471: 105-112.
    [27] S Eiden, G Maret. Preparation and characterization of hollow spheres of rutile[J]. Journal of Colloid and Interface Science, 2002, 25: 281-284.
    [28] R L Sherman, Jr W T Ford. Semiconductor nanoparticle/polystyrene latex composite materials[J]. Langmuir, 2005, 21: 5218-5222.
    [29] Y Ming, Y Xiao, F H Lu. Synthesis and characterization of hollow spheres and nanospheres of Au[J]. Journal of Applied Physics, 2008, 92: 367-370.
    [30] J L Yin, X F Qian, J Yin, et a1.Preparation of ZnS/PS microspheres and ZnS hollow shells [J]. Inorganic Chemistry Communications, 2003, 6: 942-945.
    [31] N E Botterhuis, Q Sun, P C M M Magusin, et al. Hollow silica spheres with an ordered pore strueture and their applicationin controlled release studies[J].Chemical A European Journal, 2006, 12: 1448-1456.
    [32] C S Nicholas, G D Stucky. Hollow microporous cerium oxide spherestemplated by colloidal silica[J]. Chemistry of Materials, 2009, 21: 4577-4582.
    [33] M M Stella,P N James,C B Louis, et al. Gold partieles as templates for the synihesis of hollow polymer capsules. control of capsule dimensions and guest encapsulation [J]. Journal of the American Chemical Society, 1999,121(37): 8518-8522.
    [34] R Z Yang, H Li, X P Qiu, L Q Chen. A spontaneous combustion reaetion for synthesizing Pt hollow capsules using colloidal carbon spheres as templates [J]. Chemical A European Journal, 2006, 12: 4083-4090.
    [35] F L Du, Z Y Guo, G C Li. Hydrothermal synthesis of SnO_2 hollow microspheres. materials letters, 2005, 59: 2563-2565.
    [36] Y Zhang, G Li, Y Wu, et al. The formation of mesoporous TiO_2 spheres via a facile chemical process [J]. The Journal of Physical Chemistry B, 2005, 109: 5478-5481.
    [37] Y J He. Preparation of polyaniline/nano-ZnO composites via a novel pickering emulsion route [J]. Powder Technology, 2004, 147: 59-63.
    [38] Z G Teng, Y D Han, J Li, et al. Preparation of hollow mesoporous silica spheres by a sol-gal/emulsion approach[J]. Microporous and Mesoporous Materials, 2010, 127: 67-72.
    [39] Z H Yang, L L Yang, Z H Zhang, et al. Hollow spheres of silver synthesized using polyelectrolyte capsules as microreactors [J]. Colloids and Surface A: Physicochemical and Engineering Aspect, 2008, 312:113-117.
    [40] S M Wan,F Guo,L Shi,et a1. Single-step synthesis of copper sulfide hollow spheres by a template interface reaction route[J]. Journal of Mathematical Chemistry, 2004, 14: 2489-2491.
    [41] A H Yao, F R Ai, X Liu, et al. Study on hollow hydroxyapaptite microspheres prepared by a borate glass conversion process. Journal of Inorganic Materials, 2010, 25: 53-57.
    [42] V Jokanovic, B Jokanovic, J Nedeljkovic, et al. Modeling of nanostructured TiO_2 spheres obtained by ultrasonic spray pyrolysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 249(1-3): 111-113.
    [43] R Sun, Y P Lu, M S Li. Formation of hollow spheres of hydroxyapatite in plasma spraying. Surface engineering, 2003, 19(5): 392-394.
    [44] N Dhas, K Suslick. Sonochemical preparation of hollow nanospheres and hollow nanocrystals [J].Journal of the American Chemical Society, 2005, 127: 2368-2369.
    [45]宋彩霞,王德宝,古国华等.无机空心球材料的乳胶粒模板法制备及应用[J].材料导报, 2003, 17: 32-34.
    [46] R A Caruso, A Susha, F Caruso. Multilayered titania, silica, and laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganie hollow spheres. Chemistry of Materials, 2001, 13(2): 400-409.
    [47] Z X Wei, M X Wan. Hollow microspheres of polyaniline synthesized with an aniline emulsion template [J].Advanced Materials, 2002, 14: 1314-1317.
    [48] L J Zhang, M X Wan. Self-assembly of polyaniline-from nanotubes to hollow microspheres[J]. Advanced Functional Materials, 2003, 13: 815-820.
    [49] J N Gao, Q S Li, H B Zhao, et a1. One-pot synthesis of uniform Cu2O and CuS hollow spheres and their optical limiting properties [J]. Chemistry of Materials, 2008, 20(19): 6263-6269.
    [50] Y Q Jiang, X F Ding, J Z Zhao, et al. A facile route to synthesis of hollow SiO_2/Al2O3 spheres with uniform mesopores in the shell wall [J].Materials Letters, 2005, 59: 2893-2897.
    [51] A Mukesh, P Andrij, S Manfred, et al. Fabrication of hollow titania microspheres with tailored shell thickness. Colloid&Polymer Science, 2008, 286(5): 593-601.
    [52]张志毅,赵宁,魏伟. SiO_2/PBA/PMMA和CaCO3/PBA/PMMA核壳结构纳米材料的制备与表征[J],精细化工,2005,22(2):149-151.
    [53] T J Huang, Y Xie, B Li, et al. n-Situ Source-template-interface reaction route to semiconductor CdS submicrometer hollow spheres[J]. Advanced Materials, 2000, 12(11): 808-811.
    [54] F Caruso. Hollow capsule processing through colloidal templating and self-assembly[J]. Chemistry A European Journal, 2000, 6(3): 413-419.
    [55] Z Y Zhong, Y D Yin, B Gates, et al. Preparation of mesoscale hollow spheres of TiO_2 and SnO_2 by templating against grystalline array of polystyrene beads[J]. Advanced Materials, 2000, 12(3): 206-209.
    [56] F Caruso. Nanoengineering of particle surfaces[J]. Advanced Materials, 2001, 13(1): 11-22.
    [57] C E Fowler, D Khushalani, S Mann. Interfacial synthesis of hollow microspheres of mesostructured silica[J]. Chemical Communications, 2001, 19: 2028-2029.
    [58] Z Z Yang, Z W Niu, Y F Lu, et al. Templated synthesis of inorganic hollow spheres with a tunable cavity size onto core-shell gel particles[J]. Angewandte Chemie International Edition, 2003, 42(17): 1943-1945.
    [59] B Y Liu, D C Jia, L H Dong, et al. Synthesis and application of hollow carbon micro/nanospheres [J]. Progress in Chemistry, 2009, 21: 1450-1455.
    [60] K F Zhong, P Jin, Q W Chen. Ni hollow nanospheres: preparation and catalytic activity [J]. Joumal of Nanomaterials, 2006, 10: 1-7.
    [61] S W Kim, M Kim, W Y Lee, et al. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. Journal of the American Chemical Society, 2002, 124(26): 7642-7643.
    [62] J B Fei, Y Cui, X H Yan, et a1. Controlled preparation of MnO_2 hierarchical hollow nanostructures and their application in watertreatment[J].Advanced Materials, 2008, 20: 452-456.
    [63]陈杨,隆仁伟,陈志刚.氧化铈纳米空心球的制备及表征[J].硅酸盐学报. 2010, 38(2): 265-270.
    [64]岳珊珊,吕晋军,张俊彦.氧化铟空心球的合成和光致发光性能研究.[J]材料导报.2009, 23:27-31.
    [65] X Hong, J Li, M J Wang, et al. Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach[J]. Chemistry of Materials, 2004, 16: 4022-4027.
    [66] H S Lim, D H Kwak, D Y Lee, et a1.UV-Driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity. Journal of the American Chemical Society, 2007, 129: 4128-4129.
    [67] P Ragupathy, S Shivakumara, H N Vasan, et al. Preparation of nanostrip V2O5 by the polyol method and its electrochemical characterization as cathode material for rechargeable lithium batteries,Journal of Physical Chemistry C, 2008, 112(42): 16700-16707.
    [68] I Gill, A Ballesteros. Encapsulation of biologicals within silicate,siloxane , and hybrid sol-gel polymers : an efficient and generic approach[J]. Journal of the American Chemical Society, 1998, 120(34): 8587-8598.
    [69] X Gao, J Zhang, L Zhang. Hollow sphere selenium nanoparticles: their in-vitro anti hydroxyl radical effect [J]. Advanced Materials, 2002, 14(4): 290-293.
    [70]李报厚,张登君,张冠东等.氧化钇和氧化铈稳定氧化锆空心球形陶瓷粉末的研制[J].功能材料,1997,5(28):518-521.
    [71]沈志刚,王明珠,麻树林.空心纳微粒子的应用[J].中国塑料,2002,16(5): 55-57.
    [72]王成云,李英,蒋丽雯.纳米技术在化妆品中的应用[J].香料香精化妆品,2001(6): 31-34.
    [73] A V Vorontsov, E V Savinov, L Davydov, et al. Photocatalytic destruction of gaseous diethyl sulfide over TiO_2. Applied Catalysis B, 2001, 32: 11-24.
    [74] S Sato. Photocatalytic activity of NOx doped TiO_2 in the visible light region [J]. Chemical Physics Letters, 1986, 123(1-2): 126-128.
    [75]吉钰纯,江学良,晏爽等. SiO_2空心球的制备与表征[J].武汉工程大学学报, 2010, 32(3): 82-88.
    [76] C X Zhang, J L Zhang, X G Zhang, et al. Preparation of silica and titanium containing silica hollow spheres at supercritical CO_2/H2O interface. Journal of Supercritical Fluids, 2007, 42(1): 142-149.
    [77] I A Kartsonakis, P Liatsi, I Danilidis, et al. Synthesis, characterization and antibacterial action of hollow titania sphere. Journal of Physics and Chemistry of Solids, 2008, 69(1): 214-221.
    [78] X F Song, L Gao. Fabrication of hollow hybrid microspheres coated with silica/titania via sol gel process and enhanced photocatalytic activities. Journal of Physical Chemistry C, 2007, 111: 8180- 8187.
    [79] M H Weng, T Liang. Fabrication of monoblock ceramic bandpass filters with attenuation poles [J]. Mcro-wave and Optical Technology Letters, 2002, 32(6): 400-402.
    [80]涂铭旌,刘颖,朱达川.纳米稀土材料研究进展[J].四川大学学报(工程科学版),2002, 34(4): 1-4.
    [81]仝世红,卢铁城,郭旺等.改性的沉淀法制备三氧化二钇粉体[J].功能材料,2005, 9(36): 1418-1420.
    [82]杜玉成,张久兴,孙立柏.氧化钇纳米结构的模板组装.有色金属,2004, 2(56): 35-38.
    [83]苏锵.稀土化学[M].郑州:河南科学技术出版社, 1993, 202.
    [84] X D Feng, D C Sayle, Z L Wang, et al. Converting ceria polyhedral nanoparticles into single-crystal nanospheres[J]. Science, 2006, 312: 1504-1508.
    [85]吴秀勇,王巍,吕伟丽等. CeO_2空心球地制备与表征[J].稀土,2007, 28(3): 71-74.
    [86]陈杨,陈志刚,刘强等.单分散纳米CeO_2和Cu-Ce-O催化剂的制备、表征及其催化性能[J].功能材料, 2009, 40(2): 31-313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700