面向不确定环境的集装箱码头优化调度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着全球经济一体化和国际贸易的迅猛发展,集装箱吞吐量出现了高速增长的势头。作为资本密集型的经济实体,集装箱码头的资源有效管理和调度是箱流畅通的必要保证,更关系到企业成本控制和客户需求的满足,进而影响码头企业的竞争力。本文以岸桥-集卡-轮胎式龙门吊装卸工艺的集装箱码头为研究对象,充分考虑了集装箱码头调度问题的动态性、不确定性和复杂性,通过理论分析和应用研究相结合的方法对面向不确定环境的集装箱码头调度问题的基础理论、应用模型和求解算法进行了较为系统地研究。论文涉及管理学、运筹学、港口规划、信息科学等相关学科,对提高集装箱码头企业自身的竞争力、增加企业收益和客户满意度具有重要的现实意义和理论价值。本文的主要研究内容如下:
     1.以面向不确定环境的集装箱码头优化调度研究为背景,针对当前不确定性测度问题可加性和完备性刻画不足的现状,提出了一种能够刻画不确定性因素可加性和完备性的未确定规划方法。在未确定规划三个公理化假设的基础上,界定了未确定测度空间、未确定乘积测度空间、未确定变量、未确定变量的分布函数和分布密度函数、未确定变量的独立性、期望值算子等概念,并对其性质及联合未确定分布函数的确定进行了分析和论证,同时讨论了未确定变量模拟方法。较全面地分析了面向不确定环境的集装箱码头优化调度的方案选择和集装箱码头调度问题中不确定性因素的处理方法,讨论了集装箱码头调度常用的未确定规划模型包括:期望值模型、机会约束规划、机会相关规划,同时提出模型中未确定函数的神经网络模拟方法,并给出未确定规划模型的混合智能求解算法。该方法虽然是针对集装箱码头优化调度问题提出的,但对其他面向不确定环境的规划问题同样适用。
     2.在对集装箱泊位-岸桥分配和调度问题分析的基础上,基于机会约束的未确定规划的思想建立了集装箱泊位岸桥分配模型。根据模型最优解的特征,设计了求解模型的集束搜索算法和遗传算法。将遗传算法与神经网络结合,并用神经网络模拟未确定函数,实现了求解该问题的混合智能算法。
     3.根据堆场管理的要求将堆场箱位分配问题分解为堆场区段分配和区段内具体箱位确定两部分。根据堆场区段的分配标准分别建立了以平衡堆场段间计划作业量为目标的堆场区段分配未确定期望值模型Ⅰ,以同组箱同区段摆放和堆场区段距相应泊位较近为目标的堆场区段分配未确定期望值模型Ⅱ。建立了区段内具体箱位分配的未确定机会相关规划模型。提出了基于未确定变量机会相关的集装箱堆场进、出口箱的翻箱量计算方法,进而建立了以同组进、出口箱靠近摆放和翻箱量最小为目标的0.1规划模型。基于模型最优解特征设计了求解模型的近似启发式算法。
     4.在对岸桥-堆场龙门吊-集卡作业流程分析的基础上,将岸桥-堆场龙门吊-集卡的作业调度问题分为龙门吊在堆场段间的分配和岸桥-龙门吊-集卡的作业序列优化两个子问题。建立了面向不确定环境的龙门吊堆场段间调度的未确定期望值规划模型,合理地在堆场段间调度龙门吊可以使规划时段结束时各堆场段未完成的作业量最少,设计了求
With the rapidly increasing of foreign trade and the development of global economy integration, container turnover becomes rapidly increasing. As a capital-dense entity, container terminal's effective resource management and allocation are the effective guarantee for expedite container flow. And they also affect firms' operation cost and the custom demand, all of which contribute to container terminal's competition. Considering the container terminal's uncertainty, complexity and dynamics in resource allocation, the paper systemically lays emphasis on the theory and method of resource allocation. The study has realistic value, for example, it is beneficial to improve container terminal's service level and increase corporation income. The researches of resource allocation under uncertainty circumvents are summarized as follows.1. Due to the shortcoming in the depiction of additivity and entirety of uncertain measure problems, the paper proposes a new uncertain measure denotation, in which additivity index (λ) and the entirety coefficient (κ) depict uncertain problems' characters. On that basis, the paper puts forward some related notions, such as uncertainty measure space, uncertainty product measure space, uncertainty variable, distribution function and distribution density function of uncertainty variable, the variable expected value, uncertainty variable independence, and uncertainty variable simulation are suggested. And the characteristics of related concepts and the determination of a joint uncertainty distribution function are discussed and proofed. Then a simple berth allocation problem with uncertainty variable in container terminal is proposed. Various uncertainties in resource allocation problem are analyzed, and the classification of uncertainties, the mathematical description of uncertainties, the mathematical models for resource allocation and the optimization methods are studied in details. Further, the program of uncertain neural network optimal model in the uncertain environment is given, and the intelligent algorithm of the uncertain program is given as well.2. Based on analysis of the berth and quay crane allocation problem in container terminal, the paper proposes a berth and quay crane allocation uncertainty programming model in uncertain chance constraint. Considering the characteristics of its optimal solution, the author puts forward improved beam search algorithm and genetic algorithm to solve the above model. Genetic algorithm and neural network are combined to simulate uncertainty function and a mixed intelligent algorithm is proposed for the model.3. Considering the characteristics of container storage management, storage space allocation problem is divided into two steps: storage block allocation and container location determination. According to storage block allocation criterion, uncertainty expected value model I and II are proposed. Model I aims to balance the workloads among storage blocks, and model II is to stack the same group containers as on the same block as possible and to decrease the distance of conveying containers between the storage and quay area. The method dependent of uncertainty chance to calculate reshuffle is discussed. Then, dependent of chance uncertain 0-1 programming model of container location determination in a storage block is proposed to put the same group containers as close as possible and decrease total reshuffles of inbound and outbound flow.4. Based on the analysis of the workflow of quay-cranes, Rubber Tyred Gantry Cranes (RTGC) and trucks in container terminal, the equipment allocation problem is split into RTGC
    assignation among blocks and operation sequence optimization of quay-cranes, RTGCs and trucks. The uncertainty expected value programming model is proposed for RTGC assignation to reduce undone planning jobs by the end of planning period. And the beam search algorithm is discussed to solve the proposed model. The operation sequence optimization is formulated by an uncertain program model based on chance constraint, which could reflect risk preference and experience of decision-makers. Considering the model's complexity, the genetic algorithm and beam search algorithm are discussed to solve the model. And the functions dependent of chance is treated by direct predigestion and neural network simulation method respectively.5. Container terminal is a dynamic and cooperative system. The flexibly, robustly, dynamically, synthetically design and development of Multi-agent system is the necessity for container terminal allocation, through which the integrative performance can be improved and copes with the shortcoming of knowledge and information. To realize the dynamic, cooperative and integrative allocation of container terminal and to decrease the uncertainty troubles, based on uncertainty program, the paper puts forward distributed and intelligent Multi-agent system, in which agent selection, MAS architecture, communication, conflict and cooperation are discussed. In this system we use agent to integrate some optimization technologies and make them get mutual advantages, through which optimize the container terminal production process. The prototype system is developed by C# language.
引文
[1] Vis, I F A, Koster R, Roodbergen K J, Peeters L W P. Determination of the number of automated guided vehicles required at a semi-automated container terminal. Journal of the Operational Research Society, 2001, 52: 409-417.
    [2] Wan T B, Wah E L C, Meng L C. The use of IT by the port of Singapore Authority. World Development 1992, 20(12): 1785-1795.
    [3] Leeper J H. Integrated automated terminal operations. Transportation Research Circular, 1988, 33(2): 23-28.
    [4] Botter R C. Stowage container planning: a model for getting an optimal solution. IFIP Transaction B:Computer Applications in Technology, 1992, 5: 217-229.
    [5] Crainic T G, Gendrean M, Dejax P. Dynamic and stochastic models for the allocation of empty containers. Operations Research, 1993, 41: 102-126.
    [6] Lai Y J, Hwang C L. Fuzzy Mathematical Programming. Berlin: Springer Verleg, 1992.
    [7] Shen W S, Khoong C M. A DSS for empty container distribution planning. Decision Support Systems, 1995, 5: 75-82.
    [8] Evers J J M, Koppers S A J. Automated guided vehicle traffic control at a container terminal. Transportation Research A, 1996, 30(1): 21-34.
    [9] Avriel M, Penn M, Shpirer N, and Witteboon S. Stowage Planning for Container Ship to Reduce the Number of Shifts. Annals of Operation Research. 1998, 76: 55-71.
    [10] 杨静蕾,丁以中.集装箱码头设备配置的模拟研究.系统仿真学报,2003,15(8).
    [11] Lai K K, Leung M. A Study of Gate Lane Allocation in Container Terminal. Journal of Advanced Transportation, 1996, 30(3): 26-38.
    [12] Bodin L D, Golden B L, Assad A A., Ball M O. Routing and scheduling of vehicles and crews. Computers and Operations Research, 1983, 10(2): 63-211.
    [13] Steenken D, Henning A, Freigang S, Voss S. Routing of straddle carriers at a container terminal with the special aspect of internal moves. OR Spektrum, 1993, 15(3): 167-172.
    [14] Chen Y, Leong Y T, Ng J W C, Demir E K, Nelson B L, Simchi-Levi D. Dispatching automated guided vehicles in a mega container terminal, paper presented at INFORMS Montreal, 1998.
    [15] Bish E K, Leong T, Li C, Simchi-Levi D. Analysis of a new vehicle scheduling and location problem. Naval Research Logistics, 2001, 48(5): 363-385.
    [16] Van M R. Operational control of internal transport, ERIM Ph. D. theries Research in Management, 2000, 1.
    [17] Baker C. High time for straddles. Cargo systems, 1998, 10: 23-26.
    [18] Kim K H, Bae J W. A dispatching method for automated guided vehicles to minimize delays of containership operations. International Journal of Management Science, 1999, 5(1): 1-25.
    [19] 吕显强,张宏伟.集装箱码头分派车辆的整数规划模型.大连水产学院学报,2004,19(6).
    [20] Edmond E D, Maggs R P. How useful are queue models in port investment decisions for container berths. Journal of the Operational Research Society. 1978, 19(8): 741-750.
    [21] Lai K K, Shih K. A Study of Container Berth Allocation. Journal of Advanced Transportation, 1992, 26(1): 45-60.
    [22] Brown G G, Lawphongpanich S, Thurman KP. Optimizing ship berthing. Naval Research Logistics, 1994, 41: 1-15.
    [23] Brown G G, Cormican K J, Lawphongpanich S, Widdis D B. Optimizing submarine berthing with a persistence incentive. Naval Research Logistics, 1997, 44: 301-318.
    [24] Chen C Y, Hsieh T W. A Time-Space Network Model for the Berth Allocation Problem. 19th IFIP TC6 Conference on System Modeling and Optimization, Cambridge, UK, 1999,7.
    [25] Legato P, Mazza R M. Berth planning and resources optimization at a container terminal via discrete event simulation. European Journal of Operational Research, 2001, 133(3): 537-547.
    [26] Imai A, Nagaiwa K, Tat C W. Efficient planning of berth allocation for container terminals in Asia. Journal of Advanced Transportation, 1997, 31(1): 75-94.
    [27] Imai A, Nishimura E, Papadimitriou S. The dynamic berth allocation problem for a container port. Transportation Research Part B, 2001,35:401-417.
    [28] Nishimura E, Imai A, Papadimitriou S. Berth allocation planning in the public berth system by genetic algorithms. European Journal of Operational Research, 2001,131:282-292.
    [29] Imai A, Nishimura E, Papadimitriou S. Berth allocation with service priority. Transportation Research Part B,2003,37: 437-457.
    [30] Lim A. The berth scheduling problem. Operations Research Letters, 1998, 22: 105-110.
    [31] Kim K H, Moon K C. Berth scheduling by simulated annealing. Transportation Research Part B, 2003, 37: 541-560.
    [32] Li C L, Cai X, Lee C Y, Scheduling with multiple-job-on-one-processor pattern. HE Transactions. 1998,30: 433-445.
    [33] Guan Y P, Xiao W Q, Cheung R K, Li C L. A multiprocessor task scheduling model for berth allocation: heuristic and worst-case analysis. Operations Research Letters, 2002, 30: 343-350.
    [34] Daganzo C F. The crane scheduling problem. Transportation Research B, 1989,23 (3): 159-175.
    [35] Peterkofsky R I, Daganzo C F. A branch and bound solution method for the crane scheduling problem. Transportation Research B, 1990,24(3): 159-172.
    [36] B6se J. Vehicle dispatching at seaport container terminals using evolutionary algorithms. Proceeding of 33th Hawaii International Conference of System Sciences, Hawaii, 2000.
    [37] Kim K H, Kim H B. Segregating space allocation models for container inventories in port container terminals. International Journal of Production Economics, 1999,59:415-423.
    [38] Kim K H, Park Y M, Ryu K R. Deriving decision rules to locate export containers in container yards. European Journal of Operational Research, 2000,124: 89-101.
    [39] Kim K Y, Kim K H. An optimal routing algorithm for a transfer crane in port container terminals. Transportation Science, 1999c, 33(1): 17-33.
    [40] Kozan E, Preston P. Genetic algorithm to schedule container transfers at multimodal terminals. International Transactions of Operational Research, 1999, 6:311-329.
    [41] Gambardella L M, Bontempi G, Tailard E, Romanengo D, Raso G, Piermari P. Simulation and forecasting in Intermodal Container Terminal. Simulation in Industry, 8th European Simulation Symposium, 1996, 1: 626-630.
    [42] Ramani K V. An interactive simulation model for the logistics planning of container operations in seaports. Simulation, 1996, 66(5): 291-300.
    [43] Yun W Y, Choi Y S. Concept Design for Container Terminal Simulation Using An Objective-oriented An Objective-oriented Approach, Proceedings of the 3th Annual International Conference on Industrial Engineering Theories. Applications and practice, 1998,2: 868-875.
    [44] Merkuryev Y, Tolujew J, Blumer E, Novitsky L, Ginters E, Vitorova E, Merkuyeva G, Pronins J. A modelling and simulation methodology for managing the Riga Harbour. Simulation, 1998, 71 (2):84-95.
    [45] Hee K M V, Wijbrands R J. Decision Support System for Container Terminal Planning. European Journal of Operational Research, 1988, 34: 262-274.
    [46] Kozan E. Comparison of analytical and simulation planning models of seaport container terminals. Transportation Planning and Technology, 1997, 20(3): 235-248.
    [47] Kozan E. Increasing the operational efficiency of container terminals in Australia. Journal of the Operational Research Society, 1997, 48(2): 151-161.
    [48] 刘建军,杨浩.港口枢纽集装箱运的输组织优化研究。土木工程学报,2004,34(10)。
    [49] 真虹,集装箱码头生产过程动态图形仿真的优化研究.中国图像图形学报,1999,4:502-506.
    [50] 彭传圣.港口码头系统计算机模拟技术应用的现状与发展.水运科学研究所学报,1999,6:1-10.
    [51] 彭传圣,一个集装箱码头计算机模拟研究实例.水运科学研究所学报,2002,2:26-33.
    [52] Zadeh L A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1978, 1: 3-38.
    [53] French S. Uncertainty and Imprecision: modeling and Analysis. Journal of Operations Research Society. 1995, 46(1): 70-79
    [54] 唐加福,汪定伟.模糊优化理论与方法的研究综述.控制理论与应用,2000,17(2):159-164.
    [55] Liu B. Uncertain Programming. New York: John Wiley & Sons, 1999.
    [56] Nahmias S. Fuzzy Variable. Fuzzy Set and Systems, 1978, 1: 97-101.
    [57] Liu B, Liu Y K. Expected Value of Fuzzy Variable and Fuzzy Expected Value Models. IEEE Transaction on Fuzzy Systems, 2003
    [58] Liu B. Theory and Practice of Uncertain Programming. Heidelberg: Physiea-Verlag, 2002.
    [59] 王光远.未确知信息的数学处理.哈尔滨建筑工程学院学报,1990,4:1-10.
    [60] Kwakernaak H. Fuzzy Random Variables I. Information Sciences, 1978, 15: 1-29.
    [61] Kwakernaak H. Fuzzy Random Variables Ⅱ. Information Sciences, 1979, 17: 253-278.
    [62] Gao J, Liu B. New Primitive Chance Measures of Fuzzy random Event. International Journal of Fuzzy systems, 2001, 3(4): 527-531.
    [63] Liu B. Uncertain Programming: A Unifying Optimization Theory In Various Uncertain Environments. Applied Mathematics and Computation, 2001, 120(13): 227-234.
    [64] Liu B. Toward Fuzzy Optimization without Mathematical Ambiguity. Fuzzy Optimization and Decision Making, 2002, 1(1): 4.
    [65] Ishibuchi H, Yamatomo N, Murata T, Turaka H. Genetic algorithms and neighborhood research algorithm for fuzzy flowshop scheduling problems. Fuzzy Sets and Systems, 1994, 67(1): 87-100.
    [66] Alvatore G, Bentto M, Roman S. Rough sets theory for multi criteria decision analysis. European Journal of Ooerational Research. 2001. 129: 1-47.
    [67] 刘亚军,王行愚.基于灰色模拟的灰色机会约束规划.华东理工大学学报,2003,29(4):405-408.
    [68] 王文平.多目标灰线性规划的满意度解法研究.管理工程学报.1997,11(3):167-172.
    [69] 罗党,刘思峰.灰色动态规划研究.系统工程理论与实践,2004,4:56-62.
    [70] 刘开第,吴和琴.未确知数学.武汉:华中理工大学出版社,1997.
    [71] 刘开第,吴和琴,庞彦军等.不确定性信息数学处理及应用.北京:科学出版社,1999,7.
    [72] 岳常安,刘开第.未确知有理数论.石家庄:河北教育出版社,2001.
    [73] 杨志民,邓乃扬.未确知机会约束规划.系统工程,2002,22(3):11-14.
    [74] 吴和琴,张学东,傅恩祥.未确定数在整体优化中的应用.河北煤炭建筑工程学院学报,1996,1:66-69.
    [75] Liu B. Dependent-Chance Programming in Fuzzy Environments. Fuzzy Sets and Systems, 2000, 109(1): 97 106.
    [76] Liu B. Fuzzy Random Dependent-chance Programming. IEEE Transactions on Fuzzy Systems, 2001, 9(5): 721-726.
    [77] Kall P, Wallanee S W. Stochastic programming. New York: John Wiley & Sons, 1994.
    [78] Liu B, Iwamura K. Chance Constrained Programming with Fuzzy Parameters. Fuzzy Sets and Systems, 1998, 94 (2): 227-237.
    [79] Liu B, Iwamura K. A Note on Chance Constrained Programming with Fuzzy Coefficients. Fuzzy Sets and Systems, 1998, 100(13): 229 233.
    [80] Liu B. Minimax Chance constrained Programming models for Fuzzy decision Systems. Information Sciences, 1998, 112(14): 25-38.
    [81] Liu B. Dependent Chance Goal Programming and its Genetic Algorithm Based Approach. Mathematical and Computer Modelling, 1996, 24(7): 43-52.
    [82] Liu B. Dependent Chance Programming: A Class of Stochastic Programming. Computers & Mathematics with Applications, 1997, 34(12): 89-104.
    [83] Liu B, Iwamura K. Modelling Stochastic Decision on Systems Using Dependent-Chance Programming. European Journal of Operational Research, 1997, 101(1): 193-203.
    [84] Serrano D, Gossard D. Tools and techniques for conceptual design. In: Tong C., Sriram D. eds. Artificial Intelligence in Engineering Design. New York: Academic Press, 1992:71-116.
    [85] Lewis K, Mistree F. Modeling interactions in multidisciplinary design: A game theoretic approach. AIAA Journal, 1997, 35(3): 1387-1392.
    [86] Lottaz C, Robert Y. Constraint-based for negotiation in collaborative design. Artificial Intelligence in Engineering, 2000, 14(3): 261-280.
    [87] 张少彤,熊光楞,李涛.基于参数协调模型的多学科协同设计方法.计算机学报,2004,1.
    [88] 刘宝碇,赵瑞清,王纲.不确定规划及应用.北京:清华大学出版社,2003,8.
    [89] Tang J., Wang D. An interactive based on GA for a type of quadratic programming model with fuzzy objective and resources. Computers & Operations Research, 1997, 24(5): 413-422.
    [90] Tang J, Wang D, Fung R Y K. Model and method based on GA nonlinear programming problems with fuzzy objective and resources. Int. J. of System Sciences, 1998, 29(8): 907-913.
    [91] 唐加福,汪定伟.模糊非线性规划对称模型基于遗传算法的模糊最优解.控制理论与应用,1998,15(5):525-530.
    [92] 金朝光,林焰,纪卓尚.基于遗传算法的模糊优化研究.系统工程理论与实践,2003,4:106-110.
    [93] 顾幸生,郑璐,李平,张伟.不确定性条件下存储时间有限型FlowShop问题的提前/拖期调度研究.华东理工大学学报,2004,30(3):322-327.
    [94] 李岩,吴智铭.基于两级遗传算法的模糊化计划调度.上海交通大学学报.1999,33(11):1137-1140.
    [95] Buckley J J, Hayashi Y. Fuzzy genetic algorithm and applications. Fuzzy Sets and Systems, 1994, 61:129-136.
    [96] 丁晓东,吴让泉,邵世煌.一类含有模糊和随机参数的期望值规划模型和应用.控制与决策,2001,16(增刊):745-748.
    [97] 彭锦,刘宝碇,确定规划的研究现状及其发展前景.管理与运筹,2002,11(2):1-10.
    [98] Iwamura K. Liu B. Stochastic Operation Models for Open Inventory Net Works. Journal of Information & Optimization Sciences, 1999, 20(3): 347-363.
    [99] Iwamura K, Liu B. Chance Constrained Integer Programming Models for Capital Budgeting in Fuzzy Environments. Journal of the Operational Research Society, 1998, 49(8): 854-860.
    [100] Iwamura K Liu B. Dependent-chance Integer Programming Applied to Capital Budgeting. Journal of the Operational Research Society of Japan, 1999, 42(2): 117-127.
    [101] Liu B, Iwamura K. Topological optimization models for communication network with multiple reliability goals. Computers & Mathematics with Applications, 2000, 30:59-69.
    [102] Liu B, Lai K K. Stochastic Programming Models for Vehicle Routing Problems. Asia Information Science-Life, 2002, 1(1).[103] Peng J, Song K P. Fuzzy expected value goal programming for scheduling problems. Proceedings of the Tenth IEEE Transaction Conference on Fuzzy Systems, Melbourne, Australia, 2001, 12: 292-295.
    [104] Peng J, Hao J K. Modeling single machine scheduling problems in fuzzy random environments. Proceedings of the First International Conference on Electronic Business: Information and Technology Management for Competitive Advantages. Hong Kong, 2001, 12: 393-395.
    [105] 顾幸生.不确定性条件下的生产调度.华东理工大学学报,2002,26(5):441-446.
    [106] 李文华,谭燕秋.不确定性网络直接优化规划模型建立(Ⅰ).系统工程理论与实践.2000,12:97-101.
    [107] 施炳利.灰色关联度分析用于水利水电规划方案的选择.水利学报,1990,9:66-69.
    [108] 何勇.灰色多层次综合评判模型及其应用.系统工程理论与实践,1993,13(4):72-76.
    [109] 李炜,张忠诚.一个采购问题的未确知规划模型.运筹与管理,2001,10(2):135-139.
    [110] 李明切,顾幸生.处理时间不确定情况下Jobshop问题鲁棒调度研究.浙江大学学报(自然科学版),1998(a),32(2)增刊:711-719.
    [111] 李明切.间歇生产过程鲁棒调度策略的研究:(博士学位论文).上海:华东理工大学,1998(b).
    [112] Pistikopoulos E N. Uncertainty in process design and operations. Computers and Chemical Engineering, 1995, 19(Suppl): 553-563.
    [113] Chen H, Yao D D. Dynamic scheduling control of a multi-class fluid network. Operations Research, 1995, 41: 1104-1115.
    [114] Chen W, Muraki M, Jiang W S. A Reactive scheduling gap-proach. Proc. of International Conference of Japanese-Chinese Youngest Scientists. Yokohama, 1995: 127-134.
    [115] 李余正.柔性过程系统的最优设计和生产调度新方法研究.上海:华东理工大学,1996(a).
    [116] 李余正,顾幸生,蒋慰孙.一类柔性过程的动态Reactive调度方案.浙江大学学报(自然科学版),1996(b),30(增刊):163-167.
    [117] 韩亚欣,谭跃进,沙红兵.面向并行工程的重调度方法.系统工程,1997,15(6):21-25.
    [118] Harmonosky C M, Robohn S F. Real-time scheduling in computer integrated manufacturing: a review of recent research. Int J Computer Integrated Manufacturing, 1991, 4: 331-340.
    [119] Presman E, Sethi S, Zhang Q. Optimal feedback production planning in a stochastic N-machine Flowshop. Automatica, 1995, 31(9): 1325-1332.
    [120] 吴受章,辛为民.FMS的模型参考自适应调度.控制理论与应用,1992,9(6):646-651.
    [121] 王朝晖,甘文泉,陈浩勋等.具有模糊缓冲库存约束的化工批处理过程的调度.系统工程理论与实践,1998,7:62-68.
    [122] Honkomp S J, Reklaitis G V. Robust scheduling with processing time uncertainty. Computers and Chemical Engineering, 1997, 21(Suppl): 1055-1060.
    [123] Honkomp S J, MockusL, Reldaitis G V. A flame work for schedule evaluation with processing uncertainty. Computers and Chemical Engineering, 1999, 23: 595-609.
    [124] Yang C O, Liou M E. A decision analysis method for a tardy WIP from the production cost point of view. IntJ of Syst Sci., 1998, 29(4): 373-388.
    [125] 陈伟.间歇过程生产管理的适应调度系统:(博士学位论文).上海:华东理工大学,1996.
    [126] Yamamoto M, NofS F. Scheduling/rescheduhng in the manufacturing operating system environment. Int J Prod Res., 1985, 23(4): 705-722.
    [127] Schmidt C W, Grossmann I E. A mixed integer programming model for stochastic scheduling in new product development. Computers and Chemical Engineering, 1996, 20(Suppl): S1239-1244.
    [128] 哈明虎,吴从炘.模糊测度与模糊积分理论.北京:科学出版社,1998,3.
    [129] Kolmogorov A N. Foundations of the Theory of probability. New York: Chelsea, 1950. (first published in Germany in 1933)
    [130] 方述诚,汪定伟.模糊数学与模糊优化.北京:科学出版社,1997:186-301.
    [131] Tanaka H, Ichihashi H, Asal K. A formulation of fuzzy linear programming problem based on comparison of fuzzy numbers. Control and Cybernetics. 1984, 13(3): 185-194.
    [132] Delgado M, Verdegay J L, Vila M A. Imprecise costs in mathematical programming problems. Control and Cybernetics, 1987, 16(2): 113-121.
    [133] Rommelfanger H, Hanuscheck R, Wolf J. Linear programming with fuzzy objectives. Fuzzy Sets and Systems, 1989, 19: 31-48.
    [134] Tong S C. Interval number and fuzzy number linear programming. Fuzzy Sets and Systems, 1994, 66: 301-306.
    [135] 刘树安,尹新,郑秉霖,王梦光。目标函数系数模糊型的模糊线性规划问题.东北大学学报(自然科学版),1998,19(6):614-617.
    [136] Taleb-Ibrahimi M, Castilho B D, Daganzo C F. Storage space vs handling work in container terminal Transportation Research, 1993, 27B(1): 13-32.
    [137] Castiho B D, Daganzo C F. Handling strategies for import containers at maritime terminals. Transportation Research, 1993, 27B(2): 151-166.
    [138] Roux E D. Storage capacity for import containers in seaports. Ph. D thesis, University of California, Berkeley, 1996.
    [139] Dowd T J, Leschine T M. Container terminal productivity: a perspective. Maritime Policy and Management, 1990, 17(2): 107-112.
    [140] Zhang C. Resource planning in container storage yard: (Doctoral thesis). Hongkong: Hong Kong University of Science and Technology, 2000: 35-36.
    [141] Hartmann S. Generating scenarios for simulation and optimization of container terminal logistics. OR Spectrum, 2004b, 26: 171-192.
    [142] Zhang C, Wan Y, Liu J, Linn R J. Dynamic crane deployment in container storage yards. Transportation Research Part B, 2002, 36: 537-555.
    [143] Kim K Y, Kim K H. Heuristic Algorithms for Routing Yard-Side Equipment for Minimizing Loading Times in Container Terminals. Naval Research Logistics, 2003, 50: 498-514.
    [144] Daganzo C F. Crane productivity and ship delay in ports. Transportation Research Record, 1990, 1251: 1-9.
    [145] Bish E K. A multiple-crane-constrained scheduling problem in a container terminal. European Journal of Operational Research, 2003, 114: 83-107.
    [146] Yager R R. Modeling uncertainty using partial information. Information Sciences, 1999, 121: 271-294.
    [147] Yager R R On the entropy of fuzzy measures. Fuzzy Systems, IEEE Transactions on, 2000, 8(4):453-461.
    [148] Yager R R. Uncertainty representation using fuzzy measures. Systems, Man and Cybernetics Part B, IEEE Transactions on Information, 2002, 32(1): 13-20.
    [149] Sakawa M, Kubota R. Fuzzy programming for multiobjective job shop scheduling with fuzzy processing time and fuzzy due date through genetic algorithms. European Journal of Operational Research, 2000, 120: 393-407.
    [150] 周兴斌,李平.基于的生产优化调度系统Agent.计算机工程,2002,28(3):196-198.
    [151] Jennings N R, Corera J M, Laresgoiti, I. Developing industrial multi-agent systems. In Proceedings of the First International Conference on Mulit-agent Systems, (ICMAS-95), 1995: 423-430.
    [152] Neves M C, Oliveira E. A Control Architecture for an Autonomous Mobile Robot. Agents'97, ACM, 1997.
    [153] Ljungberg M, Lucas A, The OASIS air-traffic management system. In Proceedings of the Second Pacific Rim International Conference on Artificial Intelligence, PRICAI'92, Seul, Korea, 1992.
    [154] Fisher K. Knowledge-based reactive scheduling in a flexible manufacturing system. In: IFIP Transaction B: Computer Application in Technology B-15, 1993, 10: 1-18.
    [155] Gomes C P, Tats A, Thomas L. Distributed scheduling framework. In: Proceeding of the International Conference on Tool with Artificial Intelligence, 1999, 11: 49-55.
    [156] Morikawa K, Furuhashi T, Uchikawa Y. Evaluation of CIM system with genetic algorithm. In: IEEE Conference on Evolutionary Computation-Proceedings, 1994, 6: 746-749.
    [157] 赵博.结构化集成调度理论及基于该理论的虚拟车间智能支撑平台的体系结构研究:(博士学位论文).大连理工大学,2000.
    [158] Chen Y Y, Fu L C, Chen Y C. Multi-agent Based Dynamic Scheduling for a Flexible Assembly System, Proceedings of IEEE Int. Conf. on Robotics and Automation, Leuven, Belgium, 1998: 2122-2127.
    [159] Ouelhadj D, Hanachi C, Bouzouia B, Moualek A, Farhi A. A Multi-Contract Net Protocol for Dynamic Scheduling in Flexible Manufacturing Systems, Proc. Of IEEE Int. Conf. on Rob. & Auto., 1999: 1114-1119.
    [160] Ouelhadj D,. Hanachi C, Bouzouia B, Multi-Agent System for Dynamic Scheduling and Control in Manufacturing Cells, Proceedings of the 1998 IEEE Int. Conference on Robotics & Automation, Leuven, Belgium 1998, 5: 2128-2133.
    [161] Davis R, Smith R G, Negotiation as a Metaphor for Distributed Problem. Artificial Intelligence, 1983, 20(1): 63-109.
    [162] Smith R. G. A Framework for Distributed Problem Solving. In Proceedings of IJCAI'79, 1979. R. G. Smith, The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver'. IEEE Transactions on Computers 29(12), 1980: 1104-1113.
    [163] Gu P, Balasubramanian S, Norrie D H. Bidding-Based Process Planning and Scheduling in a multi-agent System. Computers and Engineering, 1997, 2: 477-496.
    [164] Lira M K, Zhang Z. A Framework for the application of antonomous agents in integrated dynamic process planning and scheduling system, Proceedings of the IASTED Conference on Robotics and Applications, Santa Barbara CA, 1999: 47-51.
    [165] Thurston T, Hu H. Distributed Agent Architecture for Port Automation. Proceedings of the 26 th Annual International Computer Software and Applications Conference, 2002.
    [166] 史忠植.高级人工智能.北京:科学出版社,1998.
    [167] Lander S E. Issues in multi-agent design system. IEEE Expert, 1997, 2: 18-26.
    [168] Laird J E, Newell A. Rosenbloom P S. SOAR: an architecture for general intelligence. Artificial Intelligence, 1987, 33(1): 1-64.
    [169] Bobrow D G, Winograd T. An overview KRL: a knowledge representation language. Cognitive Science, 1977, 1(1): 3-45.
    [170] Branchman R J, Schmolze J G. An overview of KL_ONE knowledge representation system. Cognitive Science, 1985, 9(2): 171-216.
    [171] Genesereth M R, Ketchpel S P. Software agents. Communications of the ACM, 1994, 37(7): 48-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700