鱼卵、仔稚鱼形态生态学基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要从探索鱼卵种类鉴别方法,鱼类早期发育生物学特征及其环境影响因子,鱼卵、仔稚鱼海域生态调查三方面,开展了鱼卵、仔稚鱼生物生态学研究。论文绪论部分综述了鱼卵种类鉴别方法、鱼类早期发育特征及其环境影响因子、鱼卵、仔稚鱼生态调查等诸方面研究进展。论文第一部分:鱼卵种类鉴别方法探索研究。主要研究了四种鲆鲽类鱼卵受精前后形态特征变化,并归纳了可用于鱼卵种类鉴别和系统发生研究的主要形态特征;同时以自然海区采集的沙氏下鱵鱼Hyporhamphus sajori卵为研究对象,探索了运用光学显微镜、扫描电镜和遗传学手段来准确鉴别鱼卵种类的方法。论文第二部分:鱼类早期发育生物学和实验生态学研究。主要研究了北太平洋亚寒带海域关键种大头鳕Jadus macrocephalus胚胎和卵黄囊仔鱼发育的生物学特征和主要环境因子对其发育的影响;在此基础上初步探讨了造成大头鳕胚胎死亡原因,以及胚胎发育过程中鱼卵密度及其粘性的动态变化、鱼卵异率孵化的生态学意义;同时,探讨了大头鳕胚胎及卵黄囊仔鱼发育生物学特性及其在鳕属鱼类系统发生研究中的应用。论文第三部分:鱼卵、仔稚鱼生态调查研究。采用鱼卵、仔稚鱼生态调查方法,调查了2007年春、夏季黄河口海区鱼类浮游生物的种类组成和数量分布,并初步分析了环境因子对其种类组成及数量分布的影响。主要研究结果如下:
     一、鱼卵种类鉴别方法研究
     1、四种鲆鲽类未受精卵与受精卵的形态学比较研究
     借助光学显微镜和扫描电镜观察方法,观察并测量了四种具有较高经济价值分批产卵型鲆鲽鱼类,星突江鲽Platichthys stellatus、圆斑星鲽Verasper variegates、大菱鲆Scophthalmus maximus及褐牙鲆Paralichthys olivaceus未受精与受精卵的形状及卵膜结构。首先,比较了同种受精前后处在不同发育期鱼卵的形态特征,以期揭示受精前后鱼卵卵膜及受精孔区变化;其次用方差分析(ANOVA)及欧氏聚类(Hierarchical cluster)方法分析了四种鲆鲽类未受精成熟卵卵膜及受精孔区的结构,以期为四种鲆鲽类鱼卵的形态分类及系统发生研究积累基础资料。研究结果显示:同种鱼卵在受精前后卵膜及受精孔区分别呈现不同形态特征。4种鱼卵受精后卵膜变得平整,且为防止多精授精,均具有受精后受精孔阻塞现象。星突江鲽、褐牙鲆、大菱鲆鱼卵均具无凹陷长孔道Ⅲ型受精孔,而与星突江鲽属于同一亚科的圆斑星鲽鱼卵具有浅凹陷长孔道的Ⅱ型受精孔。鱼卵卵膜的亚显微结构如壁孔大小及密度,卵径大小等特征均能为鱼卵分类鉴定和系统发生研究提供有用的数据资料,但受精孔区的结构是最主要的形态分类特征。
     2、沙氏下鱵鱼卵的形态学及遗传学鉴别研究
     利用光学显微镜、扫描电镜和遗传学方法开展了采自南黄海海区(33°49'N,122°10'E)附着在海藻上的鱼卵种类的综合鉴别研究。在光学显微镜下:卵呈微扁圆形,卵径1.95-2.38mm粘着沉性;卵黄间隙较窄,卵黄囊呈乳白色,无龟裂;卵膜平滑,在其表面有5-7根细长角质管状卵膜丝;多油球数不定(4-145),油球径0.05-0.50mm球在卵黄囊中的位置随不同的发育时期而不断发生变化;胚体处在不同的发育阶段,其特征符合颌针鱼目鱼卵的特征。在扫描电镜(SEM)下观察:鱼卵受精孔明显,位于动物极的卵膜丝之间,外缘孔径12.3μm卵膜壁孔不明显,在卵膜表面有大量颗粒状突起,密度约为50个/100μm2。遗传学分析结果显示:鱼卵与沙氏下鱵鱼mtDNA Cyt b基因片段序列之间无差异,遗传距离为0,而与其它颌针鱼目鱼类序列间差异达18.72-21.3%,遗传距离在21.9-26.4%之间。NJ分子系统树的聚类结果也显示鱼卵与沙氏下鱵鱼序列聚为一支,他们共享一个单倍型,而与其它颌针鱼目鱼类序列分为两大支,其亲缘关系较远。进化速率较快的控制区片段序列的分析结果也显示鱼卵与沙氏下鱵鱼片段序列间遗传距离仅为0-0.7%,两者差异应为种内水平的遗传分化。以上分析结果表明该鱼卵为沙氏下鱵鱼卵。
     二、鱼类早期发育生物学和实验生态学研究
     1、大头鳕胚胎发育的生物学研究
     实验室内利用显微镜和显微数码摄像系统,通过电脑活体观察测量拍摄大头鳕受精卵胚胎发育和初孵仔鱼的形态特征,详细描述记录其发育过程和时间,并利用斯托科斯定律(Stokes'law)对大头鳕卵子以发育天数为单位进行活体密度测定。此外,利用扫描电镜观察了大头鳕7个胚胎发育期受精孔及卵膜的形态结构。大头鳕产沉性带微弱粘性卵子,无油球,未受精卵径0.95-1.08mm,密度为1.0422±0.001 g/cm3,卵膜表面具有弱的网状纹理。水温6.30±1.24℃、盐度34 psu受精后约2 hpf (hours post fertilization)胚盘形成,23 hpf进入囊胚期,38 hpf后进入胞胚期且卵子间粘性消失,52 hpf后进入原肠胚,196 hpf左右进入胚体器官分化期,228 hpf左右尾部游离,252 hpf后心跳开始,胚体搐动,296 hpf开始孵化,330.56 hpf时50%孵化。受精后大头鳕卵子的卵径与密度处于动态变化之中,卵径随胚胎发育呈逐渐上升趋势,密度则呈逐渐降低趋势;50%孵化时卵径为1.09±0.02mm度变为1.0395±0.001 g/cm3。孵化后20d,仔鱼卵黄吸收完毕。亚显微观察显示,大头鳕具有深凹陷,短孔道的Ⅰ型受精孔;未受精时精孔管开放,精孔管径3.28±0.55μm,受精孔前庭外缘径18.13±2.03μm、内缘径10.22±3.07μm,卵膜具有六角形网纹且褶皱明显,卵膜壁孔间距为1.95±0.29 gm。受精后,卵子精孔管被卵周液分泌物阻塞,卵膜褶皱逐渐消失但整个卵膜逐渐变得粗糙;在胚胎发育过程中,受精孔的大小、形状及卵膜壁孔间距也处于动态变化之中;2细胞期受精孔前庭径和卵膜壁孔间距最大,杆状细菌在原口关闭期及胚体包卵5/8期布满受精孔前庭及卵膜,胚体包卵5/8期时整个受精孔已经完全塌陷。大头鳕卵子粘性、卵径和密度的动态变化也与整个胚胎发育过程相关联,该特性对提高卵子受精率及卵子在海底正常发育及散布具有重要生态学意义;此外,在整个胚胎发育过程中卵子受精孔与卵膜结构也处于动态变化之中,这对防止大头鳕胚胎在较长发育期内免遭其他微生物及病菌侵袭具有重要的生物生态学意义。
     2、温度对大头鳕早期发育影响的研究
     实验室内研究了不同温度对日本陆奥湾海域大头鳕受精卵发育速率、日死亡率、孵化率及初孵仔鱼形态特征的影响。人工受精方法获取受精卵,在水温0℃、1℃、2℃、4℃、6℃、8℃、10℃、12℃,正常海水盐度34 psu,光周期11L:13D的条件下进行孵化。据不同孵化温度下受精卵各发育期的中点时间,利用最小2乘法非线性多项式回归拟合曲线,研究孵化温度对胚胎发育速率和各发育阶段持续时间的影响。在各检测温度中,除0℃无受精卵孵化外,其余各温度下受精卵均能正常发育至孵化,且温度4-8℃时正常发育至孵化的比率最高。大头鳕受精卵死亡率最高的关键期从原肠初期一直持续到原孔关闭期。受精卵发育速率与孵化温度呈正相关,其达到特定发育阶段所需时间与温度呈负相关。受精卵孵化期、50%孵化时间和孵化终点时间与孵化温度呈指数函数关系。1℃水温条件下,50%孵化所需时间为817.87h,12℃仅需217.9 h。初孵仔鱼平均体长和卵黄贮存量与孵化温度呈二次曲线相关。即使在相同孵化条件下,大头鳕受精卵异率孵化现象明显,各孵化温度下早期孵化仔鱼体长较短但残留卵黄囊较多,而后期孵化仔鱼体长较长但残存卵黄囊较少。综上,在自然水域中大头鳕受精卵发育对温度较敏感;适温范围内受精卵发育速率、存活率、孵化率及初孵仔鱼形态特征受温度变化影响显著。由此,海水温度的时空异质性明显影响自然水域大头鳕沉性卵的发育及其仔鱼散布的潜能,受精卵的异率孵化被认为是其应对这种风险的一种进化策略。
     3、温、盐度对大头鳕胚胎和卵黄囊仔鱼发育影响的研究
     实验室内研究了不同温、盐度对大头鳕受精卵及卵黄囊仔鱼发育的影响。1)受精卵发育期。人工采集实验室内暂养成鱼精卵并授精获取受精卵。受精卵分别置于9个温度梯度、5个盐度梯度组合的135(9×5×3)个有机塑料培养皿中进行孵化。孵化光照条件为11L:13D。分别检测大头鳕受精卵的孵化时间,孵化率及初孵仔鱼形态特征。2)初孵仔鱼培育实验。为研究大头鳕受精卵孵化后初孵仔鱼由海底相对稳定环境上浮至环境温度多变的表层或散布至不同水团后的存活状态,在一个9×5×3温盐度全因子实验中(温盐度同受精卵孵化实验)分别研究了孵化水温6℃、盐度34 psu条件下初孵仔鱼自孵化后在饥饿状态中持续至死亡的时间变化。研究结果显示,大头鳕受精卵在温度4℃和6℃下,各盐度的孵化率均较高(53.67-73.66%);温度14℃已经超出了大头鳕受精卵的耐温极限;在接近大头鳕受精卵耐温极限时,各温度的孵化率受盐度影响显著。尽管0℃时在盐度30和34psu下没有受精卵正常孵化,但较低盐度的15-25 psu处理组仍有受精卵正常孵化;较高孵化水温下低盐处理组受精卵孵化率显著降低。上述现象体现了低温低盐对受精卵孵化率的增效作用,同时也体现了高温低盐的限制性作用。温度对大头鳕受精卵发育速率影响较显著,但不同水温条件下盐度对受精卵发育时间影响不显著。在各孵化盐度下各温度处理组大头鳕初孵仔鱼的标准体长与孵化水温成凸型二次曲线相关;但在各监测温度条件下不同盐度对初孵仔鱼形态特征影响不显著。同时发现,初孵仔鱼耐温、盐范围远超过受精卵,多数初孵仔鱼在各监测的温、盐度范围内都能存活直至卵黄耗尽因饥饿而死亡。各盐度下饥条件下饥饿未投喂仔鱼50%存活时间随着温度的升高显著降低,其相关性可用有效指数函数公式来描述。陆奥湾大头鳕卵子与仔鱼多分布在水温4℃和6℃的自然水域,室内试验证实,该水温范围内受精卵孵化率最高、耐盐范围最广,初孵仔鱼的标准体长最大,且饥饿仔鱼50%的存活时间适中,适合大头鳕卵子孵化和仔鱼发育。
     三、鱼卵、仔稚鱼生态调查研究
     1、2007年春、夏季黄河口海域鱼卵、仔稚鱼种类组成与数量分布
     2007年春季和夏季,利用浅水Ⅰ型浮游生物水平和垂直拖网对黄河口海域鱼卵、仔稚鱼种类组成与数量分布进行了调查。春季和夏季分别设置19个(6个断面)相同的调查站位。每站表层水平拖网10 min,拖网速度为2.0 n mile/h;垂直拖网由底到表,拖网速度约0.5 m/s。调查结果表明:春季和夏季共采集鱼卵7661粒、仔稚鱼70尾,共18种,能鉴定到种的有17种,隶属于5目12科16属,其中1种虾虎鱼类的稚鱼仅能鉴别到科的水平。优势种为斑鰶(Konosirus punctatus)、油魣(Sphyraena pinguis)、短吻红舌鳎(Cynoglossus joyneri)。春季的水平和垂直拖网分别采集6932粒鱼卵、6尾仔稚鱼和11粒鱼卵、0尾仔稚鱼。鱼卵、仔稚鱼的出现频率分别为84.21%、10.53%和26.32%、0%,平均密度分别为364.84粒/网、0.32尾/网和0.59粒/m3、0尾/m3;夏季的水平和垂直拖网分别采集658粒鱼卵、57尾仔稚鱼和60粒鱼卵、7尾仔稚鱼,鱼卵、仔稚鱼的出现频率分别为84.21%、63.16%和31.58%、15.79%,平均密度分别为34.63粒/网、3尾/网和1.85粒/m3、0.22尾/m3。分析结果表明:黄河口海域鱼卵、仔稚鱼种类季节更替明显分成春夏季—夏季两种生态类型,种类更替率高达83.33%;河口南部海域鱼卵和仔稚鱼的群落结构相对较稳定,优势种突出,优势度较大,物种多样性水平与种间分布均匀度高于北部海域。上述规律符合该海域的水文地理学特性和硬骨鱼类的繁殖生物学规律。此外本研究分别对春季和夏季鱼卵、仔稚鱼的数量分布以及斑鰶、油魣、短吻红舌鳎等优势种类鱼卵的数量分布绘制了密度等值分布图。与1982-1983、1984-1985、1992-1993年同期调查结果比较发现,2007年春季和夏季黄河口海域鱼卵、仔稚鱼的种类组成与数量分布发生了显著变化,分析认为,在渔业捕捞压力和环境条件变化的双重扰动下,黄河口生态系统中鱼类资源的种群交替和群落结构发生了很大变化,从而导致资源补充群体也随之改变。
Fish eggs and larvae contain much important information of fish life history and fish ecology. So they play an important role in environmental impact assessment, fishery stock analysis, fish propagation, seeding release, and fish farming. The objectives of this study were to establish a standard procedure for identifying fish eggs, understand the biological characteristics of early development of fishes and the factors that affect its development, carry out ecological investigation of ichthyoplankton. First, this paper reviews the research advances at home and abroad on the identification methods of fish eggs, the main developmental events occurred at each stage of early development, factors that have been proposed to alter early development, and the ecological investigation on fish eggs and larvae. Section A, identification methods of fish eggs. The shape and surface structures of unfertilized mature and fertilized developing pelagic eggs of four flounders were studied, characters differences observed that would be useful for species identification and phylogenetic inference were summarized; and Japanese halfbeak Hyporhamphus sajori eggs, which collected in field, were used to establish a standard procedure for identifying fish eggs by using the light microscope, scanning electronic microscopy, and genetic analysis simultaneously. Section B, biological and experimental ecology studies of early development of fish. The embryo and yolk sac larvae of Pacific cod Gadus macrocephalus, one of the key species in the subarctic Pacific, were studied. We focused on the main developmental events occurred at each stage and the effects of temperature or temperature and salinity combinations on early stage of Pacific cod. Based on these studies, we aim at exploring the possibility causes of mortality; the using of developmental characters and their implication in phylogenic determination of the Gudas species; bio-ecological implications of the dynamic process of the adhesive characteristics, the diameters and mass density; also the ecological implications of hatching asynchronously were determined. Section C, ichthyoplankton surveys. The categories composition and distributional patterns of ichthyoplankton surveys were carried out in waters over the Yellow River estuary during spring and summer 2007, the preliminary analysis of environmental factors on category composition and distribution patterns of ichthyoplankton were discussed.
     Section A, identification methods of fish eggs
     1. Morphology of the unfertilized mature and fertilized developing marine pelagic eggs in four multiple spawning flounders
     Starry flounder Platichthys stellatus, spotted halibut Verasper variegates, turbot Scophthalmus maximus, and Japanese flounder Paralichthys olivaceus are four commercially cultivated multiple spawning flounders that spawn pelagic eggs. Through appropriate light and scanning electron microscope processing, the shape and surface structures (such as micropyle, pores, pore density, and paten) of unfertilized mature and fertilized developing eggs of the four species were observed and measured. First, individual or intraspecific comparisons in the surface structures of eggs at different developmental stages were made. Second, interspecific differences in the four species at the same developmental stage of unfertilized mature eggs were statistically computed and analyzed through one-way analysis of variance and hierarchical cluster. Eggs of the same species collected at different stages of development tend to be different in morphology. Smoothing of the convoluted egg envelope surface and closure of the micropyle to serve as a final step of the polyspermy-preventing reaction are common after fertilization. Based on detailed morphology of micropyle of just-mature fertilizable eggs, turbot, starry flounder, and Japanese flounder each has a micropyle with a long canal but no distinct micropylar vestibule, type III of Riehl and Gotting (1974). In contrast, spotted halibut owns a micropyle with a distinct flat micropylar vestibule and a long canal, type II. Ultrastructure of the envelope surface, size and distribution density of pores, and size of eggs are also useful characters for distinguishing and phylogenetic analysis among the four species. However, ultrastructural features of the micropyle are the most important envelope surface characters for egg identification.
     2. Morphological and genetic identification of Japanese halfbeak Hyporhamphus sajori eggs
     A larger number of fertilized eggs with attaching filaments attached to some seaweeds were collected in the southern Yellow Sea (33°49'N,122°10'E).Inorder to make an accurate identification of the fish eggs, light microscope, scanning electronic microscopy (SEM), and genetic analysis were used. Under light microscope, the egg is an oblated and agglutinated demersal with a narrow perivitelline space; eggs ranged in diameter from 1.95 to 2.38 mm with a mean of 2.18±0.03 mm; their membrane are smooth and they have 5 to 7 cannular keratose egg-filaments; the oil globules are multiple, ranged in diameter from 0.05 to 0.50 mm and in number from 7 to 145 with a mean of 28±2, the position of them migrate during embryonic development; the yolks are ivory-white with no segments, ranged in diameter from 1.00 to 2.30 mm with a mean of 1.90±0.03 mm; the development phases of the embryo are variable. So they were identified as the eggs of one Beloniformes. Under SEM:the egg's micropyle is apparent, it lines in the middle of the attaching filaments and the outer diameter of it is about 12.3μm; the pores on the envelope are unapparent, but there are many grain substances on it, with the density was about 50 pieces/100μm2. The result of genetic analysis conveyed that in partial sequences of mtDNA Cyt b gene there were no variable sites between the eggs and Japanese halfbeak, and the genetic distance between them was 0, however, many variable sites between the eggs and the other fishes of Beloniformes were exised, the variable rate was 18.72-21.3%, and the genetic distance between them were 21.9-26.4%. The result of Neighbor-joining (NJ) molecular phylogenetic tree also indicated that the eggs and the Japanese halfbeak were assembled at the same embranchment, they shared one haplotype, but the eggs were assembled at different embranchments with the other species of Beloniformes so the fish eggs were alienated from them. The validity of test results by using mtDNA Cyt b gene has been examined with a 443 bp segment of mtDNA control region, the result conveyed that only 0-0.7% in the genetic distance between the fish eggs and Japanese halfbeak. It is also the diversity within specie. Based on the results above, it is suggested that the fish eggs to be Japanese halfbeak.
     Section B, biological and experimental ecology studies of early development of fish
     1. The biological study on the embryonic development of Pacific cod Gadus macrocephalus
     In order to know the embryonic development pattern of Pacific cod Gadus macrocephalus, the morphological characteristics of fertilized eggs and larvae were observed and recorded by Nikon SMZ1500 photomicroscope equipped with amicrometer ocular lens at the laboratory from January to March,2008. Moreover the mass density of Pacific cod embryos at each day of development was determined by using the Stokes'law equation and the fine structures of both the micropyle and the egg envelope surface of 7 development stages were studied with scanning electron microscopy. Eggs of Pacific cod were spherical, slightly adhesive, and semidemersal with none of oil globule in diameter of 0.95-1.08mm, mass density of 1.0422±0.001g/cm3 at the time spawning, with weak striations under light micropyle. With the incubated temperature 6.30±1.24℃, salinity 34psu, the blastoderm formed at 2 hours post fertilization (hpf), blastula stage at 23hpf, blastodermal cap stage with the adhesive characteristics lost at 38hpf, early germ ring stage at 52hpf; the segmentation period began at 196hpf, the tail separated at 228hpf, heart beat and body shrink at 252hpf. Hatching occurred at 330.56hpf, after which most of the individuals remained motionless at the water's bottom. The diameter and the mass density of the Pacific cod eggs were in dynamic process over embryonic development. The diameters of the eggs rise during the embryonic development; however, the mass density of eggs was downtrend. The larvae were incubated until full use of the yolk sac (20 days post hatching). Under SEM, the micropyles of Pacific cod eggs belong to type I with deep micropylar vestibule and short canal. In unfertilized ones, the micropylar canal is in diameter of 3.28±0.55μm, the outer diameter of the micropylar vestibule is 18.13±2.03μm and the inner one is 10.22±3.07μm; the outer envelope surface has numerous hexagonal reticulated patterns and is characterized by a crisscross pattern of depressions in distance 1.95±0.29μm between the pore canals on the envelope. After fertilization the micropylar canal was blocked by secretions of the perivitelline, the wrinkles on the outer surface of the envelope were indistinct and the whole surface becomes roughness. The shape of the micropyle and the distance between the pore canals on the envelope were in the dynamic process along with the development stage forward. The maximum diameter of the micropylar vestibule and the maximum distance between the pore canals on the envelope occurred at the 2 cell stage. Numerous bacilli deposited at the micropyle and the outer surface of envelope at the blastopore closure and embryo 5/8 around yolk stages; the micropyle was whole deformed at embryo 5/8 around yolk stage. The dynamic process of the adhesive characteristics, the diameters and mass density were associated with the development process of the embryo and it has bio-ecological significance for increasing the fertilization rate and influencing the dispersal potential of the eggs in the field. So does the dynamic process of the micropyle, the ultrastructure changes on the envelope surface and it has bio-ecological significance for protecting the Pacific cod embryo in the long incubation period from microorganism infections.
     2. Effects of temperature on embryonic development of the Pacific cod Gadus macrocephalus
     Laboratory experiments were conducted to determine the effect of water temperature on development, survival and hatching of Pacific cod Gadus macrocephalus eggs from the Mutsu Bay. The eggs were reared at 0℃,1℃,2℃,4℃,6℃,8℃,10℃,12℃and under a diel light cycle (13 h light,11 h dark) at the salinity of 34psu (normal sea water). A piece-wise least squares nonlinear regression model with midpoints of each stage describes the relation between time to each stage of development and incubation temperatures. Development was normal for all temperatures except 0℃, with no eggs hatched. Eggs survived to hatching and produced viable embryos at the highest temperature range 4-8℃, reflecting this species'winter spawning season. "Critical periods" of high mortality during the egg development did occur through the gastrula stage to blastopore closure at each temperature checked. The developmental rate was sequential with and directly proportional to incubation temperature while the time spent in each developmental stage was inversely proportional to temperature. An exponential relationship between times, over which initiated hatched,50% hatched and eggs all hatched, and temperature were found. Time to 50% hatch ranged from 817.87 h at 1℃to 217.9h at 12℃. Fish larvae hatch asynchronously from egg batches despite experiencing a common environment during their development. The combined observations of recent studies suggest a dome-shaped relationship between size at hatch, yolk storage and incubation temperature. At all temperatures, early hatching larvae were smaller but had more yolk storage; late-hatching larvae were generally larger and had smaller yolk sacs than early hatched larvae. Together these data suggest that variations in water temperatures within an ecological range can markedly influence development rates, survival and hatching of the eggs also the stage at hatch larvae of Pacific cod. Hence, temporal and spatial heterogeneity in sea temperatures should be considered along with hydrodynamic conditions in estimating chances for survival and hatching of demersal Pacific cod eggs and the dispersal potential of Pacific cod larval in the field. Hatching asynchronously is considered to be an evolutionary strategy of "bet hedging" against such dynamic variation in the Pacific cod.
     3. Some effects of temperature and salinity on laboratory-reared eggs and yolk sac larvae of Pacific cod Gadus macrocephalus
     The combined effects of temperature and salinity on eggs and yolk sac larvae of Pacific cod Gadus macrocephalus were examined under controlled laboratory conditions. Two developmental phases were investigated:1) fertilization to hatch. Artificially fertilized eggs, obtained by induced spawning of captive broodstock at 6℃and 34psu, salinity, were stocked (100 eggs/piece) into one hundred and thirty five shallow sterile plastic petri dishes at combinational of constant temperatures (0,1,2,4, 6,8,10,12,14℃) and salinities(15,20,25,30,34psu). Photoperiod was 11 h light:13 h dark. Responses of Pacific cod eggs were measured in terms of incubation period, hatchability and morphological characters at stage of hatching larvae.2) hatch through yolk sac absorption. Time to 50% survival of the newly hatching unfed larvae (incubation at 6℃,34psu) were studied in a 9×5 (temperature×salinity, the same as the egg incubation experiment) array of treatments to determine how environment will influence the survival rate when they were emergence and dispersed into various water mass and the fluctuate sea surface at the time of hatching. The results indicated that temperature 14℃were beyond the tolerance limits for normal embryonic development; hatching rate was moderate to high (53.67-73.66%) at 4℃and 6℃in all salinities. Viable hatch was significantly influenced by the effect of salinity as the upper and lower thermal limits were approached. Though there was no eggs hatching at salinity of 30psu and 34 psu in 0℃, when the salinity was lower (15,20,25psu) there would still be some hatching; hatching success was moderate under temperature range 8-10℃at the high salinity but the hatching rate was markedly reduced at low salinity 15psu. This indicated that low-temperature-low-salinity synergism, as well as high-temperature-low-salinity inhibitory effects. While data on developmental rates and as influenced by temperature are presented, no significant differences in temperature influences on developmental times between the tested salinities were found. As expected, dome-shaped relationship between size of stage at hatch larvae and incubation temperature at each salinity, no such affecting existed when concerned to the affecting of salinity at each tested temperature. Larvae were more tolerant to extreme high temperatures than were newly fertilized eggs, most larval could survival when they were dispersed into various temperature and salinity combination till the yolksac is exhausted. Average time from hatching to 50% survival in unfed larvae was markedly reduced along with the increased temperature, ranged from 39 days in 0℃to 6 days in 14℃, and the influence could be described in all cases by a power function. The temperature of 4℃and 6℃, possibly associated with peak abundance of eggs and larvae in nature, is optimal for culture of Mutsu Bay embryos and yolk sac larvae. At this two temperatures, hatchability, size of stage of hatch larvae, tolerance to reduced salinities are maximized and time to 50% survival of the unfed larvae was moderate.
     Section C, ichthyoplankton surveys
     1. Category composition and distribution patterns of ichthyoplankton in the Yellow River estuary during spring and summer 2007
     The categories composition and distributional patterns of ichthyoplankton surveys were carried out in waters over the Yellow River estuary during spring and summer 2007. In the investigated area where were 119°05'-119°31'E,37°35'-37°57'N,19 fixed sampling stations (6 transects) were set up respectively. The distributional patterns of ichthyoplankton were investigated by horizontal tows associated with vertical tows with a zooplankton net (mouth diameter 50 cm,140 cm in length, mesh size 0.50 mm). The horizontal tows were of 5 min duration at a speed of 2.0 nmile/h on the sea surface, while the vertical tows were from surface to near-bottom at a speed of 0.5 m/s at each sampling station. According to the investigation results,7661 eggs and 70 larvae of fishes of 18 taxa were collected during spring and summer 2007, of which,17 taxa were identified as species, belonging to 16 genera,12 families and 5 orders,1 taxa of gobiidae fishes as only family level. The preponderant species were Konosirus punctatus, Sphyraena pinguis, Cynoglossus joyneri. During late spring, a total of 6943 eggs and 6 larvae fishes were captured respectively. In the horizontal tows,6932 eggs and 6 larvae were captured, and in the vertical tows,11 eggs and 0 larvae were captured. The occurrence frequencies of eggs and larvae were 84.21% and 10.53% in the horizontal tows,26.32% and 0% in the vertical tows, respectively. The average density of eggs and larvae were 364.84 ind/net,0.32 ind/net respectively in the horizontal tows, and 0.59 ind/m3 and 0 ind/m3 respectively in the vertical tows. During summer, total of 718 eggs and 64 larvae of fishes were captured respectively. In the horizontal tows 658 eggs and 57 larvae were captured, and in the vertical tows,60 eggs and 7 larvae were captured, respectively. The occurrence frequencies of eggs and larvae were 84.21% and 63.16% respectively in the horizontal tows,31.58% and 15.79% in the vertical tows. The average density of eggs and larvae were 34.63ind/net and 3ind/net respectively in the horizontal tows,1.85 ind/m3 and 0.22 ind/m3 respectively in vertical tows. Further analyzing showed that two seasonal ecological groups could be distinguished. A pronounced seasonal succession from spring-summer group to summer group regarding the category composition of ichthyoplankton can be observed throughout the two cruises. The succession rate was about 83.33%. The distribution patterns of species were different on account of different waters environmental conditions. In waters of southern Yellow River estuary the community structure of ichthyoplankton was relatively stable, the dominant species was evident and the dominance value was high. The diversity index of species and the uniformity of interspecific distribution in waters of southern Yellow River estuary was higher than that of in waters of northern Yellow River estuary. The variability in the spatio-temporal distribution patterns of ichthyoplankton may result from the interaction of hydrological and biological factors at different scales. The equivalency density distribution of ichthyoplankton and fish eggs of preponderant species, such as Konosirus punctatus, Sphyraena pinguis, Cynoglossus joyneri were drawn. The category composition and distribution patterns of ichthyoplankton in the Yellow River estuary changed evidently from 1982 to 2007, it was in correspondence with the alternation of fishery resources strongly affected by double disturbances of overfishing and ecological environment changes.
引文
[1]Ahlstrom, E., Moser H.,1980. Characters useful in identification of pelagic marine fish eggs. Calif Coop Oceanic Fish Invest Rep 21,121-131.
    [2]Andoh, T., Matsubara, T., Harumi, T., Yanagimachi, R.,2008. The use of poly-L-lysine to facilitate examination of sperm entry into pelagic, non-adhesive fish eggs. lnt J Dev Biol 52, 753-757.
    [3]Ann, C., Deborah, M., Blood, D. M., Vinter M.V.,1989. Laboratory guide to Early life history stages of northeast pacific fishes. NOAA technical report NMFS.
    [4]Aranishi, F.,2006. Single fish egg DNA extraction for PCR amplification. Conserv Genet 7, 153-156.
    [5]Arukwe, A. Goks yr A.,2003. Eggshell and egg yolk proteins in fish:hepatic proteins for the next generation:oogenetic, population, and evolutionary implications of endocrine disruption. Comp Hepatol 2,4.
    [6]Battle, H., Sprules, W.,1960. A description of the semi-buoyant eggs and early developmental stages of the goldeye, Hiodon alosoides (Rafinesque). J Fish Res Bd Can 17,245-266.
    [7]Chen, C. H., Wu, C. C., Shao, K. T., Yang, J. S.,2007. Chorion microstructure for identifying five fish eggs of Apogonidae. J Fish Biol 71,913-919.
    [8]Chen, K. C., Shao, K. T., Yang, J. S.,1999. Using micropylar ultrastructure for species identification and phylogenetic inference among four species of Sparidae. J Fish Biol 55, 288-300.
    [9]Chiang, S. F.,1991. Southern Fujien-ecological studies on the pelagic fish eggs and larval fishes in Taiwan Bank. InHung, S., Chiu, S. Y., Ran, W. C., Hung., G. C. (eds) Southern Fujien-ecosystem studies of upwelling in Taiwan Bank. Scientific Press, Beijing pp.531-540.
    [10]Coward, K., Bromage, N. R., Hibbitt, O., Parrington, J.,2002. Gamete physiology, fertilization and egg activation in teleost fish. Rev Fish Biol Fish 12,33-58.
    [11]Daniel Ⅲ, L., Graves, J.,1994. Morphometric and genetic identification of eggs of spring-spawning sciaenids in lower Chesapeake Bay. Fish Bull 92,254-261.
    [12]Doyere., M. P. L. M.,1849. Sur un mikropyle dans des oeufs du Loligo mtdia et Syngnathw ophidion. Bull SocPhil Paris.
    [13]Fausto, A. M., Picchietti, S., Taddei, A. R., Zeni, C., Scapigliati, G., Mazzini, M., Abelli, L. 2004. Formation of the egg envelope of a teleost, Dicentrarchus labrax (L):immunochemical and cytochemical detection of multiple components. Anat Embryol 208,43-53.
    [14]Feddern, H.,1967. Larval development of the neon goby, Elacatinus oceanops. Florida Bull Mar Sci 17,367-375.
    [15]Francisco, J. A., Medina, A.,2005. Ultrastructure of oogenesis in the bluefin tuna, Thunnus thynnus. J Morphol 264,149-160.
    [16]Freire-Brasil, D., Nakaghi, L. S. O., Santos, H. S. L., Grassiotto, I. Q., Foresti, F.,2002. Estudo morfologico dsprimeiros momentos da fertilizacao em curimbata Prochilodus lineatus (Valenciennes,1836). CIVA 2002 (http://www.civa2002.org),733-747.
    [17]Garcia-Vazquez, E., Alvarez, P., Lopes, P., Karaiskou, N, Perez, J., Teia, A., Martinez J. L., Gomes. L., Triantaphyllidis, C.,2006. PCR-SSCP of the 16S rRNA gene, a simple methodology for species identification of fish eggs and larvae. Sci Mar 70,13-21.
    [18]Ganeco, L. N., Franceschini-Vicentini, I. B., Nakaghi, L. S.,2008. Structural analysis of fertilization in the fish Brycon orbignyanus. Zygote 17,93-99.
    [19]Graves, J., Simovich, M. et al.,1989. Electrophoretic identification of early juvenile yellowfin tuna, Thunnus albacares. Fish Bull 86,835-838.
    [20]Gwo, H. H.,2008. Morphology of the fertilizable mature egg in the Acanthopagrus latus, A. schlegeli and Sparus sarba (Teleostei:perciformes:sparidae). J Microsc 232,442-452.
    [21]Hagstrom, B. E., Lonning, S.,1968. Electron microscopic studies of unfertilized and fertilized eggs from marine teleosts. Sarsia 33,73-80.
    [22]Hall, E. H., Smith, P., Johnston I. A.,2004. Stages of embryonic development in the Atlantic cod Gadus morhua. J Morphol 259,255-270.
    [23]Hebert, P. D. N., Cywinska, A., Ball, S. L., Shelley, L., deWaard, J.R.,2003a. Biological identifications through DNA barcodes. Proc R Soc Lond B 270,313-321.
    [24]Hebert, P. D. N., Ratnasingham, S., deWaard, J. R.,2003b. Barcoding animal life:cytochrome Coxidase subunit 1 divergences among closely related species. Proc R Soc Lond B (Suppl),270, 96-99.
    [25]Hirai, A.,1988. Fine structures of the micropyles of pelagic eggs of some marine fishes. Japan J Ichthyol 35,351-357.
    [26]Hirai, A.,1993. Fine structure of the egg membranes in four species of Pleuronectinae. Japan J Ichthyol 40,227-235.
    [27]Hiroishi, S., Nakai, R., Seto, H., Yoshida, T., Imai, I.,2002. Identification of Heterocapsa circularisquama by means of antibody. Fish Sci 68,627-628.
    [28]Hiroishi, S., Yuki, Y., Yuruzume, E., Onishi, Y., Ikeda, T.,2004. Identification of formalin-preserved eggs of red sea bream (Pagrus major)(Pisces:Sparidae) using monoclonal antibodies. Fish Bull 102,555-560.
    [29]Hiroishi, S., Uchida, A., Nagasaki, K., Ishida, Y.,2008. A new method for identification of inter-and intra-species of the red tide algae chattonella antiqua and chattonella marina (Pathidophyceae) by means of monoclonal antibodies. J Phycol 24,442-444.
    [30]Hosokawa, K.,1985. Electron microscopic observation of chorion formation in the teleost, Navodon modestus. Zool Sci 2,513-522.
    [31]Hu, J. Y., Chiang, S. F.,1991. Southern Fujien-the relation between the distribution of pelagic fish eggs and larval fishes with the hydrological condition in summer in Taiwan Bank. In 'Southern Fujien-ecosystem studies of upwelling in Taiwan Bank'. Scientific Press, Beijing, pp.546-556.
    [32]Iconomidou, V. A., Chryssikos, D. G., Gionis, V., Pavlidis, M. A., Paipetis, A., Hamodrakas, S. J.,2000. Secondary structure of chorion proteins of the teleostean fish Dentex dentex by ATR FT-IR and FT-Raman spectroscopy. J Struct Biol 132,112-122.
    [33]Irwin, D. M., Kocher, T. D., Wilson, A. C.,1991. Evolution of the cytochrome b gene of mammals. J Mol Evol 32,128-144.
    [34]Iwamatsu, T., Ohta, T.,1981. Scanning electron microscopic observation on sperm penetration in teleostean fish. J Exp Zool 218,261-277.
    [35]Iwamatsu, T., Ishijima, S., Nakashima, S.,1993a. Movement of spermatozoa and changes in micropyles during fertilization in medaka eggs. J Exp Zool 266,57-64.
    [36]Iwamatsu, T., Nakashima, S., Onitake, K.,1993b. Spiral patterns in the micropylar wall and filaments on the chorion in eggs of the medaka, Oryzias latipes. J Exp Zool 267,225-232.
    [37]Ivankov, V. N., Kurdyayeva, V. P.,1973. Systematic differences and the ecological importance of the membranes in fish eggs. J Ichthyol 13,864-873.
    [38]Jalabert, B.,2005. Particularities of reproduction and oogenesis in teleost fish compared to mammals. Reprod Nutr Dev 45,261-279.
    [39]Jeyaseelan, M. J.,1998. Manual of fish eggs and larvae from Asian mangrove waters. Paris Press, France.
    [40]Kazunori, K., Yamamoto, T., Hirano, Y.,1982. Development and identification of the egg of the Pacific mackerel (Scomber japonicus Houttuyn) and a similar egg. Bulletin of Institute of Oceanic Research and Development, Tokai University eng No.107, March, pp.33-52.
    [41]Kobayashi, W. and T. Yamamoto,1984. Fine structure of the micropylar apparatus of the chum salmon egg, with a discussion of the mechanism for blocking polyspermy. J Exp Zool 217, 265-275.
    [42]Kobayashi, W., Yamamoto, T. S.,1985. Fine structure of the micropylar cell and its change during oocyte maturation in the chum salmon, Oncorhynchus keta. J Morphol 184,263-276.
    [43]Kondo, R., Kagiya, G., Yuki, Y., Hiroishi, S., Watanabe, M.,1998. Taxonomy of a bloom-forming cyanobacterial genus Microcystis. Nippon Suisan Gakkaishi 64,291-292.
    [44]Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Paabo, S., Villablanca, F. X., Wilson, A. C.,1989. Dynamics of mitochondrial DNA evolution in animals:amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86,6196-6200.
    [45]Kudo, S., Teshima, C.,1998. Assembly in vitro of vitelline envelope components induced by a cortical alveolus sialoglycoprotein of eggs of the fish Tribolodon hakonensis. Zygote 6, 193-202.
    [46]Kuntz., A.,1915. Notes on the embryology and larval development of five species of teleostean fishes. U.S. Bur Fish Bull 34,409-429.
    [47]Kuroda, K., T. Yamamoto, et al.,1982. Development and identification of the eggs of the Pacific mackerel (Scomber japonicus Houttuyn) and a similar egg. Bull Tokai Reg Fish Res Lab 107,33-52.
    [48]Lonning, S.,1972. Comparative electronmicroscopic studies of teleostean eggs with special reference to the chorion. Sarsia 49,41-48.
    [49]Laale, H. W.,1980. The perivitelline space and egg envelopes of bony fishes:A review. Copeia 2,210-226.
    [50]Leis, J., Moyer, J.,1985. Development of eggs, larvae and pelagic juveniles of three Indo-Pacific ostraeiid fishes (Tetraodontiformes):Ostracion meleagris, Lactoria fornasini and L. diaphana. Ichthyol Res 32,189-202.
    [51]Li, Y. H., Wu, C. C., Yang, J. S.,2000. Comparative ultrastructural studies of the zona radiata of marine fish eggs in three genera in Perciformes. J Fish Biol 56,615-621.
    [52]Mark, E. L.,1890. Studies on Lepidosteus. Pt I Mem Mus Compo Zoot Harvard Univ 19, 1-127.
    [53]Marques, C., Nakaghi, L. S. O., Faustino, F., Ganeco, L. N., Senhorini, J. A.,2008. Observation of the embryonic development in Pseudoplatystoma coruscans (Siluriformes:Pimelodidae) under light and scanning electron microscopy. Zygote 16,333-342.
    [54]Masuda, K., Murata, K., Iuchi, I., Yamagami, K.,1992. Some properties of the hardening process in chorions isolated from unfertilized eggs of medaka Oryzias latipes. Dev Growth Differ 34,545-552.
    [55]Matarese, A., Sandknop, E.,1984. Identification of fish eggs. In Moser, H. G., Richards, W. J., Cohen, D. M., Fahay, M. P., Kendall, A. W., Richardson, S. L. (eds) Ontogeny and Systematics of Fishes:An International Symposium Dedicated to the Memory of Ahlstrom, E. H. Special Publication Number 1. American Society of Ichthyologists and Herpetologists, Lawrence, pp. 27-30.
    [56]Meloni, S., Mazzini, M., Fausto, A., Macchioni, R., Taddei, A., Buonocore, F., Fiani, M., Baldacci, A., Scapigliati, G.,2004. Egg envelope organization in the icefish Chionodraco hamatus. Polar Biol 27,586-594.
    [57]Mork, J., Solemdal, P., Sundes, G.,1983. Identification of marine fish eggs:a biochemical genetics approach. Can J Fish Aquat Sci 40,361-369.
    [58]Nakashima, S., Iwamatsu, T.,1994. Ultrastructural changes in micropylar and granulosa cells during in vitro oocyte maturation in the medaka, Oryzias latipes. J Exp Zool 270,547-556.
    [59]Nagasaki, K., Uchida, A., Hiroishi, S., Ishida, Y.,1991. An epitope recognized by the monoclonal antibody MR-21 which is reactive with the cell surface of Chattonella marina type Ⅱ. Nippon Suisan Gakkaishi 57,885-890.
    [60]Okiyama, M.,1988. An atlas of the early stage fishes in Japan. Tokai University Press.
    [61]Olivar, M. P.,1987. Chorion ultrastructure of some fish eggs from the southeast Atlantic S Afr J Mar Sci 5,659-671.
    [62]Oppen-Berntsen, D.O., Helvik, J.V., Walther, B.T.,1990. The major structure proteins of cod (Gadus morhua) eggshell and protein crosslinking during teleost egg hardening. Dev Biol 137, 258-265.
    [63]Ortiz-Delgado, J. B., Porcelloni, S., Fossi, C., Sarasquete, C.,2008. Histochemical characterization of oocytes of the swordfish Xiphias gladius. Sci Mar 72,549-564.
    [64]Padmanabhan, K.,1955. Breeding habits and early embryology of Macropodus cupanus (Cuv. & Val.). Bull Centr Res Inst, Univ Travancore, Trivandrum, serC 4,1-46.
    [65]Park, J., K. Richardson, Kim, I. S.,1998. Developmental changes of the oocyte and its enveloping layers, in Micropercops swinhonis (Pisces:Perciformes). Korean J Biolog Sci 2, 501-506.
    [66]Pegg G G, Sinclair B, Briskey L, Aspden, W. J.,2006. mtDNA barcode identification of fish larvae in the southern Great Barrier Reef Australia. Sci Mar 70(S2),7-12.
    [67]Perez, J., Alvarez., P., Martinez, J. L., Garcia-Vazquez, E.,2005. Genetic identification of hake and megrim eggs in formaldehyde-fixed plankton samples. J Mar Sci 62,908-914.
    [68]Perry, D. M.,1984. Post-fertilization changes in the chorion of winter flounder, Pseudopleuronectes americanus Walbaum, eggs observed with scanning electron microscopy. J Fish Biol 25,83-94.
    [69]Ravaglia, M. A., Maggese, M. C.,2003. Ovarian follicle ultrastructure in the teleost Synbranchus marmoratus (Bloch,1795), with special reference to the vitelline envelope development. Tissue Cell 35,9-17.
    [70]Riehl, R., Gotting, K. J.,1974. Zu Struktur und Vorkommen der Mikropyle an Eizellen und Eiern von Knochenfischen (Teleosti). Arch Hydrobiol 74,393-402.
    [71]Riehl, R., Schulte, E.,1977. Vergleichende rasterelektronenmikroskopische Untersuchungen an den Mikropylen ausgew hlter S wasser-Teleosteer. Arch Fisch Wiss 28,95-107.
    [72]Riehl, R., Schulte, E.,1978. Bestimmungsschl ssel der wichtigsten deutschen Teleosteer an Hand ihrer Eistruktur. Arch Hydrobiol 83,200-212.
    [73]Riehl, R.,1980. Micropyle of some salmonins and coregonins. Environ Biol Fishes 5,59-66.
    [74]Riehl, R.,1993. Surface morphology and micropyle as a tool for identifying fish eggs by scanning electron microscopy. Eur Microsc Anal 5,29-31.
    [75]Ransom, W. H.1856. On the impregnation of the ovum of the stickleback. Proc Roy Soc London 701,68-172.
    [76]Rocha-Olivares, A.,1998. Multiplex haplotype-specific PCR:a new approach for species identification of the early life stages of rockfishes of the species-rich genus Sebastes Cuvier. J Exp Mar Bio Ecol 231,279-290.
    [77]Saitoh, K., S. Uehara, et al.,2009. Genetic identification of fish eggs collected in Sendai Bay and off Johban, Japan. Ichthyol Res 56,200-203.
    [78]Schander, C., Willassen, E.,2005. What can biological barcoding do for marine biology? Mar Biol Res 1,79-83.
    [79]Shao K T, Chen K C, Wu J H,2002. Identification of marine fish eggs in Taiwan using light microscope, scanning electric microscope and mtDNA sequencing. Mar Fresh Res 53,355-365.
    [80]Shao, K., Yang, J., Chen, K. C., Lee, Y. S.,2001. An identification guide of marine fish eggs from Taiwan, Institute of Zoology. Academia Sinica, Beijing, pp.1-24.
    [81]Stehr, C., Hawkes, J.,1979. The comparative ultrastructure of the egg membrane and associated pore structures in the starry flounder, Platichthys stellatus (Pallas), and pink salmon, Oncorhynchus gorbuscha (Walbaum). Cell Tissue Res 202,347-356.
    [82]Suzuki, K., Hioki, S., Kobayashi, K., Tanaka, Y.,1981. Egg development, early larvae reproductive behavior of Cirrhilabrus and Labroides dimidiatus. Faculty of Marine Science and Technology, Tokai University, Technical Repot 14,369-77.
    [83]Suzuki, K. S., and Kobayashi, K.,1996. Spawning seasons and eggs of Chaetodon daedalma (Chaetodontidae) from the coast waters around Hatijyo island. Larval morphology. Faculty of Marine Science and Technology, Tokai University, Technical Report 41,185-195.
    [84]Syosi, C.,1924. Diagnostic key of pelagic fish eggs in Japan. Bulletin of Seikai National Fisheries Research Institute 19,33-40.
    [85]Takano, K., Ohta, H.,1982. Ultrastructure of micropylar cells in the ovarian follicles of the pond smelt, Hypomesus transpacificus nipponemis. Bull Fac Fish Hokkaido Univ 33,65-78.
    [86]Tautz, D., Arctander, P., Minelli, A., Thomas, R. H., Vogler, A. P.,2003. A plea for DNA taxonomy. Trends Ecol Evol 2,70-74.
    [87]Tautz, D., Arctander, P., Minelli, A., Thomas, R. H., Vogler, A. P.,2002. DNA points the way ahead in taxonomy. Nature 418,479-479.
    [88]Tavolga, W.,2005. Development of the gobiid fish, Bathygobius soporator. J Morphol 87, 467-492.
    [89]Thomas., R. H., Vogler, A. P., Tautz, D., Arctander, P., Minelli, A.,2003. A plea for DNA taxonomy. Trends Ecol Evol 18,70-74.
    [90]Ward, R., Zemlak, T., Innes, B. H., Last, P. R., Hebert, P. D. N.,2005. DNA barcoding Australia's fish species. Phil Trans R Soc B 1462,1-11.
    [91]Wourms, J.,1976. Annual fish oogenesis I. Differentiation of the mature oocyte and formation of the primary envelope. Dev Biol 50,338-354.
    [92]Von-Baer, K. E.,1835. Untersuchungen uber die Entwiddungsgeschichte der Fische, nebst einem Anhange uber die Schwimmblase. Vogel, Leipzig.
    [93]Yamamoto, K.,1952. Studies on the fertilization of the egg of the flounder. Ⅱ. The morphological structure of the micropyle and its behavior in response to sperm-entry. Cytologia 16,302-306.
    [94]Yamamoto, T. S., Kobayashi, W.,1992. Closure of the micropyle during embryonic development of some pelagic fish eggs. J Fish Biol 40,225-241.
    [95]Shukei, M., Kanematu, M., and Teruya, K.,1990. Embryonic and morphological development of larvae and juveniles of the amberjack, Seriola dumerili. Jap J Ichthyol 37,164-169.
    [96]Zotin, A.,1958. The mechanism of hardening of the salmonid egg membrane after fertilization or spontaneous activation. J Embryol Exp Morphol 6,546-568.
    [97]卞晓东,张秀梅,肖永双,高天翔,万瑞景.沙氏下蠛鱼(Hyporhamphus sajori)卵的形态学及遗传学鉴别研究.中国海洋大学学报,2007,37(sup):111-116.
    [98]卞晓东,张秀梅,肖永双,高天翔,万瑞景.沙氏下鱵鱼卵的形态学及遗传学鉴别.水产学报,2008,32(3):342-353.
    [99]陈四清,高天翔,王琛,张岩,张鑫磊,陈艳翠.圆斑星鲽早期发育特征的研究.中国海洋大学学报,2006,36:281-286.
    [100]雷霁霖,马爱军,刘新富,门强.大菱鲆Scophthalmus maximus胚胎及仔稚幼鱼发育研究.海洋与湖沼,2003,34:9-18.
    [101]杨光,蔡壶,刘海.mtDNA标记在几种海关进出口动物产品鉴定中的应用.动物学杂志,2004,39(5):40-43.
    [102]肖武汉,张亚平.鱼类线粒体DNA的遗传与进化.水生生物学报,2000,24(4):384-391.
    [103]高天翔,王玉江,刘进贤,等.基于线粒体12S rRNA序列探讨4种青蟹系统发育关系及中国沿海青蟹的分类地位.中国海洋大学学报自然科学版,2007,37(1):57-60.
    [104]谢振宇,杜继曾,陈学群,等.线粒体控制区在鱼类种内遗传分化中的意义.遗传,2006,28:362-368.
    [105]张亚平,施立明.动物线粒体DNA多态性的研究概述.动物学研究,1992,13:289-298.
    [106]陈真然,张孝威.斑鰶卵子和仔、稚、幼鱼的形态特.海洋与湖沼,1965,7(3):205-214.
    [107]陈四清,刘长琳,庄志猛,邹健,李学文,李迪,齐国山.星突江鲽胚胎发育的研究.渔业科学进展,2009,30(1):1-7.
    [108]冲山宗雄.日本產仔稚焦圖鑑.東海大學出版會,東京,1988.
    [109]雷霁霖.梭鱼胚胎和仔稚鱼发育的研究.海洋水产研究.海洋学报,1979,1(1):157-175.
    [110]雷霁霖.黄姑鱼胚胎及仔稚鱼形态特征的初步观察.海洋水产研究,1981,2:77-84.
    [111]姜言伟.高眼鲽的早期发育.海洋水产研究,1980,1:105-113.
    [112]邱望春.小黄鱼卵子及仔稚鱼的形态研究.海洋渔业资源论文集.北京:科学出版社,1965.28-33.
    [113]姜言伟.黄海鲱的人工孵化及胚胎发育的部分观察.海洋学报,1981,3(3):477-486.
    [114]姜言伟,万瑞景.渤海半滑舌鳎早期形态及发育特征的研究.海洋水产研究,1988,9:121-149.
    [115]沙学绅.大黄鱼的卵子和仔、稚鱼的形态特征.海洋科学集刊(第二辑),1962a:37-43.
    [116]沙学绅.蓝点马鲅卵子和仔、稚鱼形态特征的观察.海洋与湖沼,1962b,8(1):1-12.
    [117]沙学绅,阮洪超.鳓鱼的习性及早期发育形态.中国鱼类学会主编.鱼类学论文集(一).北京:科学出版社,1981.81-88.
    [118]沙学绅,阮洪超,何桂芬.鬼触卵子及仔、稚鱼的发育.海洋与湖沼,1981a,12(4):365-371.
    [119]沙学绅.带鱼卵子和仔、稚鱼的形态特征.水产学报,1981b,5(2):155-160.
    [120]邵炳德.淞江鲈鱼繁殖习性的调查报告.水产学报,1980,4(1):81-86.
    [121]肖志忠,郑炯,于道德,李军.条石鲷早期发育的形态特征.海洋科学,2008,11(2):25-30.
    [122]谢仰杰,张雅芝,胡家财,孙波,钟幼平,林利民.斜带髭鲷早期发育的形态观察.中国水产科学,2004,11(2):89-94.
    [123]水户敏.日本近海に出現す る浮游性魚一1,Ⅱ.九大農学芸誌,1961a,18:71-94.
    [124]水户敏.日本近海に出現す る浮游性焦卵—Ⅲ.九大農学芸誌,196b,18:285-310.
    [126]万瑞景,陈瑞盛.渤海鲈鱼的生殖习性及早期发育特征的研究.海洋水产研究,1988,9:203-211.
    [127]万瑞景.多鳞早期发育形态.海洋水产研究,1996,17(1):35-41.
    [128]万瑞景,姜言伟.黄、渤海硬骨鱼类鱼卵与仔稚鱼种类组成及其生物学特征.上海水产大学学报,2000,9(4):290-297.
    [129]万瑞景,姜言伟,庄志猛.半滑舌鳎早期形态及发育特征.动物学报,2004,50(1):91-102.
    [130]杨东莱,吴光宗.渤海半滑舌鳎及焦氏舌鳎的鱼卵和仔稚鱼的形态.海洋科学,1983,2:29-32.
    [131]杨光,蔡壶,刘海.mtDNA标记在几种海关进出口动物产品鉴定中的应用.动物学杂志,2004,39(5):40-43.
    [132]张孝威,何桂芬,沙学绅.牙鲆和条鳎卵子及仔、稚鱼的形态观察.海洋与湖沼,1965,7(2):158-174.
    [1331张孝威,何桂芬.黑鲷卵子及仔、稚、幼鱼的形态观察.动物学报,1980,26(4):331-336.
    [134]张孝威,沙学绅,何桂芬,宋立清.鯒鱼卵子和仔、稚鱼的形态观察.海洋与湖沼,1980,11(2):161-168.
    [135]张孝威,沙学绅,陈真然,阮洪超,何桂芬.青鳞鱼早期发育阶段形态和习性的观察.中国鱼类学会主编.鱼类学论文集(一).北京:科学出版社,1981.57-64.
    [136]张孝威,陈真然,阮洪超,何桂芬,沙学绅.赤鼻稜鳀、中颔稜鳀卵子、仔稚鱼的发育.动物学报,1982,28(2),183-189.
    [137]张仁斋小带鱼卵和仔鱼的形态特征.中国鱼类学会主编.鱼类学论文集(二).北京:科学出版社,1981.145-150.
    [138]赵传姻.灰鲳卵子和早期仔鱼形态特征的观察.海洋渔业,1982,3:118-120.
    [139]赵传姻.渤海区小黄鱼卵,幼鱼生态学几个问题的部分研究.海洋渔业资源论文选集,1965,12-19.
    [140]张仁斋,陆惠芬,赵传絪等.中国近海鱼卵与仔鱼.上海:上海科学技术出版社,1985.188-196.
    [141]张亚平,施立明.动物线粒体DNA多态性的研究概述.动物学研究,1992,13:289-298.
    [1]Adoff, G. R.,1986. Anatomical studies of developing eggs and larvae of the cod (Gadus morhua L.). In Fyhn, H.J. (ed) Fish larval physiology and anatomy. University of Bergen, pp. 51-116.
    [2]Ahlstrom, E., Moser, H.,1980. Characters useful in identification of pelagic marine fish eggs. Calif Coop Oceanic Fish Invest Rep 21,121-131.
    [3]Alderdice, D. F., Forrester, C. R.,1968. Some effects of salinity and temperature on early development and survival of the English sole (Parophrys vetulus). J Fish Res Bd Canada 45, 495-521.
    [4]Alderdice, D. F., Forrester, C. R.,1971. Effects of salinity, temperature, and dissolved oxygen on early development of the Pacific cod(Gadus macrocephalus). J Fish Res Bd Canada 28, 883-902.
    [5]Alderdice, D. F., Velsen, F. P. J.,1971. Some effects of salinity and temperature on early development of Pacific herring (Clupea pallasi). J Fish Res Bd Canada 28,1545-1562.
    [6]Applebaum, S., Ronnestad, I.,2004. Absorption, assimilation and catabolism of individual free amino acids by larval Atlantic halibut(Hippoglossus hippoglossus). Aquaculture 230,313-322.
    [7]Akatsu, S., Al-Abdul-Elah, K.M., Teng. S. K.,1983. Effects of salinity and water temperature on the survival and growth of brown-spotted grouper larvae (Epinephelus tauuina, Serranidae). J World Maric Soc 14,624-635.
    [8]Bailey, E. M., Brodeur, R. D., Merati, N., Yoklavich, M. M.,1993. Predation on walleye Pollack (Theragra chalcogramma) eggs and yolk-sac larva by pelagic crustacean invertebrates in the western Gulf of Alaska Fish Oceanogr 2,30-39.
    [9]Bengtson, D. A., Barkman, R. C., Berry, W. J.,1987. Relationships between maternal size, egg diameter, time of spawning season, temperature, and length at hatch of Atlantic silverside Menidia menidia. J Fish Biol 31,697-704.
    [10]Benoit, H. P., Pepin, P.,1999. Interaction of rearing temperature and maternal influence on egg development rates and larval size at hatch in yellowtail flounder (Pleuronectes ferrugineus). Can J Fish Aquat Sci 56,785-794.
    [11]Berlinsky, D. L., Taylor, J. C., Howell, R. A., Bradley, T. M., Smith. T.I. J.,2004. The effects of temperature and salinity on early life stages of black sea bass Centropristis striata. J World Aquac Soc 35,335-344.
    [12]Blaber, S. J. M.,1980. Fish of the trinity inlet system of north Queensland with notes on the ecology of fish faunas of tropical Indo-Pacific estuaries. Aust J Mar Freshwat Res 31,37-46.
    [13]Blaxter, J. H. S.,1969. Development:eggs and larvae. In Hoar, W. S., Randall, D. J. (eds) Fish physiology, volume Ill. Academic Press, New York, USA, pp.177-252.
    [14]Blaxter, J. S.,1986. Development of sense organs and behaviour of teleost larvae with special reference to feeding and predator avoidance. Trans Am Fish Soc 115,98-114.
    [15]Blaxter, J. H. S.,1988. Pattern and variety in development. In Hoar, W. S., Randall, D. J. (eds). Fish physiology XI. The physiology of developing fish. Part A. Eggs and larvae. Academic Press, New York, pp.1-58.
    [16]Blaxter, J. H. S.,1992. The effect of temperature on larval fishes. Netherlands J Zool 42, 336-357.
    [17]Blood, D. M., Matarese, A. C., Yoklavich, M. M,,1994. Embryonic development of walleye pollock, Theragra chalcogramma, from Shelikof Strait, Gulf of Alaska. Fish Bull 92,207-222.
    [18]Blood, D. M.,2002. Low-temperature incubation of walleye Pollock (Theragra chalcogramma) eggs from the southeast Bering Sea shelf and Shelikof Strait, Gulf of Alaska. Deep-Sea Res Ⅱ 49,6095-6108.
    [19]Bonecker, A. C. T., Maric, S. D. C., Claudia, A. P. N., et al.,2007. Larval fish composition of a tropical estuary in northern Brazil (2°18'-2°47'S/44°20'-44°25'W) during the dry season. Pan-American J Aqua Sci 2,235-241.
    [20]Boulhic, M., Gabaudan, J.,1992. Histological study of the organogenesis of the digestive system and swim bladder of the Dover sole, Solea solea (Linnaeus,1758). Aquaculture 102, 373-396.
    [21]Bunn, N. A., Fox, C. J., Webb, T.,2000. A literature review of studies on fish egg mortality: Implications for the estimation of spawning stock biomass by the annual egg production method. Sci Ser Tech RepII, CEFAS, Lowestoft, UK, pp.1-37.
    [22]Campana, S.,1996. Year-class strength and growth rate in young Atlantic cod Gadus morhua. Mar Ecol Prog Ser 135,21-26.
    [23]Campana, S., Frank, K. T., Hurley, P. C. F.,1989. Survival and abundance of young Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) as indicators of year-class strength. Can J Fish Aquat Sci 46(S1),171-182.
    [24]Coombs, S., J. Nichols, Fosh, C. A.,1990. Plaice eggs (Pleuronectes platessa L.) in the southern North Sea:abundance, spawning area, vertical distribution, and buoyancy. ICES J Mar Sci 47,133.
    [25]Craik, J. C. A., Harvey, S. M.,1987. The causes of buoyancy of marine teleosts. J Mar Biol Assoc UK 67,169-182.
    [26]Dale, T.,1984. Embryogenesis and growth of otoliths in the cod (Gadus morhua L.). In:Dahl, E., Danielssen, D. S., Moksness, E., Solemdal, P. (eds) The Propagation of Cod Gadus morhua L. Flodevigen rapportseriel, pp.231-247.
    [27]Daan, N.,1981. Comparison of estimates of egg production of the Southern Bight cod stock from plankton surveys and market statistics. Rapp P-v Reun Cons int Explor Mer 172,39-57.
    [28]De Assis J. M. F., Carvalho, R. F., Barbosa, L., Agostinho, C. A., Pai-Silva, M. D.,2004. Effects of incubation temperature on muscle morphology and growth in the pacu (Piaractus mesopotamicus). Aquaculture 237,251-267.
    [29]Elbal, M., Hernandez, M. G., Lozano, M. T., Agulleiro, B.,2004. Development of the digestive tract of gilthead sea bream (Sparus aurata L.). Light and electron microscopic studies. Aquaculture 234,215-238.
    [30]Ellertsen, B., Moksness, E., Solerndal, P., Strsmn(?)e, T., Tilseth, S., Westgard, T., Oiestad, V., 1981. Some biological aspects of cod Larvae(Gadus morhua L.). FiskDir Skr Ser HavUnders 17,29-47.
    [31]Ellertsen, B., Fossum, P., Solelvidal, P., Sundby, S.,1989. Relation between temperatnre and survival of eggs and first-feeding larvae of northeast Arctic cod (Gadas morhaa L.). Rapp P-v Renn Cons int Explor Mer 191,209-219.
    [32]Ellis, T., Nash, R.,2005. Predation by sprat and herring on pelagic fish eggs in a plaice spawning area in the Irish Sea. J Fish Biol 50,1195-1202.
    [33]Fahay M, Markle D.,1984. Gadiformes:development and relationships. In:Moser H (ed) Ontogeny and systematics of fishes. American Society of Ichthyologists and Herpetologists Special Publicationl, pp.265-283.
    [34]Falk-Petersen, I.,2005. Comparative organ differentiation during early life stages of marine fish. Fish Shellfish Immunol 19,397-412.
    [35]Falk-Petersen, I., Hansen, T.,2005. Organ differentiation in newly hatched common wolffish. J Fish Biol 59,1465-1482.
    [36]Faria, A., Morais, P., Alexandra, M. C.,2006. Ichthyoplankton dynamics in the Guadiana estuary and adjacent coastal area, South-East Portugal. Estuar Coast Shelf Sci 2006,70(1-2), 85-97.
    [37]Ferraro, S. P.,1980. Embryonic development of Atlantic menhaden Brevoortia tyrannus, and a fish embryo age estimation method. Fish Bull 77,943-949.
    [38]Friegeirsson, E.,1978. Embryonic development of five species of gadoid fishes in Icelandic waters, Rit Fiskideildar 5,1-68.
    [39]Forrester, C. R., Alderdice, D. F.,1966. Effects of salinity and temperature on embryonic development or the Pacific cod(Gadus macrocephalus). J Fish Res Bd Canada 23,319-340.
    [40]Fossum, P.,1988. A tentative method to estimate mortality in the egg and early first larval stage with special reference to cod(Gadas morhaa L.). FiskDir Skr Ser HavUnders 18,329-345.
    [41]Gadomski, D. M., Caddell, S. M.,1996. Effects of temperature on the development and survival of eggs of four coastal California fishes. Fish Bull 94,41-48.
    [42]Geffen, A. J.,2002. Length of herring in relation to age and time of hatching. J Fish Biol 60, 479-485.
    [43]Gisbert, E., Piedrahita, R., Conklin, D. E.,2004. Ontogenetic development of the digestive system in California halibut (Paralichthys californicus) with notes on feeding practices. Aquaculture 232,455-470.
    [44]Govoni J. J.,1980. Morphological, histological and functional aspects of alimentary canal and associated organ development in larval Leiostomus xanthurus. Revue Canadienne de Biologie 39,69-80.
    [45]Govoui, J. J., Olney, J. E.,1991. Potential predation on fish eggs by the lobate ctenophore Mnemiopsis leidyi within and ontside the Chesapeake Bay plume. Fish Bull US 89,181-186.
    [46]Grotvedt, R. N., Espelid, S.,2003. Immunoglobulin producing cells in the spotted wolffish (Anarhichas minor Olafsen):localisation in adults and during juvenile development. Dev Comp Immunol 27,569-578.
    [47]Haedrich, R. L.,1983. Estuarine fishes. In Ketchum, B. H. (ed) Estuaries and enclosed seas. Ecosystems of the World (Vol.26). Elsevier Scientific Publishing, Amsterdam, pp.183-207.
    [48]Hall, T., Smith, P., Johnston, I. A.,2004. Stages of embryonic development in the Atlantic cod Gadus morhua. J Morphol 259,255-270.
    [49]Harboe, T., Naas, T., Naas, K. E., Rabben, H., Skjoldal, L,1990. Age of Atlantic halibut larvae (Hippoglossous hippoglossus L.) at first feeding. ICES CM1990/F.53 (mimeo),1990.
    [50]Hart, R. P., Purser, G. J.,1995. Effects of salinity and temperature on eggs and yolk sac larvae of the greenback flounder (Rhomboolea tapirina, Gunter,1862). Aquaculture 136,221-230.
    [51]Heath, M.R.,1992. Field investigations of the early life stages of marine fish. Adv Mar Biol 28, 1-174.
    [52]Heming, T. A.,1982. Effects of temperature on utilization of yolk by Chinook salmon (Oncorhynchus tshawytscha) eggs and alevins. Can J Fish Aquat Sci 39,184-190.
    [53]Helvik, J., Pittman, K.,1990. Light affects hatching, development and pigmentation of halibut (Hippoglossus hippoglossus L.) ICES CM1990/F.40 (mimeo).
    [54]Hewitt, R. P., Theilacher, G. H., La, N. C. H.,1985. Causes of mortality in young jack mackerel. Mar Ecol Prog Ser 26,1-10.
    [55]Hjort, J.,1914. Fluctuations in the great fisheries of northern Europe Rapp P-v Reun Cons Int Explor Mer 20,1-228.
    [56]Holliday, F. G. T.,1969. The effects of salinity on the eggs and larvae of teleosts. In Hoar, W.S., Randall, D.J. (eds) Fish Physiology, vol.1. Academic Press, New York, pp.293-311.
    [57]Houde, E. D.1987. Fish early life dynamics and recruitment variability. Am Fish Soc Symp 2, 17-29.
    [58]Holliday, F. G. T.,1965. Osmoregulation in marine teleost eggs and larvae. Calif Coop Oceanic Fish Invest Rep 10,89-95.
    [59]Howell, B.R., Day, O. J., Ellis, T., Baynes, S. M.,1998. Early life stages of farmed fish. In Black, K. D., Pickering, A. (eds) Biology of farmed fish. Sheffield Academic Press, Sheffield, England, pp.27-66.
    [60]Hubbs, C., Bryan, C.,1974. Effect of parental temperature experience on thermal tolerance of eggs of Menidia audens. In Blaxter, I. R. S. (ed) The early life history of fish. Springer, Heidelberg, pp.431-435
    [61]Hunter, J. R.,1984. Inferences regarding predation on the early life stages of cod and other fishes. Flodevigen rapportser 1,533-562.
    [62]Hunter, J. R., Lo, N. C. H.,1997. The daily egg production methods of biomass estimation: some problems and potential improvements. OZEANOGRAFIKA, Boletin De La Sociedad De oceanografica De Gipuzkoa, Medalla De Oro De La Ciudad De San Sebastian 2,9-40.
    [63]Iversen, S. A., Danielssen, D. S.,1984. Development and mortality of cod (Gadus morhua L.) eggs and larvae in different temperatures. In Dahl, E., Danielssen, D. S., Moksness, E., Solemdal, P. (eds) The Propagation of Cod, Gadus morhua L., Part 1, Fl(?)devigen rapportser., no.1. Olof Rasmussen, Skien, pp.49-65.
    [64]Joues, R., Hall, W. B.,1974. Some observations on the population dynamics of the larval stage in the common gadoids. Springer-Verlag, pp.87-102.
    [65]Kendall, A.W. Jr and Nakatani, T.,1992. Comparisons of early-life-history characteristics of walleye pollock Theragra chal-cogramma in Shelikof Strait, Gulf of Alaska, and Funka Bay, Hokkaido, Japan Fish Bull 90,129-138.
    [66]Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F.,1995. Stages of embryonic development of the zebrafish. Dev Dyn 203,253-310.
    [67]Kj(?)rsvik, E., Stene, A., L(?)nning, S.,1984. Morphological, physiological and genetical studies of egg quality in cod (Gadas morhaa L.). Fl(?)devigen Rapportserie 1,67-86.
    [68]Kj(?)rsvik, E., Jensen, M. A., Holmefjord, L.,1990. Egg quality in fishes. Adv Mar Biol 26, 71-113.
    [69]Kj(?)rsvik, E., van-der Meeren T., Kryvi, H., Arnfinnsson, J., Kvenseth, P.,1991. Early development of the digestive tract of cod larvae(Gadus morhua L.) during start-feeding and starvation. J Fish Biol 38,1-15.
    [70]KJ(?)svik, E., Reiersen, A. L.,1992. Histomorphology of the early yolk-sac larvae of the Atlantic halibut(Hippoglossus hippoglossus L.) an indication of the timing of functionality. J Fish Biol 41,1-19.
    [71]Kj(?)rsvik, E., Pittman, K., Pavlov, D.,2004. From fertilization to the end of metamorphosis functional development. In Moksness, E., Kj(?)rsvik, E., Olsens, Y. (eds) Culture of cold-water marine fish. Blackwell Publishing Ltd., Oxford, pp.204-269.
    [72]Kvenseth, A., Pittman, K., Helvik, J. V.,1996. Eye development in Atlantic halibut (Hippoglossus hippoglossus):differentiation and development of the retina from early yolk sac stages through metamorphosis. Can J Fish Aquat Sci 53,2524-2532.
    [73]Lanrence, G. C.,1990. Growth, snrvival, and recruitment in large marine ecosystems. In Sherman, K., Alexander, L.M., Gold, B.D. (eds) Large marine ecosystems, patterns, processes and yields. American Association for the Advancement of Science, Washington DC, pp. 132-150.
    [74]Laurel, B. J., Hurst, T. P., Copeman, L. A., Davise, M. W.,2008. The role of temperature on the growth and survival of early and late hatching Pacific cod larvae(Gadus macrocephalus). J Plankton Res 30,1051-1060.
    [75]Leake, J. C., Houde, E. D.,1987. Cohort growth and snrvival ofbay anchovy Anchoa mitchilli larvae in Briscayne Bay, Florida. Mar Ecol Prog Ser 37,109-122.
    [76]Lee, C.S., Menu. B.,1981. Effects of salinity on egg development and hatching in grey mullet Mugil cephalus L. J Fish Biol 19,179-188.
    [77]Legget, W. C., Deblois, E.,1994. Recruitment in marine fishes:Is it regulated by starvation and predation in the egg and larval stages? Neth J Sea Res 32,119-134.
    [78]Lo, N. C. H.,1985. Egg production of the central stock off northern anchovy, Engraulis mordax, 1951-1982. Fish Bull 83,137-150.
    [79]Lo, N. C. H., Hunter, J., Charter, R.,2001. Use of a continuous egg sampler for ichthyoplankton surveys:application to the estimation of daily egg production of Pacific sardine(Sardinops sagax) off California. Fish bull 99,554-571.
    [80]Martell, D. J., Kieffer, J. D.,Trippel, E. A.,2005. Effects of temperature during early life history on embryonic and larval development and growth in haddock. J Fish Bio 66,1558-1575.
    [81]Methven, D. A., Brown, J. A.,1991. Time of hatching affects development, size, yolk volume, and mortality of newly hatched Macrozoarces americanus (Pices:Zoarcidae). Can J Zool 69, 2161-2167.
    [82]Monaco, M. E., Lowery, T. A., Emmett, R. L.,1992. Assemblages of US West Coast estuaries based on the distribution of fishes. J Biogeo 19,251-267.
    [83]Morrison, C. M.1990. Histology of the Atlantic Cod, Gadus morhua:an atlas. Part3: reproductive tract. Tract Can Spec Publ Fish Aquat Sci 110,177.
    [84]Morrison, C. M.,1993. Histology of the Atlantic cod, Gadus morhua:an atlas. Part 4: Eleutheroembryo and larva. Can Spec Publ Fish Aquat Sci 119,496.
    [85]Murashige, R., Bass, P., Wallace, L., Molnar, A., Eastham, B., Sato, V., Tamaru, C., Lee, C.S., 1991. The effects of salinity in the survival and growth of striped mullet Mugil cephalus larvae in the laboratory. Aquaculture 96,249-254.
    [86]O'Connell, C. P.,1981. Development of organ systems in the northern anchovy Engraulis mordax and other teleosts. Am Zool 21,429-446.
    [87]Otani, S., Iwai, T., Nakahata, S., Sakai, C., Yamashita, M.,2009. Artificial fertilization by intracytoplasmic sperm injection in a teleost fish, the Medaka (Oryzias latipes). Biol Reprod 80, 175-183.
    [88]Parker, K.1985. Biomass model for the egg production method. In Lasker, R. (ed) An egg production method for estimating spawning biomass of pelagic fish:application to the northern anchovy, Engraulis mordax. Dep Commer U S NOAA Technical Rep, NMFS pp.36,5-6.
    [89]Pavlov, D.,1986. Developing the biotechnology culturing White Sea wolffish, Anarhichas lupus marisalbi.Ⅱ. Ecomorphological peculiarities of early ontogeny. J Ichthyol 26,156-169.
    [90]Pittman, K., Skiftesvik, A., et al.,1990. Morphological and behavioural development of halibut, Hippoglossus hippoglossus (L.) larvae. J Fish Biol 37,455-472.
    [91]Osse, J. W. M., van der Boogaart, J. G. M.,1995. Fish larvae, allometric growth, and the aquatic environment. ICES Marine Science Symposia 201,21-34.
    [92]Pavlov, D. A.,1986. Developing the biotechnology of culturing White Sea wolffish, Anarhichas lupus marisalbi.Ⅱ. Ecomorphological peculiarities of early ontogeny. J Ichthyol 26, 156-169.
    [93]Pepin, P., Orr, S. C., Armstrong, J. T.,1997. Time to hatch and larval size in relation to temperature and egg size in Atlantic cod (Gadus morhua). Can J Fish. Aquat Sci 54(Suppl 1), 2-10.
    [94]Pittman, K., Skiftesvik, A. B., Berg, L.,1990. Morphological and behavioral development of halibut, Hippoglossus hippoglossus (L.) larvae. J Fish Biol 37,455-472.
    [95]Pommeranz, T.,1974. Resistance of plaice eggs to mechanical stress and light. In Blaxter, I. R. S. (ed) The early life history of fish:proceedings of an international symposium, Dunstaffnage Marine Research Laboratory, Scotland,1973. Springer-Verlag, New York, pp.397-416.
    [96]Potter, I. C., Hynaesc, G. A.,1999. Characteristics of the ichthyofaunas of southwestern Australian estuaries, including comparisons with holarctic estuaries and estuaries elsewhere in temperate Australia:A review. Austra J Ecol 24,395-421.
    [97]Potter, I. C., Beckley, L. E., Whitfield, A. K., Lenanton R. C. J.,1990. Comparisons between the roles played by estuaries in the life cycles of fishes in temperate Western Australia and Southern Africa. Environ Biol Fishes 28,143-178.
    [98]Rogers, C. A.,1976. Effects of temperature and salinity on the survival of winter flounder embryos. Fish Bull 74,52-58.
    [99]Rombough, P. J.1996. The effects of temperature on embryonic and larval development.In Wood, C. M., McDonald, D. G.,1984. Global warming:implications for freshwater and marine Fish. Society for Experimental Biology Series 61. Cambridge University Press, Cambridge, UK pp.177-223.
    [100]Rombout, J. H., Huttenhuis, H. B., Picchietti, S., Scapigliati, G.,2005. Phylogeny and ontogeny of fish leucocytes. Fish Shellfish Immunol 19,441-455.
    [101]Santamaria, C. A., Marin de Mateo, M., Traveset, R., Sala, R., Grau, A., Pastor, E.,2004. Larval organogenesis in common dentex Dentex dentex L. (Sparidae):histological and histochemical aspects. Aquaculture 237,207-228.
    [102]Shao, K., Yang, J., Chen, K. C., Lee, Y. S.,2001. An identification guide of marine fish eggs from Taiwan, Institute of Zoology. Academia Sinica, pp.1-12.
    [103]Smith, P. E., Richardson, S. L.,1977. Standard techniques for pelagic fish egg and larva surveys. FAO Fish Tech Pap,175, 100p.
    [104]Smith, P. E., Hewitt, R. P.,1985. Anchovy egg dispersal and mortality as interred from close interval observations. Calif Coop Oceanic Fish Investig Rep 26,97-112.
    [105]Solemdal, P.,1973. Transfer of Baltic fish to a marine environment and the long term effects on reproduction. Oikos 15,268-276.
    [106]Solemdal, P.,1997. Materual affects a link between the past and the future. J Sea Res 37, 213-227.
    [107]Solemdal, P.,1997. Maternal effects a-link between the past and the future. J Sea Res 37, 213-227.
    [108]Strydom, N. A., Whitfield, A. K., Wooldridge, T. H.,2003. The role of estuarine type in characterizing early stage fish assemblages in warm temperate estuaries, South Africa. Afr Zool 38,29-43.
    [109]Sundby, S.,1983. A one-dimensional model for the vertical distribution of pelagic fish eggs in the mixed layer. Deep Sea ResA 30,645-661.
    [110]Swanson, C.1996. Early development of milkfish:effects of salinity on embryonic and larval metabolism yolk absorption, and growth. J Fish Biol 48,405-421.
    [111]Thompson, B. M., Riley, J. D.,1981. Egg and larval development studies in the North Sea cod (Gadus morhua L.). Rapp P-V Reun Cons lnt Explor Mer 178,553-559.
    [112]Van-der-Veer, H., Pihl, L., et al.,1990. Recruitment mechanisms in North Sea plaice Pleuronectes platessa. Mar Ecol Prog Ser 64,1-12.
    [113]Walford, J., Lam, T.,1993. Development of digestive tract and proteolytic enzyme activity in seabass (Lates calcarifer) larvae and juveniles. Aquaculture 109,187-205.
    [114]Westgrd, T.,1989. Two models of the vertical distribution of pelagic fish eggs in the turbulent upper layer of the ocean. Rapp P-v Reun Cons Int Explor Mer 191,195-200.
    [115]Wooton, R. J.,1984. Introduction:Strategies and tactics in fish reproduction. In Potts, G. W., Wooton, R. J. (eds) Fish reproduction:strategies and tactics. Academic Press, Oxford, pp.1-12.
    [116]Yanez-Arancibia, A.,1987. Lagunas costeras y estuarios:cronologia, criterios y conceptos para una classificacion ecologica de sistemas costeiros. ACIESP 54,1-38.
    [117]蒋日进,钟俊生,张冬良,等.长江口沿岸碎波带仔稚鱼的种类组成及其多样性特征.动物学研究,2008,29(3),297-304.
    [118]内田惠太郎,今井贞彦,水户敏.日本产鱼类の稚鱼期の研究(第1集).九州大学农学部水产学第二教室,1958.
    [119]单保党,何大仁.黑鲷早期发育阶段游泳、摄食行为生态学研究.第二届全国水产青年学术研讨会,1996.
    [120]万瑞景,孙珊.黄、东海生态系统中鱼卵、仔稚幼鱼种类组成与数量分布.动物学报,2006,52(1),28-44.
    [121]王爱勇.渤海莱州湾春季鱼卵、仔稚鱼群落结构及环境因子相关性的初步研究:[硕士学位论文].青岛:中国海洋大学,2009.
    [122]张仁斋,陆慧芬,赵传姻,陈连芬,藏增嘉,姜言伟.中国近海鱼卵与仔鱼.上海:上海科学技术出版社,1985,8-12.
    [123]朱鑫华,吴鹤洲,徐凤山,等.黄、渤海沿岸水域游泳动物群落结构时空格局异质性研究.动物学报,1994,40(3),241-252.
    [1]Ahlstrom, E. H., Amaoka, K., Hensley, D., Moser, H. G., Sumida, B. Y.,1984. Pleuronectiformes development. In:Moser, H. G., Richards, W. J., Cohen, D. M., Fahay, M. P., Kendall, A. W., Richardson, S. L. (eds.), Ontogeny and Systematics of Fishes:An International Symposium Dedicated to the Memory of Ahlstrom, E. H. Special Publication Number 1. American Society of Ichthyologists and Herpetologists, Lawrence, pp.640-670.
    [2]Andoh, T., Matsubara, T., Harumi, T., Yanagimachi, R.,2008. The use of poly-L-lysine to facilitate examination of sperm entry into pelagic, non-adhesive fish eggs. Int J Dev Biol 52, 753-757.
    [3]Arukwe, A., Goksoyr, A.,2003. Eggshell and egg yolk proteins in fish:hepatic proteins for the next generation:oogenetic, population, and evolutionary implications of endocrine disruption. Comp Hepatol 2,1-21.
    [4]Azevedo, M. F, C., Oliveira, C., Pardo, B. G., Martinez, P., Foresti, F.,2008. Phylogenetic analysis of the order Pleuronectiformes (Teleostei) based on sequences of 12S and 16S mitochondrial genes. Genet Mol Biol 31(Suppl),284-292.
    [5]Chen, K. C., Shao, K. T., Yang, J. S.,1999. Using micropylar ultrastructure for species identification and phylogenetic inference among four species of Sparidae. J Fish Biol 55, 288-300.
    [6]Chen, C. H., Wu, C. C., Shao, K. T., Yang, J. S.,2007. Chorion microstructure for identifying five fish eggs of Apogonidae. J Fish Biol 71,913-919.
    [7]Coward, K., Bromage, N. R., Hibbitt, O., Parrington, J.,2002. Gamete physiology, fertilization and egg activation in teleost fish. Rev Fish Biol Fish 12,33-58.
    [8]Fausto, A. M., Picchietti, S., Taddei, A. R., Zeni, C., Scapigliati, G., Mazzini, M., Abelli, L. 2004. Formation of the egg envelope of a teleost, Dicentrarchus labrax (L.):immunochemical and cytochemical detection of multiple components. Anat Embryol 208,43-53.
    [9]Francisco, J. A., Medina, A.,2005. Ultrastructure of oogenesis in the bluefin tuna, Thunnus thynnus. J Morphol 264,149-160.
    [10]Freire-Brasil, D., Nakaghi, L. S. O., Santos, H. S. L., Grassiotto, I. Q., Foresti, F.,2002. Estudo morfologico dsprimeiros momentos da fertilizacao em curimbata Prochilodus lineatus (Valenciennes,1836). CIVA 2002 (http://www.civa2002.org),733-747.
    [11]Ganeco, L. N., Franceschini-Vicentini, I. B., Nakaghi, L. S.,2008. Structural analysis of fertilization in the fish Brycon orbignyanus. Zygote 17(2),93-99.
    [12]Gwo, H. H.,2008. Morphology of the fertilizable mature egg in the Acanthopagrus latus, A. schlegeli and Sparus sarba (Teleostei:perciformes:sparidae). J Microsc 232(3),442-452.
    [13]Hagstrom, B. E., Lonning, S.,1968. Electron microscopic studies of unfertilized and fertilized eggs from marine teleosts. Sarsia 33,73-80.
    [14]Hensley D, Ahlstrom E H.,1984. Pleuronectiformes:Relationships. In:Moser, H. G., Richards, W. J., Cohen, D. M., Fahay, M. P., Kendall, A. W., Richardson, S. L. (eds) Ontogeny and Systematics of Fishes:An International Symposium Dedicated to the Memory of Ahlstrom, E. H. Special Publication Number 1. American Society of Ichthyologists and Herpetologists, Lawrence, pp.670-688.
    [15]Hirai, A.,1988. Fine structures of the micropyles of pelagic eggs of some marine fishes. Japan J Ichthyol 35,351-357.
    [16]Hirai, A.,1993. Fine structure of the egg membranes in four species of Pleuronectinae. Japan J Ichthyol 40,227-235.
    [17]]Iconomidou, V. A., Chryssikos, D. G., Gionis, V., Pavlidis, M. A., Paipetis, A., Hamodrakas, S. J.,2000. Secondary structure of chorion proteins of the teleostean fish Dentex dentex by ATR FT-IR and FT-Raman spectroscopy. J Struct Biol 132,112-122.
    [18]Ivankov, V. N., Kurdyayeva, V. P.,1973. Systematic differences and the ecological importance of the membranes in fish eggs. J Ichthyol 13,864-873.
    [19]Iwamatsu, T., Ohta, T.,1981. Scanning electron microscopic observation on sperm penetration in teleostean fish. J Exp Zool 218,261-277.
    [20]Iwamatsu, T., Onitake, K., Yoshimoto, Y., Hiramoto, Y.,1991. Time sequence of early events in fertilization in the Medaka egg. Dev Growth Differ 33,479-490.
    [21]Iwamatsu, T., Ishijima, S., Nakashima, S.,1993a. Movement of spermatozoa and changes in micropyles during fertilization in medaka eggs. J Exp Zool 266,57-64.
    [22]Iwamatsu, T., Nakashima, S., Onitake, K.,1993b. Spiral patterns in the micropylar wall and filaments on the chorion in eggs of the medaka, Oryzias latipes. J Exp Zool 267,225-232.
    [23]Iwamatsu, T.,2000. Fertilization in fishes. In:Tarin, J. J., Cano, A. (eds) Fertilization in Protozoa and Metazoan Animals. Springer-Verlag Berlin, Heidelberg, pp,89-145.
    [24]Kajimura, S., Yoshiura, Y., Suzuki, M., Aida, K.,2001. cDNA cloning of two gonadotropin β subunits (GTH-Ⅰβ and Ⅱ-β) and their expression profiles during gametogenesis in the Japanese flounder (Paralichthys olivaceus). Gen Comp Endocrinol 122,117-129.
    [25]]Kobayashi, W., Yamamoto, T. S.,1981. Fine structure of the micropylar apparatus of the chum salmon egg, with a discussion of the mechanism for blocking polyspermy. J Exp Zool 217, 265-275.
    [26]Kobayashi, W., Yamamoto, T. S.,1985. Fine structure of the micropylar cell and its change during oocyte maturation in the chum salmon, Oncorhynchus keta. J Morphol 184,263-276.
    [27]Kobayashi, W., Yamamoto, T. S.,1993. Factors inducing closure of the micropylar canal in the chum salmon egg. J Fish Biol 42,385-394.
    [28]Kudo, S., Teshima, C.,1998. Assembly in vitro of vitelline envelope components induced by a cortical alveolus sialoglycoprotein of eggs of the fish Tribolodon hakonensis. Zygote 6(3), 193-202.
    [29]Laale, H. W.,1980. The perivitelline space and egg envelopes of bony fishes:A review. Copeia 2,210-226.
    [30]Lei, J. L., Ma, A. J., Liu, X. F., Men, Q.,2003. Study on the development of embryo, larval and juvenile of turbot Scophthalmus maximusl. Oceanol Limnol Sin 34,9-18.
    [31]Li, Y. H., Wu, C. C., Yang, J. S.,2000. Comparative ultrastructural studies of the zona radiata of marine fish eggs in three genera in Perciformes. J Fish Biol 56,615-621.
    [32]Lonning, S.,1972. Comparative electronmicroscopic studies of teleostean eggs with special reference to the chorion. Sarsia 49,41-48.
    [33]Marques, C., Nakaghi, L. S. O., Faustino, F., Ganeco, L. N., Senhorini, J. A.,2008. Observation of the embryonic development in Pseudoplatystoma coruscans (Siluriformes:Pimelodidae) under light and scanning electron microscopy. Zygote 16,333-342.
    [34]Masuda, K., Murata, K., Iuchi, I., Yamagami, K.,1992. Some properties of the hardening process in chorions isolated from unfertilized eggs of medaka Oryzias latipes. Dev Growth Differ 34,545-552.
    [35]Mcevoy, L. A., Mcevoy, J.,1992. Multiple spawning in several commercial fish species and its consequences for fisheries management, cultivation and experimentation. J Fish Biol 41(Suppl b),125-136.
    [36]Meloni, S., Mazzini, M., Fausto, A., Macchioni, R., Taddei, A., Buonocore, F., Fiani, M., Baldacci, A., Scapigliati, G.,2004. Egg envelope organization in the icefish Chionodraco hamatus. Polar Biol 27,586-594.
    [37]Minami, T.,1984. Early life history of flatfishes-Ⅲ. Characteristics of eggs. Aquabiology 6, 46-49.
    [38]Mito, S.,1963. Pelagic fish eggs from Japanese water-IX Echeneida and Pleuronectida. Japan J Ichthyol 11,81-102.
    [39]Morrison, C., Bird, C., O'Neil, D., Leggiadro, C., Martin-Robichaud, D., Rommens, M., Waiwood, K.,1999. Structure of the egg envelope of the haddock, Melanogrammus aeglefinus, and effects of microbial colonization during incubation. Can J Zool 77,890-901.
    [40]Motta, C. M., Tammaro, S., Simoniello, P., Prisco, M., Richiari, L., Andreuccetti, P., Filosa, S. 2005. Characterization of cortical alveoli content in several species of Antarctic notothenioids. J Fish Biol 66,442-453.
    [41]Murata, K.,2003. Blocks to polyspermy in fish:a brief review. In:Sakai, Y., McVey, J. P., Jang, D., McVey, E., Caesar, M. (eds), Aquaculture and Pathobiology of Crustacean and Other Species. Proceedings of the thirty-second US Japan symposium on aquaculture Panel Symposium, Davis and Santa Barbara, California U S A, pp.1-15.
    [42]Nakashima, S., Iwamatsu, T.,1994. Ultrastructural changes in micropylar and granulosa cells during in vitro oocyte maturation in the medaka, Oryzias latipes. J Exp Zool 270,547-556.
    [43]Nelson, J.,2006. Fishes of the world,4th Edition. John Wiley and Sons, Inc, New York, pp. 442-451.
    [44]Olivar, M. P.,1987. Chorion ultrastructure of some fish eggs from the southeast Atlantic S Afr J Mar Sci 5,659-671.
    [45]Oppen-Berntsen, D.O., Helvik, J.V., Walther, B.T.,1990. The major structure proteins of cod (Gadus morhua) eggshell and protein crosslinking during teleost egg hardening. Dev Biol 137, 258-265.
    [46]Ortiz-Delgado, J. B., Porcelloni, S., Fossi, C., Sarasquete, C.,2008. Histochemical characterization of oocytes of the swordfish Xiphias gladius. Sci Mar 72,549-564.
    [47]Otani, S., Iwai, T., Nakahata, S., Sakai, C., Yamashita, M.,2009. Artificial fertilization by intracytoplasmic sperm injection in a teleost fish, the Medaka (Oryzias latipes). Biol Reprod 80, 175-183.
    [48]Park, J. Y., Richardson, K. C., Kim, I. S.,1998. Developmental changes of the oocyte and its enveloping layers, in Micropercops swinhonis (Pisces:Perciformes). Korean J Biol Sci 2, 501-506.
    [49]Perry, D. M.,1984. Post-fertilization changes in the chorion of winter flounder, Pseudopleuronectes americanus Walbaum, eggs observed with scanning electron microscopy. J Fish Biol 25,83-94.
    [50]Ravaglia, M. A., Maggese, M. C.,2003. Ovarian follicle ultrastructure in the teleost Synbranchus marmoratus (Bloch,1795), with special reference to the vitelline envelope development. Tissue Cell 35,9-17.
    [51]Riehl, R., Schulte, E.,1978. Bestimmungsschlussel der wichtigsten deutschen Susswasser-Teleosteer anhand ihrer Eier. Arch Hydrobiol 83,200-212.
    [52]Riehl, R., Gotting, K. J.,1974. Zu Struktur und Vorkommen der Mikropyle an Eizellen und Eiern von Knochenfischen (Teleosti). Arch Hydrobiol 74,393-402.
    [53]]Riehl, R.,1993. Surface morphology and micropyle as a tool for identifying fish eggs by scanning electron microscopy. Eur Microsc Anal 5,29-31.
    [54]Sawaguchi, S., Ohkubo, N., Aritaki, M., Ohta, K., Matsubara, T.,2006. Process of final oocyte maturation and ovulation cycle in captive spotted halibut, Verasper variegates. Aquac Sci 54, 465-472.
    [55]Spies, R. B., Rice, Jr. D. W.,1988. Effects of organic contaminants on reproduction of the starry flounder Platichthys stellatus in San Francisco Bay.Ⅱ. Reproductive success of fish captured in San Francisco Bay and spawned in the laboratory. Mar Biol 98,191-200.
    [56]Stehr, C. M., Hawkes, J. W.,1979. The comparative ultrastructure of the egg membrane and associated pore structures in the starry flounder, Platichthys stellatus (Pallas), and pink salmon, Oncorhynchus gorbuscha (Walbaum). Cell Tissue Res 202,347-356.
    [57]Stehr, C. M., Hawkes, J. W.,1983. The development of the hexagonally structured egg envelope of the C-D sole (Pleuronichthys coenosus). J Morpho 178,267-284.
    [58]Takano, K., Ohta, H.,1982. Ultrastructure of micropylar cells in the ovarian follicles of the pond smelt, Hypomesus transpacificus nipponemis. Bull Fac Fish Hokkaido Univ 33,65-78.
    [59]Wang, B., Liu, Z. H., Sun, P. X., Wang, Z. L., Liu, P., Teng, Z. J.,2008. The morphological observation on the embryonic development of Starry flounder, Platichthys stellatus. Acta Oceanol Sin 30,131-136.
    [60]Yamamoto, T. S., Kobayashi, W.,1992. Closure of the micropyle during embryonic development of some pelagic fish eggs. J Fish Biol 40,225-241.
    [61]Yamamoto, K.,1952. Studies on the fertilization of the egg of the flounder.Ⅱ. The morphological structure of the micropyle and its behavior in response to sperm-entry. Cytologia 16,302-306.
    [62]Zhang, X. W., He, G. F., Sha, X. S.,1965. A description of the important morphological characters of the eggs and larvae of the two flat fishes, Paralichthys olivaceus (T & S) and Zebrias Zebra (Bloch). Acta Oceanol Sin 7,158-173.
    [63]Zotin, A.,1958. The mechanism of hardening of the salmonid egg membrane after fertilization or spontaneous activation. J Embryol Exp Morphol 6,546-568.
    [1]Chen, K. C., Shao, K. T., Yang, J. S.,1999. Using micropylar ultrastructure for species identification and phylogenetic inference among four species of Sparidae. J Fish Biol 55, 288-300.
    [2]Felsenstein, J.,1985. Confidence limits on phylogenies:an approach using the bootstrap. Evolution 39,783-791.
    [3]Gary, N. C., Wallis, H., Clark, J. R.,1982. Fine structure of the envelope and micropyles in the eggs of the white sturgeon, Asipenser trasmontanus Richardson. Dev Growth Differ 24, 341-352.
    [4]Garcia-Vazquez, E., Alvarez, P., Lopes, P., Karaiskou, N.,, Perez, J., Teia, A., Martinez, J. L. Gomes, L., Triantaphyllidis, C.,2006. PCR-SSCP of the 16S rRNA gene, a simple methodology for species identification of fish eggs and larvae. Sci Mar 70,13-21.
    [5]Hart, N. H., Donovan, M.,1983. Fine structufe of the chorion and site of sperm entry in the egg of Brachydanio. J Exp Zool 227,277-296.
    [6]Hebert, P. D. N., Cywinska, A., Ball, S. L., Shelley, L., deWaard, J. R.,2003a. Biological identifications through DNA barcodes. Proc R Soc Lond B 270,313-321.
    [7]Hebert, P. D. N., Ratnasingham, S., deWaard, J. R.,2003b. Barcoding animal life:cytochrome coxidase subunit 1 divergences among closely related species. Proc R Soc Lond B (Suppl 1) 270,96-99.
    [8]Hosokawa, K.,1979. Scanning electron microscopic observations of the micropyle in Oryzias latipes. Jap J Ichthyol 26,94-99.
    [9]Irwin, D. M., Kocher, T. D., Wilson, A. C.,1991. Evolution of cytochrome b gene of mammals. J Mol Evol 32,128-144.
    [10]Jalabert, B.,2005. Particularities of reproduction and oogenesis in teleost fish compared to mammals. Reprod Nutr Dev 45,261-279.
    [11]Kobayashi, W., Yamamoto, T.,1981. Fine structure of micropylar appratus the chum salmon egg, with a discussion of the mechanism for blocking polyspermy. J Exp Zool 217,265-275.
    [12]Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Paabo, S., Villablanca, F. X., Wilson, A. C.,1989. Dynamics of mitochondrial DNA evolution in animals:Amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86,6190-6200.
    [13]Kumar, S., Tamura, K., Nei, M.,2004. MEGA3:Integrated Software for Molecular Evolutionary Genetics Analysis and Sequence Alignment. Brief Bioinform 5,150-163.
    [14]Kuchnow, K. P., Scott, J. R.,1977. Ultrastructure of the chorion and its micropyle apparatus in the mature Fundulus heteroclitus (Walbaum)ovum. J Fish Biol 10,197-201.
    [15]Liu, J. X., Gao, T. X., Zhuang, Z. M., Jin, X. S., Yokogawa, K., Zhang, Y. P.,2006. Late Pleistocene divergence and subsequent population expansion of two closely related fish species, Japanese anchovy (Engraulis japonicus) and Australian anchovy(Engraulis australis). Mol Phylogenet Evol 40,712-723.
    [16]Matarese, A., Sandknop, E.,1984. Identification offish eggs. In Moser, H. G., Richards, W. J., Cohen, D. M., Fahay, M. P., Kendall, A. W., Richardson, S. L. (eds) Ontogeny and Systematics of Fishes:An International Symposium Dedicated to the Memory of Ahlstrom, E. H. Special Publication Number 1. American Society of Ichthyologists and Herpetologists, Lawrence, pp. 27-30.
    [17]Pegg, G. G., Sinclair, B., Briskey, L., Aspden, W. J.,2006. mtDNA barcode identification of fish larvae in the southern Great Barrier Reef Australia. Sci Mar 70(S2),7-12.
    [18]Perez, J., Alvarez., P., Martinez, J. L., Garcia-Vazquez, E.,2005. Genetic identification of hake and megrim eggs in formaldehyde-fixed plankton samples. J Mar Sci 62,908-914.
    [19]Riehl, R., Gotting, K. J.,1974. Zu Struktur und Vorkommen der Mikropyle an Eizellen und Eiern von Knochenfischen (Teleosti). Arch Hydrobiol 74,393-402.
    [20]Riehl, R.,1980. Micropyle of some salmonins and coregonins. Environ Biol Fish 5,59-66.
    [21]Riehl, R.,1993. Surface morphology and micropyle as a tool'for identifying fish eggs by scanning electron microscopy. Euro Microsc Analys 23,7-9.
    [22]Riehl, R, Kokoscha, A.,1993. An unique surface pattern and micropylar apparatusin the eggs of Luciocephalus sp. (Perciformes, Luciocephalidae). J Fish Biol 43,617-620.
    [23]Rocha-Olivares, A.,1998. Multiplex haplotype-specific PCR:a new approach for species identification of the early life stages of rockfishes of the species-rich genus Sebastes Cuvier. Exp Mar Biol Ecol 231,279-290.
    [24]Sambrook, J., Russell, D. W.,2001. Molecular cloning:a laboratory manual,3rd edition. Cold Spring Harbor Laboratory Press, New York, pp.6,1-11.
    [25]Schander, C., Willassen, E.,2005. What can biological barcoding do for marine biology? Marine Biology Research 1,79-83.
    [26]Shao, K., Yang, J., Chen, K. C., Lee, Y. S.,2001. An identification guide of marine fish eggs from Taiwan, Institute of Zoology. Academia Sinica, pp.1-24.
    [27]Shao, K. T., Chen, K. C., Wu, J. H.,2002. Identification of marine fish eggs in Taiwan using light microscope, scanning electric microscope and mtDNA sequencing. Mar Fresh Res 53, 355-365.
    [28]Szollosi, D., Billard, R.,1974. The micropyle of trout eggs and its reaction to different incubation media. J Microsc 21,55-62.
    [29]Tautz, D., Arctander, P., Minelli, A., Thomas, R. H., Vogler, A. P.,2002. DNA points the way ahead in taxonomy. Nature 418,479-479.
    [30]Tautz, D., Arctander, P., Minelli, A., Thomas, R. H., Vogler, A. P.,2003. A plea for DNA taxonomy. Trends Ecol Evol 2,70-74.
    [31]Ward, R., Zemlak, T., Innes, B. H., Last, P. R., Hebert, P. D. N.,2005. DNA barcoding Australia's fish species. Phil Trans R Soc B 1462,1-11.
    [32]曹祥荣,束峰珏,张锡然,毕春明,李朝军,胡均,方笺阳.毛冠鹿3种麂属动物的线粒体细胞色素b的系统进化分析.动物学报,2002,48(1):44-49.
    [33]陈大刚.黄渤海渔业生态学.北京:海洋出版社,1991.224-230.
    [34]戈志强,王永玲.大银鱼卵膜表面的扫描电镜观察.上海水产大学学报,1998,7(4):348-350.
    [35]黄永松.尼罗罗非鱼成熟卵结构及精子入卵早期的电镜观察.动物学报,1990.36(3):227-230.
    [36]卢敏德,葛志亮,倪建国,高伟建,诸葛兰剑.暗纹东方鲀精、卵超微结构及精子入卵早期电镜观察.中国水产科学,1999,6(2):5-8.
    [37]万瑞景,姜言伟.黄、渤海硬骨鱼类鱼卵与仔稚鱼种类组成及其生物学特征.上海水产大学学报,2000,9(4):290-297.
    [38]万瑞景,孙珊.黄、东海生态系统中鱼卵、仔稚幼鱼种类组成与数量分布.动物学报,2006,52(1):28-44.
    [39]王义权,周开亚,徐珞珊,徐国钧.中药材乌梢蛇及其混淆品的DNA序列分析鉴别研究.药学学报,1999,34(1):67-71.
    [40]王义权,许群山,彭宣宪,周涵韬.通过Cyt b基因同源序列比较评估厦门文昌鱼的分类学地位.动物学报,2004,50(2):202-208.
    [41]肖武汉,张亚平.鱼类线粒体DNA的遗传与进化.水生生物学报,2000,24(4):384-391.
    [42]谢振宇,杜继曾,陈学群.线粒体控制区在鱼类种内遗传分化中的意义.遗传,2006,28(3):362-368.
    [43]杨学干,王义权,周开亚,刘中权.从细胞色素b基因序列探讨我国林蛙属动物的系统发生关系.动物学研究,2001,22(5):345-350.
    [44]张孝威,何桂芬,沙学绅.牙鲆和条鳎卵子及仔、稚鱼的形态观察.海洋与湖沼,1965,7(2):158-174.
    [45]张仁斋,陆惠芬,赵传姻等.中国近海鱼卵与仔鱼.上海:上海科学技术出版社,1985.188-196.
    [46]张筱兰,郭恩棉,王昭萍,姚斐,范瑞青,高谰,姚善成.3种海产经济鱼类成熟卵膜形态的比较研究.海洋科学,1999,6:48-51.
    [47]张俊丽,高天翔,韩志强,郭焱,董崇智.3种白鲑线粒体细胞色素b和16SrRNA基因片段序列分析.中国水产科学,2007,14(1):8-14.
    [48]赵传姻,姜言伟.渤海颚针鱼的习性和早期发育形态的研究.海洋水产研究,1983,5:63-71.
    [1]Blood, D. M., Matarese, A. C., Yoklavich, M. M.,1994. Embryonic development of walleye pollock, Theragra chalcogramma, from Shelikof Strait, Gulf of Alaska. Fish Bull 92,207-222.
    [2]Carr, S. M., Kivlichan, D. S., Pepin, P., Crutcher, D. C.,1999. Molecular systematics of Gadid fishes:implications for the biogeographic origins of Pacific species. Can J Zool 77,1-12.
    [3]Cohen, D. M.,1990. Family Gadidae. In FAO species catalogue, Vol.10:Gadiform fishes of the world (order Gadiformes). An annotated and illustrated catalogue of cods, hakes, grenadiers, and other Gadiform fishes known to date. FAO Fisheries Synopsis, Rome, FAO 125,18-89.
    [4]Cohen, D. M., Inada, T., Iwamoto, T., Scialabba, N.,1990. Gadiform fishes of the world. FAO Fisheries Synopsis, Rome, FAO 125,442.
    [5]Dunn, J. R., Matarese, A. C.,1984. Gadidae:development and relationships. In:Moser, H. G. et al. (eds) Ontogeny and systematics of fishes. Am Soc Ichthyol Herpetol, Spec Publ No.1, Lawrence, pp.283-300.
    [6]Evseenko, S. A., Laurel, B., Brown, J. A., Malikova, D. Y.,2006. On the Gadus taxonomy: ontogenetic evidence. J Ichthyo 46,351-358.
    [7]Fahay, M. P.,1983. Guide to the early stages of marine fishes occurring in the western north Atlantic ocean, cape hatteras to the southern Scotian Shelf. J Northwest Atlant Fish Sci 4,168.
    [8]Fahay, M., Markle, D.,1984. Gadiformes:development and relationships. In:Moser, H. G. et al. (eds) Ontogeny and systematics of fishes. Am Soc Ichthyol Herpetol, Spec Publ No.1, Lawrence, pp.265-283.
    [9]Falk-Petersen, I.B.,2005. Comparative organ differentiation during early life stages of marine fish. Fish Shellfish Immunol 19,397-412.
    [10]Forrester, C. R.,1964. Laboratory observations on embryonic development and larvae of the Pacific cod (Gadus macrocephalus Tilesius). J Fish Res Bd Canada 21,9-16.
    [11]Forrester, C. R., Alderdice, D. F.,1966. Effects of salinity and temperature on embryonic development or the Pacific cod (Gadus macrocephalus). J Fish Res Bd Canada 23,319-340.
    [12]Fukuda, S., Yokoyama, K., Hayakawa, Y., Nakanishi, H.,1985. On tagging experiments of adult Pacific cod in the entrance of Mutsu Bay, Aomori Prefecture. Saibai Gyogyo Gijutsu Kaihatsu Kenkyu,14,71-77.
    [13]Ganeco, N. L., Franceschini-Vicentini, I. B., Nakaghi, L. S. O.,2008. Structural analysis of fertilization in the fish Brycon orbignyanus. Zygote 17,93-99.
    [14]Hall, E. H., Smith, P., Johnston I. A.,2004. Stages of embryonic development in the Atlantic cod Gadus morhua. J Morphol 259,255-270.
    [15]Hart, N.H.,1990. Fertilization in teleost fishes:mechanisms of sperm-egg interactions. Int Rev Cytol 121,1-66.
    [16]Hattori, T., Sakurai, Y., Shimazaki, K.,1992a. Age determination by sectioning of otoliths and growth pattern of Pacific cod. Nippon Suisan Gakkaishi 58,1203-1210.
    [17]Hattori, T., Sakurai, Y., Shimazaki, K.,1992b. Maturation and reproductive cycle of female Pacific cod in waters adjacent to the southern coast of Hokkaido, Japan. Nippon Suisan Gakkaishi,58,2245-2252.
    [18]Hirai, A.,1993. Fine structure of the egg membranes in four species of Pleuronectinae. Japan J Ichthyol 40(2),227-235.
    [19]Howell, B. R., Day,O. J., Ellis, T., Baynes, S. M.,1998. Early life stages of farmed fish. In: Black, K. D., Pickering, A. (eds) Biology of farmed fish. Sheffield Academic Press, Sheffield, England, pp.27-66.
    [20]Iwamatsu, T., Ishijima, S., Nakashima, S.,1993. Movement of spermatozoa and changes in micropyles during fertilization in Medaka eggs. J Exp Zool 266,57-64.
    [21]Iwamatsu, T., Yoshizaki, N., Shibata, Y.,1997. Changes in the chorion and sperm entry into the micropyle during fertilization in the teleostean fish, Oryzias latipes. Develop Growth Differ 39, 33-41.
    [22]Ivankov, V. N., Kurdyayeva, V. P.,1973. Systematic differences and the ecological importance of the membranes in fish eggs. J Ichthyol 13,864-873.
    [23]Iwamatsu, T., Ishijima, S., Nakashima, S.,1993. Movement of spermatozoa and changes in micropyles during fertilization in medaka eggs. J Exp Zool 266,57-64.
    [24]Ju, S. J., Harvey, H. R., Gomez-Gutieerrez, J., Peterson, W. T.,2006. The role of lipids during embryonic development of the euphausiids Euphausia pacifica and Thysanoessa spinifera. Limnol Oceanogr 51,2398-2408.
    [25]Kawamura, T., Kokubo, S.,1950. On the cod (Gadus macrocephalus) in Mutsu Bay. Res Rep Fish Res Aomori Pref,1,186-191.
    [26]Kimmel, C.B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F.,1995. Stages of embryonic development of the zebrafish. Dev Dyn 203,253-310.
    [27]Kj(?)rsvik, E., Pittman, K., Pavlov, D.,2004. From fertilization to the end of metamorphosis-functional development. In:Moksness, E., Kj(?)rsvik, E., Olsen, Y. (eds). Culture of cold-water marine fish. Blackwell Publishing, Oxford, pp.204-278.
    [28]Kobayashi, W., Yamamoto, T. S.,1981. Fine structure of the micropylar apparatus of the chum salmon egg, with a discussion of the mechanism for blocking polyspermy. J Exp Zool 217, 265-275.
    [29]Kudo, S., Teshima, C.,1998. Assembly in vitro of vitelline envelope components induced by a cortical alveolus sialoglycoprotein of eggs of the fish Tribolodon hakonensis. Zygote 6, 193-202.
    [30]Laale, H. W.,1980. The perivitelline space and egg envelopes of bony fishes:A review. Copeia 2,210-226.
    [31]Laurel, B. J., Hurst, T. P., Copeman, L. A., Davise, M. W.,2008. The role of temperature on the growth and survival of early and late hatching Pacific cod larvae(Gadus macrocephalus). J Plankton Res 30,1051-1060.
    [32]Li, Y. H., Wu, C. C., Yang, J. S.,2000. Comparative ultrastructural studies of the zona radiata of marine fish eggs in three genera in Perciformes. J Fish Biol 56,615-621.
    [33]Markle, D. F.,1982. Identification of Larval and Juvenile Canadian Atlantic Gadoids with Comments on the Systematics of Gadid Subfamilies. Can J Zool 60,3420-3438.
    [34]Marques, C., Nakaghi, L. S. O., Faustino, F., Ganeco, L. N., Senhorini, J. A.,2008. Observation of the embryonic development in Pseudoplatystoma coruscans (Siluriformes:Pimelodidae) under light and scanning electron microscopy. Zygote 16:333-342.
    [35]Matarese, A. C., Richardson, S. L., Dunn, J. R.,1981. Larval development of Pacific tomcod, Microgadus proximus, in the northeast Pacific ocean with comparative notes on larvae of walleye pollock, Theragra chalcogramma, and Pacific cod, Gadus macrocephalus (Gadidae). Fish Bull 78,923-940.
    [36]Matarese, A. C., Sandknop, E. M.,1984. Identification of fish eggs. In:Moser, H. G. et al. (eds) Ontogeny and systematics of fishes. Am Soc Ichthyol Herpetol, Spec Publ No.1, Lawrence, 27-31.
    [37]Matarese, A. C., Kendall, Jr., Arthur, W., Blood, D. M., Vinter, B. M.,1989. Laboratory guide to early life history stages of northeast Pacific fishes. NOAA Tech. Rep. NMFS 80, US Department of Commerce, Washington DC,194-196.
    [38]Millero, F. J., Chen, C.-T., Bradshaw, A., Schleicher, K.,1980. A new high-pressure equation of state for seawater. Deep Sea Res 27A,255-264.
    [39]Fofonoff, N. P., Jr, M. R. C.,1983. Algorithms for computation of fundamental properties of seawater. UNESCO Tech Pap in Mar Sci 44,1-53.
    [40]Morrison, C. M.1990. Histology of the Atlantic Cod, Gadus morhua:an atlas. Part3: reproductive tract. Tract Can Spec Publ Fish Aquat Sci 110,177.
    [41]Morrison, C., Bird, C., O'Neil, D., Leggiadro, C., Martin-Robichaud, D., Rommens, M., Waiwood, K.,1999. Structure of the egg envelope of the haddock, Melanogrammus aeglefinus, and effects of microbial colonization during incubation. Can J Zool 77,890-901.
    [42]Mukhacheva, V. A., Zviagina, O. A.,1960. Development of the Pacific cod, Gadus macrocephalus Tilesius. Trudy Intlituta okeanologii, Akademiia Nauk SSSR 31,145-165.
    [43]Nelson, J. S.,1984. Fishes of the world,2nd. John Wiley&Sons, NewYork,1984, pp,191.
    [44]Oppen-berntsen, D. O., Helvik, J. V., Walther B. T.,1990. The major structural proteins of cod (Gadus morhua) eggshells and protein crosslinking during teleost egg hardening. Dev Biol 137, 258-265.
    [45]Riehl, R., Gotting, K. J.,1974. Zu struktur und vorkommen der mikropyle an eizellen und eiern von knochenfischen (Teleosti). Arch Hydrobiol 74,393-402.
    [46]Riehl, R.,1993. Surface morphology and micropyle as a tool for identifying fish eggs by scanning electron microscopy. Microsc Microanal 5,29-31.
    [47]Russell, F. S.,1976. The eggs and planktonic stages of British marine fishes. Academic press, London.
    [48]Salveson, S. J., Dunn. J. R.,1976. Pacific cod (family Gadidae). In Pereyra, W.T., Reeves, J. E., Bakkala, R.G. (eds) Demersal fish and shellfish resources of the eastern Bering Sea in the Baseline year 1975. USDC:NOAA, NMFS, Northwest Fisheries Center processed report, pp. 393-405.
    [49]Sakurai, Y., Hattori, T.,1996. Reproductive behavior of Pacific cod in Captivity. Fish Sci 62, 222-228.
    [50]Sakurai, Y.,2007. An overview of the Oyashio ecosystem. Deep-Sea Research II 54, 2526-2542.
    [51]Svetovidov, A. N.,1948. Treskoobraznye (Gadiformes), Fauna SSSR. Zoologicheskii Institut Akademii Nauk SSSR (n.s.) 34, Ryby 9,1-222 [in Russian, English translation,1962, Jerusalem: Israel Program for scientific translations].
    [52]Takatsu, T., Nakatani, T., Mutoh, T., Takahashi, T.,1995. Feeding habits of Pacific cod larvae and juveniles in Mutsu bay, Japan. Fish Sci 61,415-422.
    [53]Thomson, J. A.,1963. On the demersal quality of the fertilized eggs of Pacific cod, Gudus macrocephalus Tilesius. J Fish Res Bd Canada 20,1087-1088.
    [54]Yamamoto, T. S., Kobayashi, W.,1992. Closure of the micropyle during embryonic development of some pelagic fish eggs. J Fish Biol 40,225-241.
    [55]Yamamoto, G, Nishioka, C,1952. The development and rearing of hatched larvae of North Pacific cod (Gadus macrocephalus). Jap Sea Rei Fish Res Lab Spec Publ on 3rd Anniversary of its Founding 307-308.
    [56]Yanagimachi, R., Cherr, G. N., Pillai, M. C., Baldwin, J. D.,1992. Factors controlling sperm entry into the micropyles of Salmonid and Herring eggs. Dev Growth Differ 34,447-461.
    [57]陈大刚.黄渤海渔业生态学.北京:海洋出版社,,1992.230-232.
    [1]Alderdice, D. F., Forrester, C. R.,1971. Effects of salinity, temperature, and dissolved oxygen on early development of the Pacific cod (Gadus macrocephalus). J Fish Res Bd Canada 28, 883-902.
    [2]Alderdice, D. F., Velsen, F. P. J.,1971. Some effects of salinity and temperature on early development of Pacific herring (Clupea pallasi). J Fish Res Bd Canada 28,1545-1562.
    [3]Bailey, K. M., Houde, E. D.,1989. Predation on eggs and larvae of marine fishes and the recruitment problem. Adv Mar Biol 25,1-83.
    [4]Bailey, K. M., Brodeur, R. D., Merati, N., Yoklavich, M. M.,1993. Predation on walleye pollock (Theragra chalcogramma) eggs and yolk-sac larvae by pelagic. Fish Oceanogr 2, 30-39.
    [5]Bengtson, D. A., Barkman, R. C., Berry, W. J.,1987. Relationships between maternal size, egg diameter, time of spawning season, temperature, and length at hatch of Atlantic silverside Menidia menidia. J Fish Biol 31,697-704.
    [6]Benoit, H. P., Pepin, P.,1999. Interaction of rearing temperature and maternal influence on egg development rates and larval size at hatch in yellowtail flounder (Pleuronectes ferrugineus). Can J Fish Aquat Sci 56,785-794.
    [7]Blood, D. M., Matarese, A. C., Yoklavich, M. M,,1994. Embryonic development of walleye pollock, Theragra chalcogramma, from Shelikof Strait, Gulf of Alaska. Fish Bull 92,207-222.
    [8]Blood, D. M.,2002. Low-temperature incubation of walleye Pollock(Theragra chalcogramma) eggs from the southeast Bering Sea shelf and Shelikof Strait, Gulf of Alaska. Deep-Sea Res II 49,6095-6108.
    [9]Bonnet, D. D.,1939. Mortality of the cod egg in relation to temperature. Biol Bull 76,428-441.
    [10]Bunn, N.A., Fox, C.J., Webb, T.,2000. A literature review of studies on fish egg mortality: Implications for the estimation of spawning stock biomass by the annual egg production method. Sci Ser Tech RepⅡ, CEFAS, Lowestoft, U K.
    [11]Chambers, R. C., Leggett, W. C., Brown, J. A.,1989. Egg size, maternal effects and the correlations between early life history traits of capelin, Mallotus villosus:an appraisal at the individual level. Fish Bull 87,515-523.
    [12]Chambers, R. C.,1997. Environmental influences on egg and propagule sizes in marine fishes. In Chambers, R. C., Trippel, E. A. (eds) Early life history and recruitment in fish populations. Chapman & Hall, New York, pp.63-102.
    [13]Daan, N.,1981. Comparison of estimates of egg production of the Southern Bight cod stock from plankton surveys and market statistics. Rapp P-V Reun Cons Int Explor Mer 172,39-57.
    [14]Ferraro, S. P.,1980. Embryonic development of Atlantic menhaden. Brevoortia tyrannus, and a fish embryo age estimation method. Fish Bull 77,943-949.
    [15]Finn, R. N., R(?)nnestad, I., van der Meeren, T., Fyhn, H. J.,2002. Fuel and metabolic scaling during the early life stages of Atlantic cod Gadus morhua. Mar Ecol Prog Ser 24,217-234.
    [16]Frank, K.T., Leggett, W.C.,1981. Wind regulation of emergence times and early larval survival in capelin (Mallotus villosus). Can J Fish Aquat Sci 38,1327-1338.
    [17]Forrester, C. R.,1964. Laboratory observations on embryonic development and larvae of the Pacific cod (Gadus macrocephalus Tilesius). J Fish Res Bd Canada 21,9-16.
    [18]Forrester, C. R., Alderdice, D. F.,1966. Effects of salinity and temperature on embryonic development or the Pacific cod (Gadus macrocephalus). J Fish Res Bd Canada 23,319-340.
    [19]Fossum, P.,1988. A tentative method to estimate mortality in the eggs and early fish larval stages, with special reference to cod(Gadus morhua L.). Fisker Skr Ser Havunders 18, 329-345.
    [20]Fukuda, S., Yokoyama, K., Hayakawa, Y., Nakanishi, H.,1985. On tagging experiments of adult Pacific cod in the entrance of Mutsu Bay, Aomori Prefecture. Saibai Gyogyo Gijutsu Kaihatsu Kenkyu 14,71-77.
    [21]Fujisawa, C., Natsume, M.,1995. Migration of adult Pacific cod, Gadus macrocephalus, from Kikonai Bay, southern Hokkaido, Japan. Sci Rep Hokkaido Fish Ex Stn 47,25-31.
    [22]Gadomski, D. M., Caddell, S. M.,1996. Effects of temperature on the development and survival of eggs of four coastal California fishes. Fish Bull 94,41-48.
    [23]Geffen, A. J.,2002. Length of herring in relation to age and time of hatching. J Fish Biol 60, 479-485.
    [24]Hanel, R., Karjalainen, J., Wieser, W.,1996. Growth of swimming muscles and its metabolic cost in larvae of whitefish at different temperatures. J Fish Biol 48,937-951.
    [25]Hattori, T., Sakurai, Y., Shimazaki, K.,1992. Maturation and reproductive cycle of female Pacific cod in waters adjacent to the southern coast of Hokkaido, Japan. Nippon Suisan Gakkaishi 58,2245-2252.
    [26]Hewitt, R. P., Theilacker, G. H., Lo, N. C. H.,1985. Causes of mortality in young jack mackerel. Mar Ecol Prog Ser 26,1-10.
    [27]Hjort, J.,1914. Fluctuations in the great fisheries of northern Europe viewed in the light of biological research. Rapp P-V Reun. Cons Int Explor Mer 20,1-228.
    [28]Houde, E.D.,1974. Effects of temperature and delayed feeding on growth and survival of larvae of three species of subtropical marine fishes. Mar Biol 26,271-285.
    [29]Houde, E. D.1987. Fish early life dynamics and recruitment variability. Am Fish Soc Symp 2, 17-29.
    [30]Hunt, G. L., Jr, Stabeno, P., Walters, G., Sinclair, E., Brodeur, R.,2002. Climate change and control of the southeastern Bering Sea pelagic ecosystem. Deep-Sea Res Ⅱ 49,5821-5853.
    [31]Johnston, I. A.,2001. Genetic and environmental determinants of muscle growth. In Johnston,I. A. (ed) Fish Physiology. CA:Academic Press, San Diego, pp.141-186.
    [32]Jordaan, A., Hayhurst, S. E., Kling, L. J.,2006. The influence of temperature on the stage at hatch of laboratory reared Gadus morhua and implications for comparisons of length and morphology. J Fish Boil 68,7-24.
    [33]Jung, K.-M., Kang, S., KIM, S., Jr, A. W. K.,2006. Ecological characteristics of walleye pollock eggs and larvae in the southeastern Bering Sea during the late 1970s. J Oceanograp 62, 859-871.
    [34]Kanno, Y., Ueda, Y., Matsuishi, T.,2001. Subpopulation of Pacific cod on the Pacific coast of northern Japan. Nippon Suisan Gakkaishi 67,67-77.
    [35]Ketchen, K. S.,1961. Observations on the ecology of the Pacific cod(Gadus macrouphalus) in Canadian walers. J Fish Res Bd Canada 18,513-558.
    [36]Kraak, V. D., Pankhurst, N. W.,1996. Temperature effects on the reproductive performance of fish. In:Wood, C. M., McDonald, D. G. (eds) Global Warming:Implications for freshwater and marine fish. Cambridge University Press, Cambridge, pp.159-176.
    [37]Laurel, B. J., Hurst, T. P., Copeman, L. A., Davise, M. W.,2008. The role of temperature on the growth and survival of early and late hatching Pacific cod larvae(Gadus macrocephalus). J Plankton Res 30,1051-1060.
    [38]Laurel, B. J., Stoner, A.W., Ryer, C. H., Hurst, T. P, Abookire, A. A.,2007. Comparative habitat associations in juvenile Pacific cod and other gadids using seines, baited cameras and laboratory techniques. J Exp Mar Bio Ecol 351,42-55.
    [39]Leggett, W. C., Deblois, E.,1994. Recruitment in marine fishes:is it regulated by starvation and predation in the egg and larval stage? Netherlands J Sea Res 32,119-134.
    [40]Matarese, A.C., D.M. Blood, S.J. Picquelle, and J.L. Benson.2003. Atlas of abundance and distribution patterns of ichthyoplankton from the Northeast Pacific Ocean and Bering Sea ecosystems based on research conducted by the Alaska Fisheries Science Center (1972-1996). NOAA Prof Paper NMFS 1, pp.281.
    [41]Martell, D. J., Kieffer, J. D.,Trippel, E. A.,2005. Effects of temperature during early life history on embryonic and larval development and growth in haddock. J Fish Bio 66,1558-1575.
    [42]May, R. C.,1974. Larval mortality in marine fishes and the critical period concept. In Blaxter, J. H. S. (ed) The early.life history offish. Springer Verlag, New York, pp.3-19.
    [43]McCain, B.,2003. Essential Fish Habitat West Coast Groundfish Draft Revised Appendix. National Marine Fisheries Service Northwest Fisheries Science Center, Seattle, WA.
    [44]Methven, D. A., Brown, J. A.,1991. Time of hatching affects development, size, yolk volume, and mortality of newly hatched Macrozoarces americanus (Pices:Zoarcidae). Can J Zool 69, 2161-2167.
    [45]Moiseev, P. A.,1953. Cod and flounders of far-eastern seas. Izvestiya TINRO 40,1-287.
    [46]Morrison, C., Bird, C., O'Neil, D., Leggiadro, C., Martin-Robichaud, D., Rommens, M., Waiwood, K.,1999. Structure of the egg envelope of the haddock, Melanogrammus aeglefinus, and effects of microbial colonization during incubation. Can J Zool 77,890-901.
    [47]Ojanguren, A. F., Brana, F.,2003. Thermal dependence of embryonic growth and development in brown trout. J Fish Biol 62,580-590.
    [48]Otterlei, E., Nyhammer, G., Folkvord, A., Stefansson, S. O.,1999. Temperature and size-dependent growth of larval and early juvenile Atlantic cod(Gadus morhua):a comparative study of Norwegian coastal cod and northeast Arctic cod. Can J Fish Aquat Sci 56,2099-2111.
    [49]Panagiotaki, P., Geffen, A. J.,1992. Parental effects on size variation in fish larvae. J Fish Biol 41(Suppl B),37-42.
    [50]Pauly, D., Pullin, R. S. V,1988. Hatching time in spherical, pelagic marine fish eggs in response to temperature and egg size. Environ Biol Fishes 22,261-271.
    [51]Pepin, P.,1991. Effect of temperature and size on development, mortality and survival rates ofthe pelagic early life history stages of marine fish. Can J Fish Aquat Sci 48,503-518.
    [52]Pepin, P., Orr, D. C., Anderson, J. T.,1997. Time to hatch and larval size in relation to temperature and egg size in Atlantic cod(Gadus morhua). Can J Fish Aquat Sci 54(Suppll), 2-10.
    [53]Peterson, R. H., Spinney, H. C. E., Sreedharan, A.,1977. Development of Atlantic salmon (Salmo salar) eggs and alevins under varied temperature regimes. J Fish Res Bd Canada 34, 31-43.
    [54]Porter, S. M., Bailey, K. M.,2007. The effect of early and late hatching on the escape response of walleye Pollock (Theragra chalcogramma) larvae. J Plankton Res 29,291-300.
    [55]Rickman, S. J., Dulvy, N. K., Jennings, S., Reynolds, J. D.,2000. Recruitment variation related to fecundity in marine fishes. Can J Fish Aquat Sci 57,116-124.
    [56]SAS Institute, Inc.1990. SAS/STATsUser's Guide, Version 6,4th Edition. SAS Institute, Inc., Cary,NC, pp.1686.
    [57]Sugisaki, H., Bailey, K. M., Brodeur, R. D.,2001. Development of the escape response in larval walleye pollock(Theragra chalcogramma). Mar Biol 139,19-24.
    [58]Sakurai, Y.,2007. An overview of the Oyashio ecosystem. Deep-Sea Research Ⅱ 54, 2526-2542.
    [59]Taggart, C. T., Leggett, W. C.,1987. Short term mortality in post-emergent larval caplin Mallotus villotus. I. Analysis of multiple in situ estimates. Mar Ecol Prog Ser 41,205-217.
    [60]Takatsu, T., Nakatani, T., Mutoh, T., Takahashi, T.,1995. Feeding habits of Pacific cod larvae and juveniles in Mutsu bay, Japan. Fish Sci 61,415-422.
    [61]Takatsu, T., Toshikuni, N., Miyamoto, T., Kooka, K., Takahashi, T.,2002. Spatial distribution and feeding habits of Pacific cod(Gadus macrocephalus) larvae in Mutsu Bay, Japan. Fish Oceanogr 11,90-101.
    [62]Thompson, B. M., Riley, J. D.,1981. Egg and larval development studies in the North Sea cod (Gadus morhua L.). Rapp P-V Reun Cons Int Explor Mer 178,553-559.
    [63]Ueda, Y., Kanno, Y., Matsuishi, T.,2004. Weight-based virtual population analysis of Pacific cod Gadus macrocephalus off the Pacific coast of southern Hokkaido, Japan Fish Sci 70, 829-838.
    [64]While, G. M., Wapstra, E.,2008. Are there benefits to being born asynchronously:an experimental test in a social lizard. Behav Ecol 19,208-216.
    [1]Alderdice, D. F., Forrester, C. R.,1968. Some effects of salinity and temperature on early development and survival of the English sole(Parophrys vetulus). J Fish Res Bd Canada 45, 495-521.
    [2]Alderdice, D. F., Forrester, C. R.,1971. Effects of salinity, temperature, and dissolved oxygen on early development of the Pacific cod(Gadus macrocephalus). J Fish Res Bd Canada 28, 883-902.
    [3]Alderdice, D. F., Velsen, F. P. J.,1971. Some effects of salinity and temperature on early development of Pacific herring(Clupea pallasi). J Fish Res Bd Canada 28,1545-1562.
    [4]Almatar, S. M.,1984. Effects of acute changes in temperature and salinity on the oxygen uptake of larvae of herring(Clupea harengus) and plaice(Pleuronectes platessa). Mar Biol 80, 1432-1793.
    [5]Berlinsky, D. L., Taylor, J. C., Howell, R. A., Bradley, T. M., Smith. T. I. J.,2004. The effects of temperature and salinity on early life stages of black sea bass Centropristis striata. J World Aquac Soc 35,335-344.
    [6]Blaxter, J. H. S.,1969. Development:eggs and larvae. In Hoar, W. S., Randall, D. J. (eds) Fish physiology, volume Ⅰ11. Academic Press, New York, USA.
    [7]Blaxter, J. H. S.,1992. The effect of temperature on larval fishes. Netherlands J Zool 42, 336-357.
    [8]Bunn, N.A., Fox, C. J., Webb, T.,2000. A literature review of studies on fish egg mortality: Implications for the estimation of spawning stock biomass by the annual egg production method. Sci Ser Tech RepⅡ, CEFAS, Lowestoft, UK.
    [9]Craik, J.C.A., Harvey, S.M.,1987. The causes of buoyancy of marine teleosts. J Mar Biol Assoc UK 67,169-182.
    [10]Dushkina, L. A.,1973. Influence of salinity on eggs sperm and larvae of low-vertebral herring reproducing in the coastal waters of the Soviet Union. Mar Biol 19,210-223.
    [11]Falk-Petersen, I.B.,2005. Comparative organ differentiation during early life stages of marine fish. Fish Shellfish Immunol 19,397-412.
    [12]Finn, R. N., R(?)nnestad,I., van der Meeren, T., Fyhn, H. J.,2002. Fuel and metabolic scaling during the early life stages of Atlantic cod Gadus morhua. Mar Ecol Prog Ser 24,217-234.
    [13]Forrester, C. R., Alderdice, D. F.,1966. Effects of salinity and temperature on embryonic development or the Pacific cod(Gadus macrocephalus). J Fish Res Bd Canada 23,319-340.
    [14]Fukuda, S., Yokoyama, K., Hayakawa, Y., Nakanishi, H.,1985. On tagging experiments of adult Pacific cod in the entrance of Mutsu Bay, Aomori Prefecture. Saibai Gyogyo Gijutsu Kaihatsu Kenkyu14,71-77.
    [15]Galloway, T. F., Kjorsvik, E., Kryvi, H.,1998. Effect of temperature on viability and axial muscle development in embryos and yolk sac larvae of the northeast Atlantic cod(Gadus morhua). Mar Biol 132,559-567.
    [16]Hanel, R., Karjalainen, J.,Wieser, W.,1996. Growth of swimming muscles and its metabolic cost in larvae of whitefish at different temperatures. J Fish Biol 48,937-951.
    [17]Hattori, T., Sakurai, Y., Shimazaki, K.,1992. Maturation and reproductive cycle of female Pacific cod in waters adjacent to the southern coast of Hokkaido, Japan. Nippon Suisan Gakkaishi 58,2245-2252.
    [18]Hart, R. P., Purser, G. J.,1995. Effects of salinity and temperature on eggs and yolk sac larvae of the greenback flounder (Rhomboolea tapirina, Gunter,1862). Aquaculture 136,221-230.
    [19]Heming, T.A.,1982. Effects of temperature on utilization of yolk by Chinook salmon (Oncorhynchus tshawytscha) eggs and alevins. Can J Fish Aquat Sci 39,184-190.
    [20]Hemmer, M. J., Middaugh, D. P., Moore, J. C.,1990. Effects of temperature and salinity on Menidia beryllina embryos exposed to terbufos. Dis Aquat Org 8,127-136.
    [21]Holliday, F. G. T., Blaxter, J. H. S.,1960. The effects of salinity on the developing eggs and larvae of the herring. J Mar Biol Assoc UK 39,591-603.
    [22]Holliday, F. G. T.,1965. Osmoregulation in marine teleost eggs and larvae. Calif Coop Oceanic Fish Invest Rep 10,89-95.
    [23]Holliday, F. G. T.,1969. The effects of salinity on the eggs and larvae of teleosts. In:Hoar, W.S., Randall, D.J. (eds) Fish Physiology, vol.1. Academic Press, New York, pp.293-311.
    [24]Iversen, S. A., Danielssen, D. S.,1984. Development and mortality of cod (Gadus morhua L.) eggs and larvae in different temperatures. In Dahl, E., Danielssen, D. S., Moksness, E., Solemdal, P. (eds) The Propagation of Cod, Gadus morhua L., Part 1, Fl(?)devigen rapportser., no.1. Olof Rasmussen, Skien 49-65.
    [25]Johnston, I. A., Vieira, V. L. A., Hill, J.,1996. Temperature and ontogeny in ectotherms: muscle phenotype in fish. In Johnston, I. A., Bennett, A. F. (eds) Phenotypic and evolutionary adaptations of organisms to temperature. Cambridge University Press, Cambridge, pp.153-181.
    [26]Jordaan, A., Hayhurst, S. E., Kling, L. J.,2006. The influence of temperature on the stage at hatch of laboratory reared Gadus morhua and implications for comparisons of length and morphology. J Fish Boil 68,7-24.
    [27]Kamler, E.,1992. Early Life History of Fish:An Energetics Approach. London:Chapman & Hall.
    [28]Kinne,O.,1963. The effects of temperature and salinity on manne and brackish water animals.Ⅰ. Temperature. Oceanogr mar Biol An Rev 1,301-340.
    [29]Kinne,O.,1964. The effects of temperature and salinity on marine and brackish water animals. 11. Salinity and temperature, salinity combinations. Oceanogr mar Biol An Rev 2,281-339.
    [30]Laurence, G. C, Rogers,C. A.,1976. Effects of temperature and salinity on comparative embryo development and mortality of Atlantic cod (Cudus nzorhrtu L.) and haddock (Melunogunimrrs ueglefinus L). Journal du Conseil-Conseil Internationalpour I' Exploration de la Mer 36,220-228.
    [31]Laurence, G. C., Howell, W. H.,1981. Embryology and influence of temperature and salinity on early development and survival of yellowtail flounder Limundti ferruginecr. Mar Ecol Prog Ser 6,11-18.
    [32]Laurel, B. J., Stoner, A. W., Ryer, C. H., Hurst, T. P., Abookire, A. A.,2007. Comparative habitat associations in juvenile Pacific cod and other gadids using seines, baited cameras and laboratory techniques. J Exp Mar Bio Ecol 351,42-55.
    [33]Laurel, B. J., Hurst, T. P., Copeman, L. A., Davise, M. W.,2008. The role of temperature on the growth and survival of early and late hatching Pacific cod larvae(Gadus macrocephalus). J Plankton Res 30,1051-1060.
    [34]Lee, C. S., Menu, B.,1981. Effects of salinity on egg development and hatching in grey mullet (Mugil cephalus). J Fish Biol 19,179-188.
    [35]Linden, O., Sharp, J. R., Laughlin, J. Jr, Neff, J. M.,1979. Interactive effects of salinity, temperature and chronic exposure to oil on the survival and developmental rate of embryos of the estuarine killifish, Fundulus heteroclitus. Mar Biol 51,101-109.
    [36]Martell, D. J., Kieffer, J. D.,Trippel, E. A.,2005. Effects of temperature during early life history on embryonic and larval development and growth in haddock. J Fish Biol 66,1558-1575.
    [37]May, R. C.,1974. Effects of temperature and salinity on yolk utilization in Bairdiella icistia (Jordan and Gilbert) (Pisces:Sciaenidae). J Exp Mar Biol Ecol 16,213-225.
    [38]Mommsen, T. P.,2001. Paradigms of growth in fish. Comp Biochem Physiol B 129,207-219.
    [39]Moiseev, P. A.,1953. Cod and flounders of far-eastern seas. Izvestiya TINRO 40,1-287.
    [40]Murashige, R., Bass, P., Wallace, L., Molnar, A., Eastham, B., Sato, V., Tamaru, C., Lee, C.S., 1991. The effect of salinity on the survival and growth of striped mullet(Mugil cephalus) larvae in the hatchery. Aquaculture 96,249-254.
    [41]O'Connor, M. I., Bruno, J. F., Gaines, S. D., Halpern, B., Lester, S., Kinlan B., Weiss, J.,2007. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc Natl Acad Sci USA,104,1266-1271.
    [42]Ohtani, K., Terao, T.,1974. Oceanographic structure of the Mutsu Bay. Bull Fac Fish Hokkaido Univ 24,100-131.
    [43]Pepin, P.,1991. The effect of temperature and size on development and mortality rates of the pelagic early life history stages of marine fish. Can J Fish Aquat Sci 48,503-518.
    [44]Pepin, P., Orr, S. C., Armstrong, J. T.,1997. Time to hatch and larval size in relation to temperature and egg size in Atlantic cod(Gadus morhua). Can J Fish Aquat Sci 54(Suppl 1), 2-10.
    [45]Rogers, C. A.,1976. Effects of temperature and salinity on the survival of winter flounder embryos. Fish Bull 74,52-58.
    [46]Rombough, P. J.1996. The effects of temperature on embryonic and larval development.In Wood, C. M., McDonald, D. G. (eds) Global warming:implications for freshwater and marine Fish. Society for Experimental Biology Series 61. Cambridge University Press, Cambridge, UK, pp.177-223.
    [47]Rugen, W. C., Matarese, A. C.,1988. Spatial and temporal distribution and relative abundance of Pacific cod(Gadus macrocephalus) larvae in the western Gulf of Alaska. Northwest and Alaska Fisheries Center Processed Report 88-18. National Marine Fisheries Service, Seattle, Washington.
    [48]Sakurai, Y.,2007. An overview of the Oyashio ecosystem. Deep-Sea Research Ⅱ 54, 2526-2542.
    [49]Swanson, C.,1996. Early development of milkfish:Effects of salinity on embryonic and larval metabolism, yolk absorption and growth. J Fish Biol 48,405-421.
    [50]Takatsu, T., Toshikuni, N., Miyamoto, T., Kooka, K., Takahashi, T.,2002. Spatial distribution and feeding habits of Pacific cod(Gadus macrocephalus) larvae in Mutsu Bay, Japan. Fish Oceanogr 11,90-101.
    [51]van Maaren, C. C., Daniels, H. V.,2001. Effects of temperature on egg hatch, larval growth and metamorphosis for hatchery-cultured southern flounder, Purulichrhvs lerhostigma. J Appl Aquacul,11,21-33.
    [52]Yamamoto, G., Nishioka, C.1952. The development and rearing of hatched larvae of North Pacific cod (Gadus macrocephalus Tilesius). pp 301-308 in Jap Sea Reg Fish Res Lab Spec Publ on 3rd Anniversary of its founding. (Transl. from Japanese by Fish Res Bd Can Tran).
    [1]Blaber, S. J. M.,1980. Fish of the trinity inlet system of north Queensland with notes on the ecology of fish faunas of tropical Indo-Pacific estuaries. Aust J Mar Freshwat Res 31, 137-46.
    [2]Boehlert, G. W., Mundy, B. C.,1988. Roles of behavioral and physical factors in larval and juvenile fish recruitment to estuarine nursery areas. Am Fish Soc Symp 3,51-67.
    [3]Bonecker, A. C. T., Maric, S. D. C., Claudia, A. P. N., et al.,2007. Larval fish composition of a tropical estuary in northern Brazil(2°18'-2°47'S/44°20'-44°25'W) during the dry season. Pan-American J Aqua Sci 2,235-241.
    [4]Chen, D. G., Shen, W. Q., Liu, Q., Jiao, Y., Zeng, X. Q., Ren, Y. P.,2000. The geographical characteristics and fish species diversity in the Laizhou Bay and Yellow River estuary. J Fish Sci China 7,46-52.
    [5]Fan, H., Huang, H. J.,2005. Changes in Huanghe (Yellow) River estuary since artificial re-routing in 1996. Chin J Oceanol Limnol 23,299-305.
    [6]Faria, A., Morais, P., Alexandra, M. C.,2006. Ichthyoplankton dynamics in the Guadiana estuary and adjacent coastal area, South-East Portugal. Estuar Coast Shelf Sci 70,85-97.
    [7]Haedrich, R. L.,1983. Estuarine fishes. In Ketchum, B. H. (ed) Estuaries and enclosed seas. Ecosystems of the World (Vol.26). Elsevier Scientific Publishing, Amsterdam, pp.183-207.
    [8]Monaco, M. E., Lowery, T. A., Emmett, R. L.,1992. Assemblages of U S West Coast estuaries based on the distribution of fishes. J Biogeogr 19,251-267.
    [9]Pianka, E. R.,1971. Ecology of the agamid lizard amphiboluns isolepis in Western Austria. Copeia 3,527-536.
    [10]Potter, I. C., Beckley, L. E., Whitfield, A. K., Lenanton R. C. J.,1990. Comparisons between the roles played by estuaries in the life cycles of fishes in temperate Western Australia and Southern Africa. Environ Biol Fishes 28,143-178.
    [11]Potter, I. C., Hynaesc, G. A.,1999. Characteristics of the ichthyofaunas of southwestern Australian estuaries, including comparisons with holarctic estuaries and estuaries elsewhere in temperate Australia:A review. Austra J Ecol 24,395-421.
    [12]Strydom, N. A., Whitfield, A. K., Wooldridge, T. H.,2003. The role of estuarine type in characterizing early stage fish assemblages in warm temperate estuaries, South Africa. Afr Zool 38,29-43.
    [13]Weinstein, M. P., Weiss, S. L., Hodson, R. G., Gerry,L.R.,1980. Retention of three taxa of postlarval fishes in an intensively flushed tidal estuary, Cape Fear River, North Carolina. Fish Bull U S 78,419-435.
    [14]Whitfield, A. K.,1989. Ichthyoplankton interchange in the mouth region of a southern African estuary. Mar Ecol Prog Ser,54,25-33.
    [15]Yang, J. M., Wang, C. X.,1993. Primary fish survey in the Huanghe River estuary. Chin J Oceanol Limnol 11,368-374.
    [16]Yanez-Arancibia, A.,1987. Lagunas costeras y estuarios:cronologia, criterios y conceptos para una classificacion ecologica de sistemas costeiros. ACIESP 54,1-38.
    [17]常军,刘高焕,刘庆生.黄河口海岸线演变时空特征及其与黄河来水来沙的关系.地理研究,2004,23(5):339-346.
    [18]陈大刚.黄渤海渔业生态学.北京:海洋出版社,1991.
    [19]崔毅,马绍赛,李云平,邢红艳,王梅胜,辛福言,陈聚法,孙耀.莱州湾污染及其对渔业资源的影响.海洋水产研究,2003,24(1):35-41.
    [20]邓景耀,金显仕.莱州湾及黄河口水域渔业生物多样性及其保护研究.动物学研究,2002,21(2):76-82.
    [21]韩洁,张志南,于子山.渤海中、南部大型底栖动物的群落结构.生态学报,2004,24(3):531-537.
    [22]黄大吉,苏纪兰.黄河三角洲岸线变迁对莱州湾流场和对虾早期栖息地的影响.海洋学报,2002,24(6):104-111.
    [23]焦玉木,张新华.黄河断流对河口海域鱼类多样性的影响.海洋湖沼通报,1998,4:48-53.
    [24]蒋日进,钟俊生,张冬良.长江口沿岸碎波带仔稚鱼的种类组成及其多样性特征.动物学研究,2008.29(3):297-304.
    [25]金显仕,赵宪勇,孟田湘,等.黄渤海生物资源与栖息环境.北京:科学出版社,2005.113-114.
    [26]刘效舜,吴敬南,韩光祖,等.黄、渤海渔业资源调查和区划.北京:海洋出版社,1990.
    [27]杨纪明,李军.近十五年来中国海洋鱼类学的研究概况.海洋科学集刊,1995,36:297-310.
    [28]朱鑫华,缪锋,刘栋.黄河口及邻近海域鱼类群落时空格局与优势种特征研究.海洋科学集刊,2001,43:141-150.
    [29]山东省科学技术委员会.山东省海岸带和海涂资源综合调查报告集.黄河口区综合调查报告.北京:中国科学技术出版社,1991.
    [30]程济生.黄渤海近岸水域生态环境与生物群落.青岛:中国海洋大学出版社,2004.347-359.
    [31]李泽刚.黄河口附近海区水文要素基本特征.黄渤海海洋,2000,18(3):1-6.
    [32]李凡,张秀荣.黄河入海水、沙通量变化对黄河口及邻近海域环境资源可持续利用的影响Ⅰ.黄河入海流量锐减和断流的成因及其发展趋势.海洋科学集刊,2001,43:51-59.
    [33]庞家珍,蒋明星.黄河口的演变(Ⅰ)——(一)河口水文特征.海洋湖沼通报,2003:3,1-13.
    [341单秀娟,线薇薇,武云飞.三峡工程蓄水前后秋季长江口鱼类浮游生物群落结构的动态变化初探.中国海洋大学学报,2005,35(6):936-940.
    [35]万瑞景,姜言伟.黄、渤海硬骨鱼类鱼卵与仔稚鱼种类组成及其生物学特征.上海水产 大学学报,2000,9(4):290-297.
    [36]万瑞景,孙珊.黄、东海生态系统中鱼卵、仔稚幼鱼种类组成与数量分布.动物学报,2006,52(1):28-44.
    [37]叶属峰,吕吉斌,丁德文,黄秀清.长江口大型工程对河口生境破碎化影响的初步研究.海洋工程,2004,22(3):41-47.
    [38]张洪亮,杨建强,崔文林.莱州湾盐度变化现状及其对海洋环境与生态的影响.海洋环境科学,2006,25(Sup1):11-14.
    [39]赵传姻.中国海洋渔业资源.浙江:浙江科学技术出版社,1990.45-109.
    [40]中国海湾志编纂委员会.中国海湾志,第十四分册(重要河口).北京:海洋出版社,1998.799.
    [41]朱鑫华,吴鹤洲,徐凤山,赵紫晶,叶懋中.黄、渤海沿岸水域游泳动物群落结构时空格局异质性研究.动物学报,1994,40:241-252.
    [42]朱鑫华,唐启升.渤海鱼类群落及其种间更替.海洋科学集刊,2002,44:159-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700