典型平原湿地成因及近10年来植被变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地作为人类共同的财富,与森林、海洋并称为全球三大生态系统,具有调节全球气候、控制土壤侵蚀、保持生物多样性、涵养水源、蓄洪防旱、降解污染物,防止自然灾害等独特的生态功能。因此湿地又被称为“天然水库”、“地球之肾”、“生物基因库”。由于其处于地球表面各个圈层相互作用的敏感区域,对湿地研究既有助于人类更深入的认识全球气候变化,也有助于人类可持续的开发利用湿地资源。文章依据我国湿地分类系统选取我国的三种典型的湿地类型,包括湖泊湿地(洪泽湖湿地)、滨海湿地(盐城湿地)、河口湿地(崇明东滩湿地),以及美国的沼泽湿地(Everglades;显地)作为研究对象,通过对历史资料的分析并结合实地考察对比分析了四种湿地的成因、发展、现状以及四种湿地所处的不同地理环境、人类活动强度。利用近10年来各个研究区的共计1821景MODIS (Moderate Resolution Imaging Spectroradiometer) 250 m分辨率的遥感影像对各个研究区的植被进行长时间序列的连续监测,分析评价了Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI)和Floating Algae Index (FAI)对不同区域的适应性。选取最优指数计算各个区域的累计植被面积指数AVCAs (accumulated vegetative coverage area)以及高植被覆盖天数SVCDs (significant vegetative coverage days),结合区域气象观测资料以及区域耕地面积统计资料,分析、评价了近10年来四种湿地类型的植被在人与自然相互作用下的演化动因和趋势,针对不同湿地类型的特殊地理环境,提出不同湿地类型的植被开发及保护建议,并得出如下结论:
     (1)洪泽湖国家自然湿地保护区是江淮地区典型的湖泊湿地,受河流、湖泊及古海洋的共同作用。历史上地壳断裂形成的凹陷、第四纪海侵以及淮河入海不畅是洪泽湖湿地形成的自然因素,而大规模的屯垦以及治水工程则是洪泽湖湿地形成的人为因素。江苏盐城国家级珍禽自然保护区是我国最大的滨海湿地保护区,受河流及海洋的共同作用。历史上海岸线变迁是影响盐城湿地形成及演化的主要自然因素,而人为改道黄河以及引种米草则是促使盐城湿地演化的人为因素。崇明东滩国家级自然湿地保护区是一处典型的快速演替的河口潮滩湿地,受河流及海洋的共同作用。历史上河海交互作用下的长江泥沙沉积是影响崇明东滩湿地形成及演化的主要自然因素。Everglades沼泽湿地保护区东临大西洋,西面墨西哥湾,背靠佛罗里达州最大的Okeechobee;淡水湖,受河流、湖泊及海洋的共同作用。历史上地壳运动引起的佛罗里达地台不断抬升所形成的北高南低的特殊地貌是Everglades召泽湿地形成及演化的主要自然因素,而人工渠道的修建以及疏干计划的实施是影响该湿地演化的人为因素。
     (2)2000-2009年间洪泽湖湿地保护区全域以及其核心区的AVCAs和SVCDs总体趋于下降。其中2000-2008年间下降速度最快,表现为保护区全域的AVCAs由2000年的13.63×104km2 d降低至2008年的13.17×104km2d, SVCDs由2000年的360 d降低至2008年的282 d。核心区的AVCAs由2000年的3.62×104km2d降低至2008年的3.18×104km2d, SVCDs由2000年的78 d降低至2008年的23 d。对于洪泽湖湿地保护区全域而言,相关性分析表明,年降水与AVCAs和SVCDs呈显著负相关,年日照时数与AVCAs和SVCDs呈显著正相关,年耕地面积与AVCAs和SVCDs呈显著负相关。对洪泽湖湿地保护区的核心区而言,年日照时数与AVCAs和SVCDs呈显著正相关,而年耕地面积与AVCAs和SVCDs无显著相关性。同时,对比核心区与其周边农田的FAI值发现,近10年间洪泽湖湿地保护区核心区内无大规模的农业种植活动。另,洪泽湖是淮河流域最大的湖泊,而洪泽湖湿地核心区紧邻洪泽湖畔,因此洪泽湖湿地的AVCAs和SVCDs容易受到洪水的影响,这也在2003年的洪水事件中得以证实,并且洪水对该湿地AVCAs和SVCDs的影响在其后的若干年里一直持续。这说明湖泊湿地植被演化除气象因素以及人类农业活动的影响外,也受其特殊的地理环境影响。
     (3)2000-2009年间盐城湿地保护区全域以及其核心区的AVCAs和SVCDs总体趋于下降。表现为AVCAs由2000年的200.15×104 km2 d降低至2009年的188.84×104 km2 d,SVCDs由2000年的142 d降低至2009年的81 d。核心区的AVCAs由2000年的12.54×104km2 d降低至2009年的11.72×104 km2d, SVCDs由2000年的27 d降低至2009年的5 d。对于盐城湿地保护区全域而言,相关性分析表明,年降水与SVCDs呈显著正相关,年耕地面积与SVCDs呈显著负相关。对盐城湿地保护区的核心区而言,年积温与AVCAs和SVCDs呈显著正相关,而年耕地面积与AVCAs和SVCDs无显著相关性。同时,对比核心区与其周边农田的FAI值,发现近10年间盐城湿地保护区核心区内无大规模的农业种植活动。另,盐城湿地濒临黄海,其岸线目前总体上处于侵蚀状态。岸线的蚀退导致的土地面积减少将直接影响到沿岸滨海湿地的AVCAs和SVCDs值的变化。因此,除气象因素以及人类农业活动外,岸线变迁也是影响滨海湿地植被演化的另一个重要因素。
     (4)2000—2009年间崇明东滩湿地保护区全域的AVCAs和SVCDs总体趋于下降。表现为AVCAs由2000年的11.20×104km2 d降低至2009年的10.90×104km2d, SVCDs由2000年的124 d降低至2009年的109 d。而崇明东滩湿地保护区核心区的AVCAs由2002年的2.34×104km2 d上升至2009年的2.39×104km2d, SVCDs由2002年的216d上升至2009年的280 d。对于崇明东滩湿地保护区全域而言,相关性分析表明,年降水与AVCAs和SVCDs呈显著正相关,年耕地面积与AVCAs和SVCDs无显著相关性。对崇明东滩湿地保护区的核心区而言,气象要素及年耕地面积均与AVCAs和SVCDs无显著相关性。同时,对比核心区与其周边农田的FAI值,发现近10年间崇明东滩湿地保护区核心区内无大规模的农业种植活动。另,崇明东滩湿地位于长江入海口,受河海交互作用影响,由于长江泥沙的不断淤积,崇明岛仍然继续着每年平均约150-230 m的速度向东海延伸的势头。湿地面积的淤涨使得该湿地全域的AVCAs和SVCDs的降幅要明显缓于其他几个湿地,同时该湿地的核心区的AVCAs和SVCDs是所选湿地类型中唯一趋于增长的湿地类型。所以除气象因素外,河海交互作用导致的湿地面积淤涨是影响河口湿地植被演化的另一个重要因素。
     (5)近10年间Everglades湿地保护区的SVCDs始终稳定在365 d—366 d,而AVCAs则由2000年的155.06×104 km2 d降低至2009年的153.77×104km2 d。相关性分析表明,年积温和年降水均与其AVCAs呈显著正相关。同时,对比Everglades湿地保护区与其周边农田的FAI值,发现近10年间湿地Everglades保护区内无大规模的农业种植活动。另,Everglades沼泽湿地沿岸多为红树林,起到了一定的护岸作用,所以近年来Everglades沼泽湿地的面积基本没有发生变化。因此气象因素是影响该湿地的植被演化的一个重要因素。
     (6)四种不同类型湿地近10年的AVCAs和SVCDs曲线趋势线斜率表明,对于四种湿地全域而言,盐城湿地全域的AVCAs和SVCDs曲线下降速度最快,而崇明东滩湿地全域的AVCAs和SVCDs曲线下降速度最缓。对于核心区而言,洪泽湖湿地核心区的AVCAs和SVCDs曲线下降速度最快,崇明东滩湿地核心区AVCAs和SVCDs曲线则表现为上升趋势。同时FAI指数表明,我国的三种类型湿地的核心区内均无大规模的农业种植活动,而核心区以外区域均有不同程度的农业种植活动。
     (7)对三种植被指数(NDVI、EVI、FAI)的评价结果表明,EVI指数在农田以及包含农田的植被盖度相对较高的区域表现最为优越,因此EVI更适合用于评价洪泽湖湿地全域、盐城湿地全域以及崇明东滩湿地全域的植被。而对于以天然植被为主以及植被盖度相对较低的区域,FAI表现最为优越,因此FAI更适合用于评价洪泽湖湿地核心区、盐城湿地核心区、崇明东滩湿地核心区以及Everglades湿地全域。
     (8)针对不同湿地的演化动因并结合开发现状,提出如下湿地植被保护及可持续利用策略。洪泽湖湿地的可持续利用策略包括:退耕还湿,稳定湿地面积;优化调整农业结构;严格限制洪泽湖核心区开发;适度开发洪泽湖湿地的旅游资源;改善入湖水质。盐城湿地的可持续利用策略包括:优化农业结构;科学维护植物物种多样性;严格控制污染源;适度开发湿地生态旅游。崇明东滩湿地的可持续利用策略包括:动态划分湿地生态安全界线;增强植被多样性;合理利用及保护湿地水资源。Everglades;湿地的可持续利用策略包括:调控水资源;恢复地表水流自然流通;改善水质。
Wetlands, together with the forests and oceans, are regarded as the treasures of human and the most important ecosystems on the earth. They have some special ecological functions, such as adjust the globe climate, control the soil erosion, protect the biodiversity, conserve the water resource, prevent the floods and drought, degrade the pollutions and prevent other the potential natural disasters. Thus, wetlands are called "the natural reservoir", "the kidney of the Earth" and "the gene pool". Wetlands are very sensitive because they associate with Atmosphere, Lithosphere, Biosphere and Hydrosphere, so wetlands research will improve our understanding of the globe climate change and the sustainable utilization of wetlands. In this work, four different types of wetlands are chosen, including Hongze wetland (lake wetland), Yancheng wetland (costal wetland), Chongming Dongtan wetland (river mouth wetland) and Everglades wetland (marsh wetland), according to the wetlands classification systems of China (Tang & Huang,2003). History records, field work data, local meteorological data, agricultural activities records and 10 years Moderate Resolution Imaging Spectroradiometer (MODIS) 250-m resolution images are used to study the formation, the development, the driving factors and the trend of the vegetation coverage change of these four wetlands under the interactions caused by both anthropogenic (e.g., agricultural activities) and natural (e.g., climate change) effects. Three vegetation indices (VIs) including Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Floating Algae Index (FAI) are compared to evaluate their effectiveness in assessing relative changes of these four wetlands. AVCAs (accumulated vegetative coverage area) and SVCDs (significant vegetative coverage days) are calculate by the selected VIs. By evaluating the difference of the geographical environments, some suggestions and conclusions for the sustainable utilization of these four wetlands' vegetation are finally given out:
     (1) Hongze wetland is the typical lake wetland in the watershed of Huaihe and Yangtze River impacted by rivers, lake and quaternary marine transgression. The history records show that the process of the formation and the development of Hongze wetland are affected by both natural and anthropogenic effects. Depression caused by crustal fault, the quaternary marine transgression and deposition of sediment in Huaihe River channel are the main natural effects, and the large scale agricultural activities and water control program are the main anthropogenic effects. Yancheng wetland is the largest coastal wetland impacted by both river and ocean. The history records show that the process of the formation and the development of Yancheng wetland are affected by both natural and anthropogenic effects. The shoreline change is the main natural effect, and the channel change of Yellow River and the spread of Spartina are the main anthropogenic effects. Chongming Dongtan wetland is a typical river mouth wetland impacted by both river and ocean. The history records show that sediment deposition of Yangtze River by river-sea interactive is the main natural effect and affects the process of the formation and the development of Chongming Dongtan wetland. Everglades wetland located among Okeechobee Lake, the Atlantic Ocean and the Gulf of Mexico, so it was affected by rivers, lake and oceans. The history records show that the process of the formation and the development of Everglades wetland are affected by both natural and anthropogenic effects. The rising of Florida platform caused by crustal movements is the main natural effect, and the implementation of Everglades Drainage District (EDD) plan and the construction of the channels are the main anthropogenic effects.
     (2) The AVCAs and SVCDs of Hongze wetland in both the whole and the core areas show degradation trends in the past 10 years. For the whole area of Hongze wetland, the AVCAs and SVCDs decreased quickly between 2000 and 2008. The AVCAs changed from 13.63×104 km2 d to 13.17×104 km2 d and the SVCDs changed from 360 d to 282 between 2000 and 2008. For the core area, the AVCAs changed from 3.62×104 km2 d to 3.18×104 km2 d and the SVCDs changed from 78 d to 23 between 2000 and 2008. For the whole area, correlation analysis shows that cropland acreage and annual precipitation collectively played significant negative roles in affecting the AVCAs and SVCDs. However, annual sunshine duration played a significant positive role. For the core area of Hongze wetland, correlation analysis shows that annual sunshine duration played a significant positive role in affecting the AVCAs and SVCDs. FAI shows that there are no large scale agricultural activities in the core area of Hongze wetland during the past 10 years. Hongze Lake is the largest Lake in the Huaihe watershed, and the wetland is nearby the Hongze Lake. Thus, flooding event caused a sharp drop of AVCAs and SVCDs in 2003, and the affect continued in the following years. Therefore, the degradation trends of the vegetation coverage of Hongze wetland are mainly caused by both the anthropogenic and the natural effects.
     (3) The AVCAs and SVCDs of Yancheng wetland in both the whole and the core areas show degradation trends in the past 10 years. For the whole area of Yancheng wetland, the AVCAs changed from 200.15×104 km2 d to 188.84×104 km2 d and the SVCDs changed from 142 d to 81 between 2000 and 2009. For the core area, the AVCAs changed from 12.54×104 km2 d to 11.72×104 km2 d and the SVCDs changed from 27 d to 5 between 2000 and 2009. For the whole area, correlation analysis shows that cropland acreage played significant negative roles in affecting the SVCDs. However, annual precipitation played a significant positive role. For the core area of Yancheng wetland, correlation analysis shows that accumulated air temperature played a significant positive role in affecting the AVCAs and SVCDs. FAI shows that there are no large scale agricultural activities in the core area of Yancheng wetland during the past 10 years. The coastal area of Yancheng wetland is generally in erosion condition and the erosion affected the change of AVCAs and SVCDs in this region. Thus, the degradation trends of the vegetation coverage in the core area of Yancheng wetland are mainly caused by both the anthropogenic and the natural effects.
     (4) The AVCAs and SVCDs of Chongming Dongtan wetland in the whole areas show degradation trends in the past 10 years. For the whole area of Chongming Dongtan wetland, the AVCAs changed from 11.20×104 km2 d to 10.90×104 km2 d and the SVCDs changed from 124 d to 109 between 2000 and 2009. For the core area, the AVCAs increased from 2.34×104 km2 d to 2.39×104 km2 d and the SVCDs increased from 216 d to 280 between 2002 and 2009. For the whole area, correlation analysis shows annual precipitation played a significant positive role in affecting the AVCAs and SVCDs. For the core area, correlation analysis shows that there are no significant roles among all of them. FAI shows that there are no large scale agricultural activities in the core area of Chongming Dongtan wetland during the past 10 years. Chongming Dongtan wetland is generally in accretion condition and the accretion rate is about 150-230 m yr-1. The accretion condition caused the AVCAs and SVCDs of the whole area decrease slowly and the AVCAs and SVCDs of the core area even increase. Thus, the change trends of the vegetation coverage in Chongming Dongtan wetland is mainly caused by the natural effects.
     (5) The SVCDs of Everglades keep stable between 365 d and 366 d during the past 10 years. However, the AVCAs changed from 155.06×104 km2 d to 153.77×104 km2 d between 2000 and 2009. Correlation analysis shows that annual accumulated air temperature and annual precipitation played significant positive roles in affecting the AVCAs. FAI shows that there are no large scale agricultural activities in the Everglades wetland during the past 10 years. There are many mangroves distributed alone the shoreline of the Everglades and they protect the shoreline from the erosion. Thus, the change of the AVCAs is mainly caused by the natural effects.
     (6) The slopes of the AVCAs and SVCDs plots show that, for the whole area, degradation trends of Yancheng wetland is listed the 1st and degradation trends of Chongming Dongtan wetland is listed the last. For the core area, degradation trends of Hongze wetland is listed the 1st, and the AVCAs and SVCDs plots of Chongming Dongtan wetland even shows increase trends. FAI shows there are no large scale agricultural activities in the core area of Hongze wetland, Yancheng wetland and Chongming Dongtan wetland. However, the agricultural activities still affect the area outside the core.
     (7) Three vegetation indices (VIs) are compared to evaluate their effectiveness in assessing relative changes. These are the Normalized Difference Vegetation Index (NDVI), the Floating Algae Index (FAI), and the Enhanced Vegetation Index (EVI). EVI is less sensitive than others in assessing croplands or the area including croplands. Thus, EVI is more suitable in assessing the vegetation of the whole area of Hongze wetland, Yancheng wetland and Chongming Dongtan wetland. FAI is less sensitive than NDVI and EVI to aerosol effects and shows less statistical error than NDVI and EVI in assessing lower vegetation coverage area, such as the area covered by natural vegetation. Therefore, FAI is chosen to study vegetation of the core area of Hongze wetland, Yancheng wetland, Chongming Dongtan wetland and the whole area of Everglades wetland.
     (8) Depending on the different process of the formation and the development of the four wetlands, following strategies are given out in order to protect and sustainable utilize the vegetation resource of the wetlands. For Hongze wetland: reconverting the farmland into the wetland; keeping the wetlands area stable; optimizing and adjusting the current agricultural structures; prohibiting agricultural activities in core area; moderate exploring the tourism; improving the water quality of Hongze lake. For Yancheng wetland:optimizing and adjusting the current agricultural structures; keeping species diversity;controlling the pollution; moderate exploring the eco-tourism. For Chongming Dongtan wetland:segmenting ecological security boundary dynamically; improving species diversity; utilizing and protecting water resource rationally. For Everglades wetland:controlling the water resource; recovering the natural outlet of the surface runoff; improving the water quality.
引文
Bailey-Serres J., Voesenek L. A. C. J., Flooding stress:Acclimations and genetic diversity. Annual Review of Plant Biology,2008,59:313-339
    Busch D. E., Loftus W. F., Bass O. L., Long-term hydrologic effects on marsh plant community structure in the southern Everglades. Wetlands,1998,18 (2):230-241
    Chimney M. G., Goforth G., Environmental impacts to the Everglades ecosystem:a historical perspective and restoration strategies. Water Science and Technology, 2001,44 (11):93-100
    Doyle T. W., Krauss K. W., Conner W. H., From A. S., Predicting the retreat and migration of tidal forests along the northern Gulf of Mexico under sea-level rise. Forest Ecology and Management,2010,259 (4):770-777
    Florida Geological Survey. Florida's geological history and geological resources. 1994,8-10.
    Gordon H. R., Wang M., Surface-roughness considerations for atmospheric correction of ocean color sensors I:the rayleigh-scattering component. Applied Optics, 1992a,31:4247-4260
    Gordon H. R., Wang M., Surface-roughness considerations for atmospheric correction of ocean color sensors II:error in the retrieved water-leaving. Applied Optics, 1992b,31:4261-4267
    Hu C., A novel ocean color index to detect floating algae in the global oceans. Remote Sensing of Environment,2009,113:2118-2129
    Hu C., Lee Z., Ma R., Yu K., Li D. and Shang S., Moderate Resolution Imaging Spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. Journal of Geophysical Research,2010,115, C04002, doi:10.1029/2009JC005511
    Huete A. R., A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment,1988,25:295-309
    Huete A. R., Justice C., Liu H., Development of vegetation and soil indices for MODIS-EOS. Remote Sensing of Environment,1994,49:224-234
    Huete A. R., Liu H. Q., Batchily K., Leeuwen W., A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment,1997,59:440-451
    Huete A. R., Justice C., MODIS vegetation index (MOD13) algorithm theoretical basis document.1999, Ver.3
    Huete A. R., Didan K., Miura T., Rodriguez E. P., Gao X., Ferreira L.G., Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment,2002,83:95-213
    Huete A. R., Jackson R. D., Post D. F., Spectral response of a plant canopy with different soil backgrounds. Remote Sensing of Environment,1985,17:37-53
    Hulme, P. E., Adapting to climate change:is there scope for ecological management in the face of a global threat? Journal of Applied Ecology,2005,42:784-794.
    Jackson M. B., Drew M. C., Effects of flooding on growth and metabolism of herbaceous plants. Orlando:Academic Press, INC.,1984
    Jarosewich M., Wagner J., Geologic structure of surficial aquifer system underlying Everglades National Park and the Big Cypress National Preserve. Reprot SFRC-85/02.1985,2-43
    Jensen J. R., Christensen E. J., Sharitz R., Nontidal wetland mapping in south Carolina using airborne multispectral scanner data. Remote Sensing of Environment,1984,16:1-12
    Lee T. M., Yeh H. C., Applying remote sensing techniques to monitor shifting wetland vegetation:A case study of Danshui River estuary mangrove communities, Taiwan. Ecological Engineering,2009,35:487-496
    Liang S., Quantitative remote sensing of land surfaces. Hoboken:John Wiley & Sons, Inc.2004
    Liu H., Huete A. R., A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing,1995,33:457-465
    Maltby E., Dugan P. J., Wetland ecosystem protection, management, and restoration: an international perspective. In:Everglades:The Ecosystem and its Restoration (ed By Davis S. M., Ogden J. C.). Florida:St. Lucie Press.1994
    Matthew C. G., River of Interests:Water management in south Florida and the Everglades,1948-2000. Historical Research Associates, Inc.2006
    McCally D., The Everglades:An environmental history. Gainesville:University of Florida Press.2000
    Mcdonald B. R., West-Virginia USA wetland research program an overview. Wetlands,1981,1:112-115
    Michael W., Wetlands:A threatened landscape. Oxford:Wiley-Blackwell Press.1991
    Mita, D., Dekeyser, E., Kirby, D, Easson, G., Developing a wetland condition prediction model using landscape structure variability. Wetlands,2007, (27) 4:1124-1133
    Mitsch, W. J., Gosselink, J. G., Wetlands,3rd Ed, John Wiley & Sons, New York, 2000.
    Mitsch, W. J.,2005. Applying science to conservation and restoration of the world's wetlands. Water Science and Technology,51,13-26.
    Mitsch W. J., Gosselink J. G., Wetlands. Hoboken:John Wiley & Sons, Inc. Press.2007
    Muller P. O., Lake Okeechobee. World Book Online Reference Center.2008
    National Park Service, Dry Season.2007 (a)
    National Park Service, Wet Season.2007 (b)
    Nayak S., Pandeya A, Gupta M. C., Trivedi C. R., Prasad K. N., Kadri S. A., Application of satellite data for monitoring degradation of tidal wetlands of the Gulf of Kachchh, western India. Acta Astronautica,1989,20:171-178
    Odland A., Development of vegetation in created wetlands in western Norway. Aquatic Botany,1997,59:45-62
    Polis D. F., Salter M., Lind H., Hydrographic verification of wetland delineation by remote sensing. Photogrammetric Engineering and Remote Sensing,1974, 40:75-78
    Pyrovetsi M., Daoutopoulos G., Farmers's needs for nature conservation education in Greece. Journal of Environment Management,1999,56:147-157
    Ratner B., Statistical Modeling and Analysis for Database Marketing:Effective Techniques for Mining Big Data. Boca Raton:CRC Press.2003
    Richard D., Dauvin J. C., Conservation strategies for French coastal areas. Aquatic Conservation-Marine and Freshwater Ecosystems,1996,6 (4):205-214
    Rocha, A. V., Shaver, G. R., Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes. Agricultural and Forest Meteorology, 2009,149:1560-1563
    Rouse J.W., Haas R. H., Schell J. A., Deering D.W., Monitoring vegetation systems in the Great Plains with ERTS. Third ERTS Symposium, NASA SP-351 I, 1973
    Sharitz R. R., Carolina bay wetlands:Unique habitats of the southeastern United States. Wetlands,2003,23 (3):550-562
    Sivanpillai R., Latchininsky A. V., Mapping locust habitats in the Amudarya River Delta, Uzbekistan with multi-temporal MODIS imagery. Environmental Management,2007,39:876-886
    Steven, M. D., John C. O., Everglades:the ecosystem and its restoration. St. Lucie Press, Delray Beach, FL,1994:3-5
    Stockton M. B., Richardson C. J., Wetand development trends in coastal north Carolina, USA, from 1970 to 1984. Environmental Management,1987,11 (5):649-657
    Stroh, C. L., De Stenven, D., Guntenspergen, G. R., Effect of climate fluctuations on long-term vegetation dynamics in Carolina Bay wetlands. Wetlands,2008,28: 17-27
    Vermote E. F., D. Tanre J. L. Deuze M. Herman, Morcette J. J., Second Simulation of the Satellite Signal in the Solar Spectrum,6S:an overview. IEEE Transactions Geoscience and Remote Sensing,1997,35:675-686
    Visser J. M., Sasser C. E., Chabreck R. H., Linscombe R. G., Long-term vegetation change in Louisiana tidal marshes,1968-1992. Wetlands,1999,19(1):168-175
    Voesenek L. A. C. J., Colmer T. D., Pierik R., Millenaar F. F., Peeters A. J. M., How plants cope with complete submergence. New Phytologist,2006,170 (2):213-226
    Wang M., Gordon, H. R., A simple moderately accurate atmospheric correction algorithm for SeaWiFS. Remote Sensing of Environment,1994,50:231-239
    Wang M., Shi W., Estimation of ocean contribution at the MODIS nearinfrared wavelengths along the east coast of the U.S.:Two case studies. Geophysical Research Letters,2005,32 (13):L13106. doi:10.1029/2005GL022917
    Wang Y., Zhu D., Characteristics and exploitation of coastal wetland of China. Resources and Environment in the Yangtze Basin,2006,15(5):553-559.
    William P., Elements of south Florida's comprehensive Everglades restoration plan. Ecotoxicology,2004,13:185-193
    Winter T. C., Rosenberry D. O., Buso D. C., Merk D. A., Water source to four US wetlands:Implications for wetland management. Wetlands,2001,21 (4);462-473
    Wolfe R. E., Nishihama M., Fleig A. J., Kuyper J. A., Roy D. P., Storey J. C., Part F. S., Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sensing of Environment,2002,83:31-49
    Yang Y., Girolamo L. D., Mazzoni D., Selection of the automated thresholding algorithm for the Multi-angle Imaging SpectroRadiometer Radiometric Camera-by-Camera Cloud Mask over land. Remote Sensing of Environment, 2007,107:159-171
    Zhao B., Yan Y. E., Guo H. Q. Monitoring rapid vegetation succession in estuarine wetland using time series MODIS-Based indicators:An application in the Yangtze River Delta Area. Ecological Indicators,2009,9:346-356
    Zoffoli M. L., Kandus P., Madanes N., Calvo D. H., Seasonal and interannual analysis of wetlands in South America using NOAA-AVHRR NDVI time series:the case of the Parana Delta Region. Landscape Ecology,2008,23:833-848
    蔡则健,吴曙亮.江苏海岸线演变趋势遥感分析.国土资源遥感,2002,53(3):19-23
    操文颖,李红清,李迎喜.长江口湿地生态环境保护研究.人民长江,2008,39(23):43-45
    陈红卫.盐城市水环境整治对策.水资源研究,2005,96(3):37-39
    曾志远等.卫星遥感图像计算机分类与地学应用研究.北京:科学出版社,2004
    陈红卫.盐城市降水特征分析.水文,2000,20:62-65
    陈吉余,陈祥禄,杨启伦.上海海岸带和海涂资源综合调查报告.上海:上海科技出版社,1988
    陈宜瑜.中国湿地研究.长春:吉林科学技术出版社,1995
    戴洪刚,杨志军.洪泽湖湿地生态调查研究与保护对策.环境科学与技术,2002,25(2):37-39
    宫鹏,牛振国,程晓等.中国1990和2000基准年湿地变化遥感.中国科学D辑:地球科学,2010,40(6):768-775.
    丁东,李日辉.中国沿海湿地研究.海洋地质与第四纪地质,2003,23(1):109-112
    丁晶晶,王磊,季永华,丁玉华,李荣锦.江苏省盐城海岸带湿地景观格局变化研究.湿地科学,2009,7(3):202-207
    范晓虹,李尉民.保护我国生物安全的检疫对策研究.生物多样性,2001,9(4):439-445
    葛振鸣,王天厚,施文或,赵平.崇明东滩围垦堤内植被快速次生演替特征.应用生态学报,2005,16(9):1677-1681
    韩昭庆.黄淮关系及其演变过程研究——黄河长期夺淮期间淮北平原湖泊、水系的变迁和背景.上海:复旦大学出版社,1999
    何小勤,顾成军.崇明湿地围垦与可持续发展研究.国土与自然资源研究,2003,4:39-40
    黄锡畴.中国沼泽研究.北京:科学出版社,1988
    黄锡畴.试论沼泽的分布和发育规律.地理科学,1982,2(3):191-201
    纪涛.洪泽湖湿地国家级自然保护区物种多样性与生态规划研究.南京林业大学申请硕士学位毕业论文.2007
    冀永生,上海市湿地资源现状与保护对策研究.华东师范大学申请硕士学位毕业论文.2009
    江苏省地质矿产局.江苏省及上海市区域地质志.北京:地质出版社,1982
    任美锷等.江苏省海岸带和海涂资源综合调查(报告).北京:海洋出版社,1986
    蒋炳兴.江苏盐城地区海岸的冲淤动态.地理科学,1991,11(4):380-388
    李书恒.大运河苏北段湖泊群近现代环境演变及其对人类活动的响应.南京大学申请博士学位毕业论文.2008
    李杨帆,朱晓东,邹欣庆,高建华.江苏盐城海岸湿地景观生态系统研究.海洋通报,2005,24(4),46-51
    李杨帆,朱晓东,邹欣庆,刘青松,高建华.盐城海岸湿地资源环境压力与生态调控响应.自然资源学报,2004,19(6):754-760
    梁树献,杨亚群,徐珉.淮河流域6-8月旱涝分布特征.水文,2001,21(2):54-56
    廖静娟,王庆.利用Radarsat-2极化雷达数据探测湿地地表特征与分类.国土资源遥感,200981(3):70-73
    凌申.全新世苏北沿海岸线冲淤动态研究.黄渤海海洋,2002,20(2):37-46
    刘春悦,张树清,江红星,王会,孙妍.江苏盐城滨海湿地景观格局时空动态研究.国土资源遥感,2009,81(3):78-83
    刘红玉,张世奎,吕宪国.20世纪80年代以来挠力河流域湿地景观变化过程研究.自然资源学报,2002,17(6):698-705
    刘红玉.中国湿地资源特征、现状与生态安全.资源科学,2005,27(3):54-60
    刘良明.卫星海洋遥感导论.武汉:武汉大学出版社,2005
    刘婧.中国湿地资源研究综述.资源与产业,2007,9(4):21-23
    刘青松,李扬帆,朱晓东,江苏盐城自然保护区滨海湿地生态系统的特征与健康设计。海洋学报,2003,25(3):113-148
    刘瑜,韩震,郭永飞.植被指数在长江口潮滩湿地植被信息提取中的应用研究.遥感技术与应用,2009,24(6):777-783
    刘玉洁,杨忠东.MODIS遥感信息处理原理与算法.北京:科学出版社,2001
    吕宪国,刘晓辉.中国湿地研究进展—献给中国科学院东北地理与农业生态研究所建所50周年.地理科学,2008,28(3):301-307
    梅安新,彭望禄.遥感导论.北京:高等教育出版社,2001
    那晓东,张树清,李晓峰等.MODIS NDVI时间序列在三江平原湿地植被信息提取中的应用.湿地科学,2007,5(3):227-236
    南楠.江苏泗洪洪泽湖湿地保护区植被多样性及其对水质的净化效应研究,南京林业大学申请硕士学位毕业论文.2008
    牛芩涛,盛业华.GeoTIFF图像文件的数据存储格式及读写.四川测绘,2004,27(3):105-108
    牛振国,宫鹏,程晓等.中国湿地初步遥感制图及相关地理特征分析.中国科学D辑:地球科学,2009,39(2):188-203
    欧维新,杨桂山,李恒鹏,于兴修.苏北盐城海岸带景观格局时空变化及驱动力分析.地理科学,2004,24(5):610-615
    阮仁宗,冯学智,肖鹏峰,沈渭寿,张惠.洪泽湖天然湿地的长期变化研究.南京林业大学学报(自然科学版),2005,29(4):57-60
    尚正永,白永平,叶正伟.洪泽湖区湿地旅游资源及其生态开发.西北师范大学学报,2005,41(4):73-77
    沈焕庭.长江河口物质通量.北京:海洋出版社,2001
    施俊杰,张振声,张诗履,沙文达.崇明滩涂湿地的保护措施.上海建设科技,2004,1:28-29
    宋国贤,朱丽莎,钮栋梁.崇明东滩湿地的保育与利用.人民长江.2009,8(40):31-34
    史照良.江苏省地图集.北京:中国地图出版社,2004
    孙广友.中国湿地科学的进展与展望.地球科学进展,2000,15(6):666-672
    孙广友.美国湿地研究进展.地理科学,1997,17(1):87-90
    孙家抦,舒宁.遥感原理、方法和应用.北京:测绘出版社,1997
    汪松年.上海湿地利用和保护.上海:上海科学技术出版社,2003
    唐小平,黄桂林.中国湿地分类系统研究.林业科学研究.2003,16(5):531-539.
    王爱军,高抒.江苏王港海岸湿地的围垦现状及湿地资源可持续利用.自然资源学报.2005,20(6):822-829
    王加连,刘忠权.盐城滩涂生物多样性保护及其可持续利用.生态学杂志,2005, 24(9):1090-1094
    王开运,邹春静,孔正红,王天厚,陈小勇.生态承载力与崇明岛生态建设.应用生态学报,2005,16(12):2447-2453
    王宪礼,胡远满,布仁仓.辽河三角洲湿地的景观变化分析.地理科学,1996,16(3):260-265
    王宪礼.我国自然湿地的基本特点.生态学杂志,1997,16(4):64-67.
    王云静,刘茂松,徐惠强,安树青,李瑾,管永健,陈青芳.江苏自然湿地的生物多样性特点.南京大学学报(自然科学版),2002,38(2):173-181
    王正兴,刘闯,Huete A. R.植被指数研究进展:从AVHRR-NDVI到MODIS-EVI.生态学报,2003,23(5):979-986
    王资生,阮成江.盐城滩涂生态系统及可持续利用.海洋科学,2001,7(25):15-18
    吴翠,唐万鹏,史玉虎,张凤芝,袁传武.长湖湿地水生植被演替研究.湿地科学,2007,5(2):188-191
    肖笃宁,胡远满,李秀珍.环渤海三角洲湿地的景观生态学研究.北京:科学出版社,2001
    谢高地,鲁春霞,冷允法,郑度,李双成.青藏高原生态资产的价值评估.自然资源学报,2003,18(2):189-196
    徐希孺.遥感物理.北京:北京大学出版社,2005
    许辉熙,何政伟,但尚铭,但玻,杨存建.基于EOS/MODIS的若尔盖高原湿地定量遥感研究.冰川冻土,2007,29(3):450-455
    荀德麟.洪泽湖志.北京:方志出版社,2003
    郁丹英,贾利.关于洪泽湖生态水位的探讨.水利规划与设计,2005,2:56-60
    闫芊,蒋海涛,陆健健.崇明东滩湿地植被及土壤环境因子特征研究.人民长江,2008,39(23):75-79
    闫芊,陆健健,何文珊.崇明东滩湿地高等植被演替特征.应用生态学报,2007,18(5):1097-1101
    杨士建.洪泽湖湿地资源保护与可持续利用研究.重庆环境科学.2003,2(25):15-17
    杨世伦,姚炎明,贺松林.长江口冲积岛岸滩剖面形态和冲淤规律.海洋与湖沼. 1999,6(30):764-769
    杨永兴.国际湿地科学研究的主要特点、进展与展望.地理科学进展.2002,2(21):111-120
    叶正伟.洪泽湖流域洪涝灾害的成灾机理分析与探讨.水文,2006,4(26):86-87
    叶正伟,朱国传,陈良.洪泽湖湿地生态脆弱性的理论与实践.资源开发与市场.2005a,21(5):416-420
    叶正伟,朱国传,江波.过去100年来洪泽湖洪涝灾害特性分析.水利水电技术,2005b,36(3):62-65
    于堃.奇台绿洲生态景观变化动因及对策研究.新疆大学申请硕士学位毕业论文.2006
    于堃,陆殿梅,熊黑钢.近7年来渤海海区冬季表层海水叶绿素浓度的遥感反演及其变化分析.遥感信息,2009,6:55-62
    于砚民.长江口地区湿地生态环境调查与保护对策.首都师范大学学报(自然科学版),2000,21(3):81-87
    袁红伟,李守中,郑怀舟,方舟易.外来种互花米草对中国海滨湿地生态系统的影响评价及对策.海洋通报,2009,28(6):122-128
    袁军,吕宪国.湿地功能评价研究进展.湿地科学,2004,2(2):153-160
    翟光明.中国石油地质志(卷八).北京:石油工业出版社,1992
    张建军.江苏北部地区黄河南徙的环境效应.南京大学申请硕士学位毕业论文.2000
    章雷,张民,周家军.洪泽湖湿地国家级自然保护区的建设成就与建议.河北农业科学,2008,12(12):66-67
    张彤,梅安新,蔡永立.SPOT遥感数据在崇明东滩景观分类研究中的应用期.城市环境与城市生态,2004,17(2):45-47
    张修桂.崇明岛形成的历史过程.复旦学报(社会科学版),2005,3:57-66
    张学勤,王国祥,王艳红,王治良.江苏盐城沿海滩涂淤蚀及湿地植被消长变化.海洋科学,2006,30(6):35-45
    张云峰,凌申,秦文俊.盐城海岸湿地资源利用及可持续发展研究.海洋湖沼通报,2008,3:174-182
    赵可夫,李法曾,樊守金.中国的盐生植物.植物学通报,1999,16(3):201-207
    赵英时.遥感应用分析原理与方法.北京:科学出版社,2004
    周华锋,傅伯杰.景观生态结构与生物多样性保护.地理科学,1998,18(5):472-478
    朱大奎,柯贤坤,高抒.江苏海岸潮滩沉积的研究.海洋科学进展,1986,4(3):19-27
    朱立峰,郑祥民,周立旻,王永杰.崇明东滩湿地沉积物砷的形态特征.城市环境与城市生态,2009,22(5):26-33
    朱松泉,窦鸿身.洪泽湖.合肥:中国科学技术大学出版社.1993
    庄秀琴.洪泽湖区湿地可持续发展利用研究.江苏农业科学,2006,3:199-202
    庄秀琴,洪泽湖湿地生态保护与可持续发展利用研究.绥化师专学报,2003,4(23):25-27。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700