现代黄河三角洲滨海湿地环境演变及退化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地是地球上自然生产力最高的生态系统之一,滨海湿地是其重要类型。现代黄河三角洲滨海湿地由于具有显著的原生性、脆弱性、稀有性,作为鸟类栖息地、繁殖地和中转站,在国际上具有重要地位,近年来吸引了不少国内外学者对其进行研究,取得了颇多成果,但有关其环境演变及退化方面的研究还较少。本文通过实地调查,运用多种手段,对现代黄河三角洲滨海湿地的环境演变及退化过程进行研究,并对其退化进行评价,得到如下主要结论:
     (1)现代黄河三角洲滨海湿地的演化发育是在黄河泥沙淤积形成的沉积体叶瓣上发生的,与黄河来水来沙量有着密切的关系。1976年以来,黄河改走清水沟流路期间,新叶瓣的发育经历了扇形平面展开、纵向突出伸展、横向扩展、废弃改造4个阶段;1996年清8改汊后,由于黄河水沙来源的减少和年际差异,新沙嘴呈现出频繁的蚀淤交替变化。加之人类活动的影响,滨海湿地的发育演化具有了新的特点,包括人类和自然等各种外界干扰的存在,是其不断演化发育的外部条件。
     (2)新生湿地上的植被随新生陆地的进退变化而发生顺向或是逆向的发育演替,但总体上具有明显的盐生特征。芦苇是新生滨海湿地上的优势群落。初步调查显示,随着滨海湿地的淤高、河口的伸展,在以草本群落为主的生态系统中,沿河口向上游生物量逐渐下降。
     (3)现代黄河三角洲滨海湿地物质组成以粉砂为主,环境化学特征具有显著的区域差异,现行水河口区、废弃河口区及油田分布区有明显不同;不同的生境条件下亦有明显差异。分析化学要素之间的关系发现,选取的22种化学成分在现代黄河三角洲滨海湿地具有很好的共生组合性;有机质含量与含盐量有正相关关系,反映了当地的盐生环境。
     (4)在遥感影像分类基础上,运用景观生态学方法研究表明,20年来,海域始终是现代黄河三角洲滨海湿地最大的一种景观类型,而且面积在不断扩大,各种湿地景观类型转为海域的面积总和达2.72万ha,而海域转为其它类型的面积仅为0.45万ha,说明滨海湿地损失严重;所有景观类型中变化最大的是水域,突出反映了养殖开发造成的滩涂景观变化。景观格局指数的变化表明,20年来现代黄河三角洲滨海湿地景观破碎化加深,其中人类活动起了主要作用;植被指数显示,植被覆盖面积减少,质量变差,盖度降低,植被覆盖整体趋向恶劣。滨海湿地退化趋势明显。
     (5)现代黄河三角洲滨海湿地的损失退化是一个复杂过程,其发生原因是多方面的,包括海岸侵蚀、海面上升、风暴潮灾、黄河断流、油田开发、滩涂围垦、
Coastal wetland is an important type of wetland, one of the highest productivity of ecosystem on the earth. Due to its remarkable primordial, vulnerability and scarcity, the Modern Yellow River Delta coastal wetlands (MYRDCW), as a place for birds to inhabit, reproduce and migrate, plays a very important role internationally. In recent years, it has attracted many domestic and international researchers to study it. The achievements have been fruitful. But there are few studies on its environmental evolvement and degradation. Supported by findings from field surveys and other means, the research in this paper studies the environmental change and degradation, and evaluates its degradation as well for MYRDCW.MYRDCW has evolved and developed on the lobe of deposit body. It has close relationship with water and sand in Yellow River (YR). From 1976 to 1996, during the period when YR flowed along Qingshuigou, the development of new lobe has undergone four phases: outspread on the plane shaped like a sector, expansion on lengthwise orientation, enlargement on widthwise orientation and alteration after abandoned. Because of the decrease of the amount of sand sources in YR since it changed its course at Qing 8 in 1996, the new spit of the river mouth started to have the characteristic of frequent alternated between erode and silt. Impacted by human activities, the development of coastal wetland has shown new characteristics. The disturbance from sources including mankind and the nature are external conditions for it to develop and evolve continuously.With the extension or erosion of new land, the vegetation develops and carries out straightforward or converse succession on the newborn wetlands. But overall it has the characteristic of apparent saline characteristics. Reed is the predominant community on the newborn coastal wetlands. As the coastal wetland is silted higher and the outfall extending, the biomass in the ecosystem mainly consisting of herbaceous plant community gradually decreases going upstream along the river.Experimental data indicates that silt is the predominant component in MYRDCW. The environmental chemical characteristics differentiate each other remarkably among different regions such as the current outfall area, abandoned outfall area and oil field area. Under the different habitats of reed, iodine weed, chionese tamarisk and beach land, all factors what have tested also show apparent differences. The analysis of the relationship among the chemical elements indicates the chosen 22 elements have the characteristic of very good co-existing combination in MYRDCW. The amount of organics and the salinity have a positive correlation. This reflects the area's saline environment. The amount of organics and granularity has a negative correlation, which indicates the composition of particles size affects the enrichment of organics.Based on interpretation of remote sensing (RS) images and its classification, methodology of landscape ecosystem was adopted to study the changes of landscape
    pattern from 1984 to 2004 in MYRDCW. In the past 20 years, sea area has always been the greatest class type, and it has been always expanding. The total area transformed from other wetland type to sea area has reached 2.72x10 ha, while the total area transformed to sea area from other types is only 0.45xl04ha. This is how serious the wetland loss is. Among all types, water area has changed the most, which reflects the massive changes resulted from development of tidal-flat aquiculture.The calculation of landscape pattern index indicates in the past 20 years the overall number of landscape patches has increased in MYRDCW. The landscape diversity has had some improvements but it is not remarkable. The level of fragmentation is not high. But the change trend of the regions is the number of patches increases; the index of mean area, mean nearest-neighbor distance and mean proximity decreases; landscape fragmentation gets more serious. Human activities contribute the most to the changes. The statistics of vegetation index indicate in MYRDCW, the area of vegetation coverage has decreased; wetland quality has worsened; coverage degree has decreased; and the overall vegetation coverage has become worse. This indicates that the degradation of the coastal wetland is obvious.Causes of degradation of MYRDCW include natural processes and human activities such as coastal erosion, sea level rise, storm surge, the break-flow of YR, development of oil field, tidal-flat reclaim, overfishing, construction of road and seawall, pollution, etc. The loss and degradation of MYRDCW is a complicated process. The influential factors are not working in an isolated fashion. The natural processes and human actions can not be separated completely. They work together to cause the constant changes of coastal wetland.The natural processes have created the base for MYRDCW. But human activities increase; development activities speed up; natural appearance changes remarkably; the quality of environment keeps declining; ecological structure is being destroyed; ecological function seriously declines; productivity decreases. Coastal wetland degradation started to happen and it's becoming worse and worse.This paper evaluates the degradation of MYRDCW by creating evaluation model with help of fuzzy mathematics methods. The evaluation results indicate that the degradation in the oil field area is the worst. It can be categorized as severe degradation. The degradation can be categorized as minor degradation in the newborn wetland nature reserve including the outfall area of YR and Yiqianer reserve. But due to the fact that they play an important role in MYRDCW, we can't really feel relieved with their level of degradation. As a whole, MYRDCW is in a state of minor degradation. But the degeneration is speeding up and is seriously threatening the health and safety of coastal wetland.Through field surveys, interpretation of RS images, analysis of data, it can be concluded that the degradation of MYRDCW will not stop in the near future and be a trend. It'll continue affecting the structure, function and value of the coastal wetland ecosystem.
引文
[1] William J. Mitsch, James G Gosselink. Wetlands. New York: John Wiley, 2000.
    [2] Howard Levenson. Coastal systems: on the margin. In: H. Suzanne Bolton (ed.). Coastal wetlands. New York: American Society of Civil Engineers, 1991.
    [3] William J. Mitsch. Global wetlands: old world and new, Amsterdam: Elsevier Sciences B. V. 1994.
    [4] Wilen B O. Wetlands of the U. S.. In: Ewhigham (ed.). Wetlands of the world. Kluver Academic Publishers, 1995.
    [5] Allan Crowe. Quebec2000 Millennium wetland event program with abstracts. Quebec, Canada, Elizabeth MacKay, 2000.
    [6] McComb A J, Davis J A. Wetlands for the future: Proceedings of INTECOL's V International Wetlands Conference. Gleneagles Publishing, 1998.
    [7] Shaw S. P, C. G. Fredine. Wetlands of the United States, their extent, and their value for waterfowl and other wildlife, U. S. Department of Interior, fish and wildlife service, circular 39, Washington D. C., 1956.
    [8] Section 404 of the clean water act. http://www.wetlands.com//regs/sec404fc. htm.
    [9] Cowardin L. M., Cartor B., Golet F. C.. Classification of wetlands and deepwater habitats of the United States, U. S. Fish and Wildlife Service Pub. FWS/OBS-79/31, Washington D. C., 1979.
    [10] Tarnocai C.. Canadian wetland registry, in proceedings of a workshop on Canadian wetlands environment. In: Rubec, Pollett (ed.). Canada land directorate, ecological land classification series, No. 12, 1979.
    [11] Lloyd J. W., J. H. Tellam, Rukin N.. Wetland vulnerability in East Anglia: a possible conceptual framework and generalized approach. Journal of environmental management, 1993, 37: 87-102.
    [12] http://www.ramsar.org; http://www.wetlands.org; http://www.wetwonder.org.
    [13] 国家林业局等.中国湿地保护行动计划.北京:中国林业出版社,2000.
    [14] 朱建国,李应中.中国湿地研究现状综述.中国农业资源与区划,1996,2:21-24.
    [15] 余国营.湿地研究的若干基本科学问题初论.地理科学进展,2001,20(2):177-183.
    [16] 刘厚田.湿地的定义和类型划分.生态学杂志,1995,14(4):73-77.
    [17] 孙广友.中国湿地科学的进展与展望.地球科学进展,2000,15(6):666-672.
    [18] 杨永兴.国际湿地科学研究的主要特点、进展与展望.地理科学进展,2002,21(2):111-120
    [19] Maltby E., Turner P. J.. Wetlands of the world. Geographic Magazine, 1983, 55: 12-17.
    [20] Matthews E., Fung I.. Methane emissions from natural wetlands: global distribution, area and environmental characteristics. Global Biogeochemical Cycles, 1987, 1: 61-86.
    [21] Aselmann I., Crutzen P. J.. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. Journal of Atmospheric Chemistry, 1989, 8: 307-358.
    [22] Gorham E. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1991, 1: 182-195.
    [23] 姚润丰.中国湿地面积居亚洲第一.中国海洋报,2004-2-6.
    [24] 郎惠卿.中国湿地植被区划.见:中国湿地研究和保护.上海:华东师范大学出版社, 1998.
    [25] 赵弈,吴彦明,孙中伟.海岸带的景观生态特征及其管理.应用生态学报,1990,1(4):373-377.
    [26] Peter D. Moore, Wetlands, New York: Facts on File, 2001.
    [27] Harold H. Prince, Frank M. D'ltri. Coastal wetlands. Chelsea, Mich.: Lewis Publishers, 1985.
    [28] Gregory D. Steyer, Daniel W. Llewellyn. Coastal wetlands planning, protection, and restoration act. Ecological Engineering, 2000, 15: 385-95.
    [29] Paul A. Keddy, Wetland ecology: principles and conservation, Cambridge: Cambridge University Press, 2000.
    [30] Chmura G L, Aharon P, Socki R A, et al. Inventory of 13C abundances in coastal wetlands of Louisiana, USA: vegetation and sediments. Oecologia OECOBX, 1987, 74(2): 264-271.
    [31] Blasco F, Aizpuru M, Gers C. Depletion of the mangroves of Continental Asia. Wetlands Ecology and Management, 2001, 9(3): 245-256.
    [32] Reed D J. Sea-level rise and coastal marsh sustainability: geological and ecological factors in the Mississippi delta plain. Geomorphology, 2002, 48(1-3): 233-243.
    [33] Egerova J, Edward P, Travis SE, Facilitation of survival and growth of Baccharis Halimifolia L. by Spartina Altemiflora Loisel. In a created Louisiana Salt Marsh. Wetlands, 2003, 23(2): 250-256.
    [34] 赵魁义.地球之肾—湿地.北京:化学工业出版社,2002.
    [35] 陆健健.中国滨海湿地的分类.环境导报,1996,(1):1-2.
    [36] 华泽爱,贾泓.中国沿海湿地开发利用、管理与保护.海洋通报,1996,15(1):78-83.
    [37] 赵焕庭,王丽荣.中国海岸湿地的类型.海洋通报,2000,19(6):72-82.
    [38] 肖笃宁,李秀珍,胡远满.中国北方滨海湿地的保护:生态环境特点,AMBIO,1996,25(1):2-5.
    [39] 季中淳.中国海岸湿地及其价值与保护利用对策.见:第四次中国海洋湖沼科学会议论文集.北京:科学出版社,1991.
    [40] 王自磐.滨海湿地保护及其在海洋产业结构中的战略定位.海洋开发与管理,2001,2:43-47.
    [41] 国家林业局野生动植物保护司.湿地管理与研究方法,北京:中国林业出版社,2001.
    [42] 王宪礼,肖笃宁.湿地的定义与类型.见:中国湿地研究.长春:吉林科学技术出版社,1995,34-41.
    [43] 陈建伟,黄桂林.中国湿地分类系统及其划分指标的探讨.林业资源管理,1995,(5):65-71.
    [44] 倪晋仁,殷康前,赵智杰.湿地综合分类研究.自然资源学报,1998,13(3):214-221.
    [45] 张晓龙,李培英,李萍,等.中国滨海湿地研究现状与展望.海洋科学进展,2005,23(1):87-95.
    [46] Kadlee R H, Knight R L. Treatment Wetlands. Lewis Publishers, 1996.
    [47] Keddy P A. Wetland Ecology—Principles and Conservation. Cambridge University Press, 2000.
    [48] Beth Middleton. Wetland restoration-Flood pulsing and disturbance dynamics. John Wiley & Sons, Inc.,1999
    [49] Davis S M, Ogden J C. Everglades—The ecosystem and its restoration. St. Lucie Press, 1994.
    [50] A.Yanez-Arancibia, A.L.Lara-Dominguez, J.L.Rojas Galaviz, et al. Integrating science and management on coastal marine protected areas in the Southern Gulf of Mexico. Ocean & Coastal Management, 1999, 42: 319-344.
    [51] Mayer P M, Galatowitsch S M. Diatom communities as ecological indicators of recovery in restored prairie wetlands. Wetlands, 1999, 19(4): 765-774.
    [52] Booth R K, Rich F J, et al. Evolution of a freshwater barrier-island marsh in coastal Georgia, USA. Wetlands, 1999, 19(3): 570-577.
    [53] Eville Gorham. Human Influences on the Health of Northern Peatlands. Transactions of the Royal Society of Canada, 1991(2): 199-208.
    [54] Moustafa M Z. Analysis of phosphorus retention in free-water surface treatment wetlands. Hydrobiologia, 1999, 392: 41-539.
    [55] Mitsch W J, Reeder B C. Modelling nutrientretention of a freshwater coastal wetland: estimating the role of primary productivity, sedimentation, resuspension and hydrology. Ecological Modeling, 1991, 54: 151-187.
    [56] Mitsch W J, Cronk J K, et al. Phosphorus retention in constructed freshwater riparian marshes. Ecological Application, 1995, 3: 830-845.
    [57] Mariano Guardo. Hydrologic balance for a subtropical treatment wetland constructed for nutrient removal. Ecological Engineering, 1999, 12: 315-337.
    [58] Visser J M, Sasser C E, et al. Long-term vegetation change in Louisiana tidal marshes, 1968-1992. Wetlands, 1999, 19(1): 168-175.
    [59] Jos T.A., Verhoeven, Andrew J. Baird. Hydrological and biogeochemical processes in wetland ecosystems in relation to biodiversity restoration. Wetlands Ecology and Management, 2003, 11: 365-366.
    [60] James R. Williams. Addressing global warming and biodiversity through forest restoration and coastal wetlands creation. The Science of the Total Environment, 1999, 240: 1-9.
    [61] James G. Titus. Greenhouse effect and coastal wetland policy. Environmental Management, 1991, 15(1):39-58.
    [62] Bhawan Singh. Climate-related global changes in the southern Caribbean: Trinidad and Tobago. Global and Planetary Change, 1997,15: 93-111.
    [63] Segun O. Ogunjemiyo, Samuel K. Kaharabata, Peter H. Schuepp, et al. Methods of estimating CO_2, latent heat and sensible heat fluxes from estimates of land cover fractions in the flux footprint. Agricultural and Forest Meteorology, 2003, 117: 125-144.
    [64] Yavitt J B. Methane and carbon dioxide dynamics in Typha latifolia wetlands in central New York State. Wetlands, 1997, 17(3): 394-406.
    [65] Redfield G W. Ecological research for aquatic science and environmental restoration in South Honda. Ecological Applications, 2000, 10(4): 900-1005.
    [66] Wilcox D A, Whillans T H. Techniques for restoration of disturbed coastal wetlands of the Great lakes. Wetlands, 1999, 19(4): 716-732.
    [67] C.M. Finlayson, N. Rea. Reasons for the loss and degradation of Australian wetlands. Wetlands Ecology and Management, 1999, 7: 1-11.
    [68] Dennis Whigham, Mary Pittek, Kirsten H. Hofmockel, et al. Biomass and nutrient dynamics in restored wetlands on the outer coastal plain of Maryland, USA. Wetlands, 2002, 22(3): 562-574.
    [69] Treltin C C. Wetlands of the interior Southern United States: Conference Summary
     Statement, Water, Air & SoilPollution,1994, 3-4: 213-236.
    [70] Rheinhardt R D, Brinson M M. Applying wetland reference data to functional assessment. mitigation and restoration. Wetlands, 1997, 17(2): 195-215.
    [71] Regier H A. Indicators of ecosystem integrity. In: DaninelH (ed.). Ecological Indicators. Barking: Elsevier Science Publishers Ltd, 1992.
    [72] Wilson R F, Mitsch W J. Functional assessment of five wetlands constructed to mitigate wetland loss in Ohio, USA. Wetlands, 1996, 16(4): 436-451.
    [73] Andree Breauxa, Steve Cochraneb, Jules Evens, et al. Wetland ecological and compliance assessments in the San Francisco Bay Region, California, USA. Journal of Environmental Management, 2005, 74: 217-237.
    [74] Charles Andrew Cole. The assessment of herbaceous plant cover in wetlands as an indicator of function. Ecological Indicators, 2002, 2: 287-293.
    [75] Sean Fcondon, Aiden McGee. The development and testing of an automatic depth control system for a peat miller. In: Line Rochefort, Jean-Yves Daigle Sustainining Our Peatlands. Proceedings of the 11th International Peat Congress, Quebeccity, Canada, 2000, 269-2780.
    [76] Mariano Guardo. Hydrologic balance for a subtropical treatment wetland constructed for nutrient removal. Ecological Engineering, 1999, 12: 315-337.
    [77] Sader S A. Accuracy of landsat-TM and GIS rule-based methods for forest wetlands classification in Maine. Remote Sensing Environment, 1995, 3: 133-144.
    [78] Scott G Ingmire. Using GIS to determine the suitability for wetland restoration, agriculture, and development with the Cowaselon Creek Watershed Area (CCWA), Madison County, New York. New york: State University of New York, 2001.
    [79] V. Mathiyalagan, S. Grunwald, K.R. Reddy, et al. A WebGIS and geodatabase for Florida's wetlands. Computers and Electronics in Agriculture, 2005, 47: 69-75.
    [80] T. Simas, J.P. Nunes, J.G Ferreira. Effects of global climate change on coastal salt marshes Ecological Modelling, 2001, 139: 1-15.
    [81] Nestor J. Windevoxhel, Jose J. Rodriguez, Enrique J. Lahmann. Situation of integrated coastal zone management in Central America: Experiences of the IUCN wetlands and coastal zone conservation program. Ocean & Coastal Management, 1999,42: 257-282.
    [82] Eddo Coiacetto. A model for use in the management of coastal wetlands. Landscape and Urban planning, 1996, 36: 27-47.
    [83] Gregory D. Steyer, Daniel W. Llewellyn. Coastal Wetlands Planning, Protection, and Restoration Act: A programmatic application of adaptive management. Ecological Engineering, 2000, 15: 385-395.
    [84] Mark T. Imperial, et al. an evolutionary perspective on the development and assessment of the national estuary program. Coastal Management, 1992, 20, 311-341.
    [85] Kusler J A. Wetlands. Scientific American, 1994, 1:50-56.
    [86] Young P. The"newscience"of wetland restoration. Environmental Science & Technology. 1996, 7:292a-296a.
    [87] David M. Thomson, Gary P. Shaffer, J. Alexander McCorquodale. A potential interaction between sea-level rise and global warming: implications for coastal stability on the Mississippi River Deltaic Plain. Global and Planetary Changes, 2002, 32: 49- 59.
    [88] Robert R. Lane, John W. Day, Dubravko Justic, et al. Changes in stoichiometric Si, N and P ratios of Mississippi River water diverted through coastal wetlands to the Gulf of Mexico.
     Estuarine, Coastal and Shelf Science, 2004, 60: 1-10.
    [89] J. W. Day Jr., Jae-Young Ko, J. Rybczyk, et al. The use of wetlands in the Mississippi Delta for wastewater assimilation: a review. Ocean & Coastal Management, 2004, 47: 671-691.
    [90] S. Mitra, T. S. Bianchi. A preliminary assessment of polycyclic aromatic hydrocarbon distributions in the lower Mississippi River and Gulf of Mexico. Marine Chemistry, 2003, 82: 273- 288.
    [91] R. E. Turner, M. E. Boyer. Mississippi river diversions, coastal wetland restoration/creation and an economy of scale. Ecological Engineering, 1997, 8: 117-128.
    [92] R. P. Stumpf and J. W. Haines. Variations in tidal level in the Gulf of Mexico and implications for tidal wetlands. Estuarine, Coastal and Shelf Science, 1998, 46: 165-173.
    [93] Michael D. Kaplowitz. Identifying ecosystem services using multiple methods. Agriculture and Human Values, 2000, 17: 169-179.
    [94] William J. Mitsch, Naiming Wang. Large-scale coastal wetland restoration on the Laurentian Great Lakes. Ecological Engineering. 2000, 15: 267-282.
    [95] Robert K. Boothl, Stephen T. Jackson. Paleoecology of a Northern Michigan Lake and the Relationship among Climate, Vegetation, and Great Lakes Water Levels. Quaternary Research. 2002, 57, 120-130.
    [96] http://www.whitehouse.gov/news/releases/2004/04/20040422-4.html.
    [97] 一峰.美启动10万英亩湿地恢复计划.中国环境报,2004-7-23.
    [98] http://www.fws.gov/cep/cwgcover.html,
    [99] Carlos M. Duarte. The future of seagrass meadows. Environmental conservation, 2002, 29(2): 192-206.
    [100] K. S. Edyvane. Coastal and marine wetlands in Gulf St. Vincent, South Australia. Wetlands Ecology and Management, 1999, 7: 83-104.
    [101] R. J. Nicholls, F. M. J. Hoozemans. The Mediterranean: vulnerability to coastal implications of climate change. Ocean & Coastal Management, 1996, 31 (2-3): 105-132.
    [102] Daniel M. Alongi. Present state and future of the world's mangrove forests. Environmental conservation, 2002, 29(3): 331-349.
    [103] J. R. Goff, C. Chague -Goff. A late Holocene record of environmental changes from coastal wetlands: Abel Tasman National Park, New Zealand. Quaternary Intemational, 1999, 56: 39-51.
    [104] C. M. Finlayson, I. Eliot. Ecological assessment and monitoring of coastal wetlands in Australia's Wet-Dry Tropics: A paradigm for elsewhere. Coastal Management, 2001, 29: 105-115.
    [105] R. P. Bourmana, C. V. Murray-Wallace, A. P. Belperio, et al. Rapid coastal geomorphic change in the River Murray Estuary of Australia. Marine Geology, 2000, 170: 141-168.
    [106] Antonio Carlos Diegues. Human populations and coastal wetlands: conservation and management in Brazil. Ocean & Coastal Management, 1999, 42: 187-210.
    [107] G. Randazzo, D. J. Stanley, S. I. Di Geronimo, et al. Human-induced sedimentological changes in Manzala Lagoon, Nile Delta, Egypt. Environmental Geology, 1998, 36(3-4): 235-258.
    [108] Anuradha Verma, V. Subramanian, R. Ramesh. Methane emissions from a coastal lagoon: Vembanad Lake, West Coast, India. Chemosphere, 2002, 47: 883-889.
    [109] Santosh Kumar Sarkar, Asok Kumar Bhattacharya. Conservation of biodiversity of the coastal resources of Sundarbans, Northeast India: an integrated approach through environmental education. Marine Pollution Bulletin, 2003, 47: 260-264.
    [110] Maria Snoussi, Larry Awosika. Marine capacity building in North and West Africa. Marine Policy, 1998, 22(3): 209-215.
    [111] D. I. Cole, D. L. Roberts. Lignite from the western coastal plain of South Africa. Journal of African Earth Sciences, 1996, 23(1): 95-117.
    [112] L. Omodei Zorini, C. Contini, N. Jiddawi, et al. Participatory appraisal for potential community-based mangrove management in East Africa. Wetlands Ecology and Management, 2004, 12: 87-102.
    [113] Robert J. Nicholls, Frank M. J. Hoozemans, Marcel Marchand. Increasing flood risk and wetland losses due to global sea-level rise. Global Environmental Change, 1999, 9: S69-S87.
    [114] R. W. Parkinson. Sea-level rise and the fate of tidal wetlands. Journal of Coastal Research, 1994, 10(4): 987-1086.
    [115] Brij Gopal. Natural and constructed wetland for wastewater treatment. Water Science and Technology, 1999, 40(3): 27-35.
    [116] Andree Breaux, Stephen Farber, John Day. Using Natural Coastal Wetlands Systems for Wastewater Treatment. Journal of Environmental Management, 1995, 44: 285-291.
    [117] R. R. Lewis Ⅲ. Ecologically based goal setting in mangrove forest and tidal marsh restoration. Ecological Engineering, 2000, 15: 191-198.
    [118] R. R. Lewis Ⅲ, P. A. Clark, W. K. Fehring, et al. The Rehabilitation of the Tampa Bay Estuary, Florida, USA. Marine Pollution Bulletin, 1998, 37(8-12): 468-473.
    [119] Daniel Jean Stanley. Nile delta: extreme case of sediment entrapment on a delta plain and consequent coastal land loss. Marine Geology, 1996, 129: 189-195.
    [120] 全国海岸带和海涂资源综合调查成果编委会.中国海岸带和海涂资源综合调查报告.北京:海洋出版社,1991.
    [121] 王宪礼,肖笃宁,布仁仓.辽河三角洲湿地的景观格局分析.生态学报,1997,17(3):318-323.
    [122] 布仁仓,王宪礼,肖笃宁.黄河三角洲景观组分判定与景观破碎化分析.应用生态学报,1999,10(3):321-324.
    [123] 李晓文,肖笃宁,胡远满.辽东湾滨海湿地景观规划预案分析与评价.生态学报,2002,22(2):224-232.
    [124] 李晓文,肖笃宁,胡远满.辽河三角洲滨海湿地景观规划各预案对指示物种生态承载力的影响.生态学报,2001,21(5):710-715.
    [125] 李晓文,肖笃宁,胡远满.辽河三角洲滨海湿地景观规划各预案对指示物种生境适宜性的影响.生态学报,2001,2l(4):550-560.
    [126] 李晓文,肖笃宁,胡远满.辽河三角洲滨海湿地景观规划预案设计及其实施措施的确定.生态学报,2001,21(3):353-364.
    [127] 许学工,林辉平,付在毅.黄河三角洲湿地区域生态风险评价.北京大学学报(自然科学版),2001,37(1):111-120.
    [128] 付在毅,许学工,林辉平.辽河三角洲湿地区域生态风险评价.生态学报,2001,21(3):365-373.
    [129] 田家怡,贾文泽,窦洪云,等.黄河三角洲生物多样性研究.青岛:青岛出版社,1999.
    [130] 贾文泽,田家怡,王秀凤.黄河三角洲浅海滩涂湿地鸟类多样性调查研究,黄渤海海 洋,2002,20(2):53-59.
    [131] 赵延茂,宋朝枢.黄河三角洲自然保护区科学考察集.北京:中国林业出版社,1995.
    [132] 肖笃宁,李晓文,王连平.辽东湾滨海湿地资源景观演变与可持续利用.资源科学,2001,23(2):31-36.
    [133] 许健民.黄河三角洲湿地生态评价与保护利用对策研究.中国农业资源与区划,2001,22(2):45-49.
    [134] 白军红,余国营,叶宝莹,黄河三角洲湿地资源及可持续利用对策.水土保持通报,2000,20(6):6-9.
    [135] 刘红玉,吕宪国,刘振乾.环渤海三角洲湿地资源研究.自然资源学报,2001,16(2):101-106.
    [136] 刘红玉,吕宪国,刘振乾,等.辽河三角洲湿地资源与区域持续发展.地理科学,2000,20(6):546-551.
    [137] 陈红莉,肖素君,程义吉.黄河三角洲滩涂资源开发利用研究.海岸工程,2000,19(4):9-64.
    [138] 韩言柱,田凌云,许学工.黄河三角洲湿地生态系统及其保护的初步研究.环境科学与技术,2000,2:10-13.
    [139] 肖笃宁,胡远满,李秀珍,等.环渤海三角洲湿地的景观生态学研究.北京:科学出版社,2001.
    [140] 黄桂林.中国红树林湿地的保护与发展.林业资源管理,1995,(5):14-19.
    [141] 陶思明.红树林生态系统服务功能及其保护.上海环境科学,1999,18(10):439-441.
    [142] 张乔民,隋淑珍.中国红树林湿地资源及其保护.自然资源学报,2001,16(1):28-36.
    [143] Lin Peng, Fu Qin. Environmental ecology and economic utilization of mangroves in China, China Higher Education Press Beijing and Springer-Verlag Berlin Heidelberg, 2000.
    [144] 林鹏.中国红树林湿地与生态工程的几个问题.中国工程科学,2003,5(6):33-38.
    [145] 杨永兴,杨玉娟,庞志平,等.苏沪浙海滨沼泽湿地类型、分布规律及控制因素研究.见:中国湿地研究.长春:吉林科学技术出版社,1995.
    [146] 季子修,梁海棠.江苏海岸湿地基本特征.见:中国湿地研究.长春:吉林科学技术出版社,1995.
    [147] 陆健健.中国的湿地.上海:华东师范大学出版社,1990.
    [148] 国家海洋局.2002年中国海洋环境质量公报.2003,1.
    [149] 赵永新.我国新增九处国际重要湿地.人民日报,2005-2-3.
    [150] 李广兵,王曦.中国的湿地保护政策与法律.中国环境管理,2000,(4):6-10.
    [151] 章牧.海岸带湿地研究中GIS应用的若于问题思考.地球信息科学,2000,(4):51-55.
    [152] 张乔民.我国热带生物海岸的现状及生态系统的修复与重建.海洋与湖沼,2001,32(4):454-464.
    [153] 许学工.黄河三角洲土地结构分析.地理学报,1997,52(1):18-26.
    [154] 东营市史志办公室.东营年鉴2003卷.北京:中华书局,2003.
    [155] 崔保山,刘兴土.黄河三角洲湿地生态特征变化及可持续性管理对策.地理科学,2001,21(31:250-256.
    [156] LI Peiying, Yuan Jun, Liu Lejun, et al. Vulnerability assessment of the Yellow River Delta, China. Supervising Scientist Publishing House, Australia, 2000.
    [157] 陈利顶,傅伯杰.黄河三角洲地区人类活动对景观结构的影响分析—以山东省东营市为例.生态学报,1996,16(4):337-344.
    [158] 许学工.黄河三角洲生态环境的评估和预警研究.生态学报,1996,16(5):461-468.
    [159] 林辉平.湿地区域生态系统服务价值评估-以黄河三角洲为例.北京:北京大学.2001.
    [160] 叶庆华,刘高焕,姚一鸣.黄河三角洲新生湿地土地利用变化图谱.地理科学进展.2003,22(2):141-148.
    [161] 刘高焕,叶庆华,刘庆生,等.黄河三角洲生态环境动态监测与数字模拟.北京:科学出版社,2003.
    [162] 李广雪,魏合龙,成国栋,等.黄河口近期环境演变与河口治理.地理学报,1996,51(2):182-189.
    [163] 许炯心.不同来源水沙对黄河人海泥沙通量的影响.海洋与湖沼,2002,33(5):536-545.
    [164] 庞家珍,姜明星.黄河河口演变.海洋湖沼通报,2003,(3):1-13.
    [165] 许炯心.黄河三角洲造陆过程中的陆域水沙临界条件研究.地理研究,2002,21(2):163-170.
    [166] 刘曙光,李从先,丁坚.黄河三角洲整体冲淤平衡及其地质意义.海洋地质与第四纪地质,2001,21(4):13-17.
    [167] 李希宁,刘曙光,李从先.黄河三角洲冲淤平衡的来沙量临界值分析.人民黄河,2001,23(3):20-22.
    [168] 常军,刘高焕,刘庆生.黄河口海岸线演变时空特征及其与黄河来水来沙关系.地理研究,2004,23(5):339-346.
    [169] 李福林,庞家珍,姜明星.黄河三角洲海岸线变化及其环境地质效应.2000,海洋地质与第四纪地质,20(4):17-21.
    [170] 胡春宏,吉祖稳,王涛.黄河口海洋动力特性与泥沙的输移扩散.泥沙研究,1996,(4):1-10.
    [171] 臧启运,李培英,吴世迎.黄河三角洲近岸泥沙.北京:海洋出版社,1996.
    [172] 李平,朱大奎.波浪在黄河三角洲形成中的作用.海洋地质与第四纪地质,1997,17(2):39-46.
    [173] 山东省科学技术委员会.黄河口调查区资源综合调查报告.北京:中国科学技术出版社,1990.
    [174] 胡春宏,曹文洪.黄河口水沙变异与调控.泥沙研究,2003,(5):1-8.
    [175] 胜利油田管理局,青岛海洋大学组编.埕岛油田勘探开发海洋环境.青岛:青岛海洋大学出版社,1993.
    [176] 吉祖稳,胡春宏.黄河口拦门沙近期演变及模式探讨.人民黄河,1995,(8):1-5.
    [177] 叶青超.黄河三角洲的地貌结构及发育模式.地理学报,1982,37(4):349-363.
    [178] 李永植.论近代黄河三角洲的发育特征及其分类意义.海洋地质与第四纪地质,1993,13(2):71-81.
    [179] 成国栋,薛春汀.黄河三角洲沉积地质学,北京:地质出版社,1993.
    [180] 王爱华,业治铮.现代黄河三角洲的结构、发育过程和形成模式.海洋地质与第四纪地质,1990,10(1):1-12.
    [181] 任美锷.中国淤泥质潮滩沉积研究的若干问题.热带海洋,1985,4(2):6-14.
    [182] 任美锷.人类活动对中国北部海岸带地貌和沉积作用的影响.地理科学,1989,9(1):1-7.
    [183] 崔承琦,李师汤,孙小霞.黄河三角洲海岸岸线和潮水沟体系发育及其分维研究.海洋通报,2001,20(6):60-70.
    [184] 李培英,吴世迎,臧启运,等.黄河海港地区潮滩地貌及其蚀淤变化.海洋学报,1992,14(6):74-84.
    [185] 吉祖稳,胡春宏.黄河口口门地区沟汊形成机制初探.泥沙研究,1996,(4):95-101.
    [186] 江洪,张艳丽,James R Strittholt.干扰与生态系统演替的空间分析.生态学报,2003.23(9):1861-1876.
    [187] 党承林,王崇云,王宝荣,等.植物群落的演替与稳定性.生态学杂志,2002,21(2):30-35.
    [188] 叶庆华,田国良,刘高焕,等.黄河三角洲新生湿地土地覆被演替图谱.地理研究,2004,23(2):257-264.
    [189] 郗金标,宋玉民,邢尚军.黄河三角洲生态系统特征与演替规律.东北林业大学学报,2002,30(6):111-114.
    [190] 祝廷成,钟章成,李建东.植物生态学.北京:高等教育出版社,1988.
    [191] 周道玮,钟秀丽.干扰生态理论的基本概念和扰动生态学理论框架.东北师大学报自然科学版,1996,(1):90-96.
    [192] Pickett S. T. A., P. S. White. The ecology of natural disturbance and patch dynamics. Orlando: Academic Press INC, 1985.
    [193] Turner M. G.. Predicting the spread of disturbance in heterogeneous landscape. Oikos, 1989, 55: 121-129.
    [194] 傅伯杰,陈利顶,马克明,等.景观生态学原理及应用.北京:科学出版社,2001.
    [195] 邬建国.景观生态学—格局、过程、尺度与等级.北京:高等教育出版社,2000.
    [196] 王军,许世远,陈振楼.长江口滨岸湿地环境信息系统的建立与应用.地理学报,2004,59(6):927-937
    [197] 常学礼,邬建国.科尔沁沙地景观格局的特征分析.生态学报,1998,18(3):225-232.
    [198] 王天明,王晓春,国庆喜,等.黑龙江省森林景观多样性动态.生物多样性,2004,12(4):396-402.
    [199] 卢玲,李新,程国栋.黑河流域景观结构分析.生态学报,2001,21(8):1217-1224.
    [200] 徐建华,岳文泽,谈文琦.城市景观格局尺度效应的空间统计规律.地理学报,2004,59(6):1058-1067.
    [201] 布和敖斯尔,刘纪远,吴祖南.基于季相及经度特征的中国土地覆盖变化遥感研究.地理学报,1998,53(S1):52-60.
    [202] 田庆久.植被指数进展.地球科学进展,1998,13(4):327-333.
    [203] 任海,彭少麟.恢复生态学导论.北京:科学出版社,2001.
    [204] 刘国华,傅伯杰,陈利顶,等.中国生态退化的主要类型、特征及分布.生态学报,2000,20(1):13-19.
    [205] 王学雷.江汉平原湿地生态脆弱性评估与生态恢复.华中师范大学学报(自然科学版),2001,35(2):237-240.
    [206] 任海,张倩媚,彭少麟.内陆水体退化生态系统的恢复.热带地理,2003,23(1):22-29.
    [207] 马学慧,刘兴土.中国湿地生态环境质量现状分析与评价方法.地理科学,1997,17(Sup):401-408.
    [208] 濮培民,王国祥,李正魁.健康水生态系统的退化及其修复—理论、技术及应用.湖泊科学,2001,13(3):193-203.
    [209] 刘照光,包维楷.生态恢复重建的基本观点.世界科技研究与发展,2000,23(6):31-35.
    [210] 张晓龙,李培英.湿地退化标准的探讨.湿地科学,2004,2(1):36-41.
    [211] 陈宜瑜.中国湿地研究.长春:吉林科学技术出版社,1995.
    [212] 张峥,朱琳,张建文.我国湿地生态质量评价方法的研究.中国环境科学,2000,20(Sup):55-58.
    [213] 李国宏,秦幸福.黄河三角洲造地呈现负增长.中国环境报,2005-2-18,
    [214] 王平,焦燕,任一平,等.莱州湾、黄河口水域春季近岸渔获生物多样性特征的调查研究.海洋湖沼通报,1999,1:40-44.
    [215] 金显仕,邓景耀.莱州湾渔业资源群落结构和生物多样性的变化.生物多样性,2000,8(1):65-72.
    [216] 金显仕.渤海主要渔业生物资源变动的研究.中国水产科学,2001,7(4):22-26.
    [217] 邓景耀,金显仕.莱州湾及黄河口水域渔业生物多样性及其保护研究.动物学研究,2000,21(1):76-82.
    [218] 金显仕,唐启升.渤海渔业资源结构、数量分布及其变化.中国水产科学,1998,5(3):18-24.
    [219] 国家海洋局.2003年中国海洋环境质量公报.2004,1.
    [220] Dolan R., Fenster M. S., Holme S.. Spatial analysis of shoreline recession and accretion. Journal of Coastal Research, 1992, 8(2): 263-285.
    [221] Dolan R., Fenster M. S., Holme S.. Erosion of U. S. shorelines. Geotimes, 1990, 35(6): 22-24.
    [222] Bird E. C. F. Coasts. New York: Basil Blackwell Inc., 1984.
    [223] 袁迎如,陈庆.古黄河三角洲的发育和侵蚀.科学通报,1983,28(21):1322-1324.
    [224] 丁东,董万.现代黄河三角洲的蚀退作用的初步研究.海洋地质与第四纪地质,1988,8(3):53-60.
    [225] 季子修.中国海岸侵蚀特点及侵蚀加剧原因分析.自然灾害学报,1996,5(2):65-75.
    [226] 盛静芬,朱大奎.海岸侵蚀和海岸线管理的初步研究.海洋通报,2002,21(4):50-57.
    [227] 夏东兴,王文海,武桂秋.中国海岸侵蚀述要.地理学报,1993,48(5):468-473.
    [228] 谷东启.山东半岛泻湖湿地的发育过程及其环境退化研究.青岛:中国海洋大学,2004.
    [229] 范兆木,郭永盛.黄河三角洲沿岸遥感动态分析图集.北京:海洋出版社,1992.
    [230] 吴世迎,王冠荣,石学法,等.黄河断流对三角洲海上油气开发环境的影响及对策研究.国家海洋局第一海洋研究所,2001.
    [231] 中国水利学会,黄河研究会.黄河河口问题及治理对策研讨会专家论坛.郑州:黄河水利出版社,2003.
    [232] 李国英.黄河第三次调水调沙试验.人民黄河,2004,26(10):1-7.
    [233] IPCC. Climate change 2001: The scientific basis. Cambridge: Cambridge University Press, 2001.
    [234] ACIA. Impacts of a warming Arctic. Cambridge: Cambridge University Press, 2004.
    [235] 杜碧兰.海平面上升对中国沿海主要脆弱区的影响及对策.北京:海洋出版社,1997.
    [236] 武强,郑铣鑫,应玉飞,等.21世纪中国沿海地区相对海平面上升及其防治策略.中国科学(D),2002,32(9):760-766.
    [237] 杨华庭.中国沿岸海平面上升与海岸灾害.第四纪研究,1999,(5):456-463.
    [238] 陈梦熊.关于海平面上升及其环境效应.地学前缘,1996,3(2):133~140.
    [239] 施雅凤,朱季文,谢志仁,等.长江三角洲及毗连地区海平面上升影响预测与防治对策.中国科学(D),2000,30(3):225-232.
    [240] 夏东兴,刘振夏,王德邻,等.渤海湾西岸海平面上升威胁的防治对策.自然灾害学报,1993,2(1):48-52.
    [241] 夏东兴,刘振夏,王德邻,等.海面上升对渤海湾西岸的影响与对策.海洋学报,1994,16(1):61-67.
    [242] 丁东,任于灿,李绍全,等.黄河三角洲及邻区的风暴潮沉积.海洋地质与第四纪地质, 1995,15(3):25-34.
    [243] 陆丽云,陈君,张忍顺.江苏沿海的风暴潮灾害及其防御对策.灾害学,2002,17(1):26-31.
    [244] 丁东,周永青,李绍全,等.风暴潮与地质环境.海岸工程,1996,15(2):9-14.
    [245] 王文海,吴桑云,陈雪英.山东省9216号强热带气旋风暴期间的海岸侵蚀灾害.海洋地质与第四纪地质,1994,14(4):71-78.
    [246] 吴桑云,王文海,武桂秋.山东沿海的9216号台风暴潮灾害.灾害学,1994,19(1):44-47.
    [247] 王建中,王玲,石国安,等.黄河断流情况及对策.中国水利,1999,4:4-8.
    [248] 张晓龙.黄河断流成因及对策.历史地理论丛,2001,Sup:68-72.
    [249] 陈霁巍,穆兴民.黄河断流的态势、成因与科学对策.自然资源学报,2000,15(1):31-35.
    [250] 刘昌明,成立.黄河干流下游断流的径流序列分析.地理学报,2000,55(3):257-265.
    [251] 高季章,甘泓,沈大军.黄河断流与西部调水.科技导报,1999,(2):15-18.
    [252] 徐建华,李雪梅,杨汉颖,等.黄河中游水利水保工程减水减沙及其对下游的影响.人民黄河,1997,(7):45-47.
    [253] 陈先德.黄河水文.郑州:黄河水利出版社,1996.
    [254] 安芷生.黄土、黄河、黄河文化.郑州:黄河水利出版社,1998.
    [255] 叶青超.黄河断流对三角洲环境的恶性影响.地理学报,1998,53(5):385-392.
    [256] 王颖,张永战.人类活动与黄河断流及海岸环境影响.南京大学学报(自然科学),1998,34(3):257-271.
    [257] 任美锷.黄河下游断流引起的环境问题及其防治措施.第四纪研究,1999,2:186.
    [258] Ryder R A, S R Kerr, W W Taylor, et al. Community consequences of fish stock diversity. Can J Fish Aquat Sci, 1981, 38: 1856-1866.
    [259] J. B. C. Jacson, M. X. Kirby, W. H. Berger, et al. Historical overfishing and the recent collapse of coastal ecosystems. Science, 2001, 293(27): 629-638.
    [260] 杨得前.我国海洋渔业资源捕捞过度的经济学分折.北京水产,2003,(3):22-24.
    [261] 贾文泽,田家怡,王秀凤,等.黄河三角洲浅海滩涂湿地环境污染对鸟类多样性的影响.重庆环境科学,2003,25(3):10-12.
    [262] 崔毅.黄河口附近海域海洋生物体中石油烃总量变化的研究,中国水产科学,1994,1(2):60-67.
    [263] 国家海洋局.2004年中国海洋环境质量公报.2005,1.
    [264] 高吉喜.可持续发展理论探索.北京:中国环境科学出版社,2001.
    [265] 徐建华.现代地理学中的数学方法.北京:高等教育出版社,2002.
    [266] 崔保山,刘兴土.湿地恢复研究综述.地球科学进展,1999,14(4):358-364.
    [267] 张永泽,王烜.自然湿地生态恢复综述.生态学报,2001,21(2):309-314.
    [268] 彭少麟,任海,张倩媚.退化湿地生态系统恢复的一些理论问题.应用生态学报,2003, 14(11):2026-2030.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700