基于电力电子电路的功率/信号复合传输方法和理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将电力电子电路与通信技术相结合,在传统的电力电子电路与PWM控制技术基础上,应用数据通信领域的相关技术,提出了利用功率变换电路同时实现功率变换和数字信号传输的方法,并分析了功率变换信号传输在频域和时域的实现方式,即功率/信号频分复合传输和功率/信号时分复合传输。
     功率/信号频分复合传输可以通过电力电子电路的功率/信号频分复合调制方法实现。功率/信号频分复合调制在传统的PWM控制基础上,利用开关次谐波作为载波传输数据。功率信号频分复合调制有两种基本方法:PWM/FSK调制和PWM/PSK调制。通过功率/信号频分复合调制,电力电子电路的输入开关纹波和输出开关纹波均包含了数据信息。由于开关纹波信号的幅值与电路拓扑、输入电压、输出电压及负载等因素相关,为保证通信信号的稳定,功率/信号频分复合传输系统应选择开关纹波变化较小的电路拓扑。在恒压输出和负载电流大范围变化的条件下,通过对基本DC、DC拓扑输入纹波与输出纹波的分析,得到如下结论:Boost拓扑适合在输入端实现通信功能;Buck拓扑适合在输出端实现通信功能;Cuk拓扑在输入端或输出端均可实现通信功能;而Buck-Boost在输入端或输出端均不适合。
     本文还以Boost电路为例,详细分析了PWM/FSK和PWM/2PSK直序扩频复合调制与解调的实现过程,推导了载波频率和载波形状的选择原则,并分别针对这两种调制方法,设计了相应的数字解调算法,最后通过实验验证了这两种调制方法的正确性。
     功率变换电路通过时分方式实现功率变换/信号传输的原理是利用电力电子电路传递能量的间隙,传输数字信号。该方法具有电路结构简单、抗干扰能力强的优点,但是不能实现稳压输出功能。本文将功率/信号时分复合传输系统的传输设备分为供电设备和受电设备,在此基础提出了通用功率/信号时分复合传输系统的设计方法:首先确定功率/信号传输的时序,其次设计供电设备和受电设备的电源电路,最后设计通信电路。根据该方法,给出了几种基本的电源电路和通信电路。
     功率/信号时分复合传输系统的应用场合之一是分布式控制系统,传输距离较远,因此必须考虑传输线效应。本文详细分析了功率开关电路串联传输线时的工作过程,理论分析和实验结果均表明,在脉冲电源输出端实现阻抗匹配可以有效改善线路末端的电压波形,但是无法抑制源端的关断反射尖刺。抑制传输线效应的另一种方法是增加脉冲电源输出的上升沿和下降沿时间。本文设计了一种软开关电路,通过调节谐振参数控制输出电压脉冲的上升沿和下降沿时间,以降低传输线效应的不利影响。该电路的传输效果通过实验得到验证。
     通信电路必须遵循相应的通信协议,才能实现数据可靠传输。本文分析了时分复合传输系统各层次协议的设计:物理层分析了通信时序设计和传输距离计算;MAC层介绍了采用预约方式和竞争方式的协议设计方法。最后给出了三个应用实例,表明功率/信号时分复合传输方法具有布线方便、实现电路简洁、抗干扰能力强的优点,能适用于多种不同的环境。
This paper combines power electronics with communication technologies and presents a new method of integrating power conversion and digital signal transmission in power converter circuit, which is based on traditional power electronics circuit and PWM control technique. In time domain and frequency domain, the realizations of composite power/signal transmission, which are called power/signal frequency division multiplexing transmission(P/S FDMT) and power/signal time division multiplexing transmission(P/S TDMT), are analyzed.
     P/S FDMT system can be realized by power/signal frequency division composite modulation in the power electronic circuit, which is based on traditional PWM control and utilize the switching harmonic as a carrier to transfer data. There are two power/signal frequency division composite modulations:PWM/FSK modulation and PWM/PSK modulation. By composite modulation, the information of the data has been embedded in the input ripple and output ripple of the power supply. For the amplitude of the ripple is varied with the circuit topologies, input voltage, output voltage and load current, so it is essential to choose the topologies that the ripple range is relatively small. In the condition of constant output voltage and wide range of load current, by analyzing the input and output ripple of the basic DC/DC topology, it can be concluded:the input port of Boost circuit is suitable for ripple communication while the output port of Buck circuit is suitable, and the Cuk is suitable in both port while Buck-Boost is unsuitable in both ports.
     Take Boost Circuit as an example, this paper made a detailed analysis of the PWM/FSK and PWM/2PSK DSSS modulation. The principles for the selection of carrier frequency and carrier shape are deduced, and the digital demodulation algorithm corresponding to these two methods are designed. Finally, the experimental results verify the correctness of these two proposed methods.
     The basic principle of P/S TDMT based on power converter is utilize the gap of power transmission, in which data signal is transmitted. This method has the advantages of simple circuit structure and strong anti-interference capacity, but the output voltage can not be regulated. The equipment in the P/S TDMT system can be divided into two class:power sourcing equipment(PSE) and powered device(PD). A general method of designing a P/S TDMT system is proposed:Firstly, the sequence of the transmission slot in a period should be defined. Secondly, the circuits of sourcing power in PSE and the circuits of sinking power in PD should be determined. Lastly, data communication circuits be added to the PSE and PD. Several basic circuits for sourcing/sinking power and data communication are presented in the paper.
     For the instance that P/S TDMT system applied in distributed control system which has long transmission distance, the affections of transmission line should be considered. This paper investigates in detail the transmission process of switching circuit in the environment of transmission line. Theoretical analysis and experimental results show that impedance matching in the source can improve the voltage waveform at the end of the line, but unable to suppress the voltage of reflection spike as power turned off. Another way to eliminate the transmission line reflection effect is to increase the rise time and fall time of the pulsed power. A novel soft-switching circuit is employed as PSE sourcing circuit in which the rise time and fall time can be control by resonant time of L and C. The effectiveness of this circuit is verified by experimental result.
     To realize reliable data communication, communication circuit must be supported by appropriate communication protocol. This paper has also studied the protocol that suit for P/S TDMT system. In physical layer, the design of communication timing diagram and the calculation of transmission distance is discussed. In MAC layer, reservation-based protocol and competitive protocol are introduced. Finally, three examples applied in different circumstance are given, which show that P/S TDMT system have the advantages of convenient wiring, simple circuits, high anti-interference ability, and can adapt to different application.
引文
[1]Robert W, Dragan M. Fundamentals of power electronics[M]. Boulder Colorado,2002.
    [2]DG Holmes, TA Lipo. Pulse width modulation for power converters:principles and practice [M]. IEEE press,2003.
    [3]Bose, B.K. Power electronics-a technology review[J]. Proceedings of the IEEE, 1992,80(8):1303-1334.
    [4]王兆安.电力电子技术的发展动向[J].电力电子技术,1995,29(4):80-85.
    [5]俞苹,周观允.国内外电力电子技术发展综述[J].电力电子技术,1992(4):59-64.
    [6]樊昌信,曹丽娜.通信原理[M].国防工业出版社,2006.2.
    [7]樊平毅,冯重熙.现代通信理论基础[M].清华大学出版社,2006.8.
    [8]Robert J. McEliece著,李斗,殷悦等译.信息论与编码理论[M].电子工业出版社,2004.2.
    [9]International telecommunication union UIT. ITU Internet reports 2005:The internet of things [R].2005.
    [10]王保云.物联网技术研究综述[J].电子测量与仪器学报,2009,23(12):1-7.
    [11]张毅,唐红.物联网综述[J].数字通信,2010(4):24-27,40.
    [12]Coetzee L, Eksteen J. The internet of things-promise for the future? An introduction[C].IST-Africa conference proceedings,2011:1-9.
    [13]Xu Li, Rongxing Lu, et al. Smart community:an internet of things application[J]. Communications magazine, IEEE,2011,49(11):68-75.
    [14]Huansheng Ning, Ziou Wang, Future internet of things architecture:like mankind neural system or social organization framework?[J]. Communications letters, IEEE,2011,15(4):461-463.
    [15]Yi Xiaolin, Jia Zhigang et al. The research and implementation of ZigBee protocol-based internet of things embedded system [C]. Information engineering and electronic commerce (IEEC).2010:1-4.
    [16]Qian Zhu, Ruicong Wang, et al. IOT gateway:Bridging wireless sensor networks into internet of things [C]. IEEE/IFIP 8th international conference on embedded and ubiquitous computing (EUC),2010:347-352.
    [17]张莉.ZigBee技术在物联网中的应用[J].电信网技术,2010(3):1-5.
    [18]胥京宇.Zigbee:让物联网的未来不是梦[J].世界电子元器件,2011(8):68-69.
    [19]Wang Dai, Wu Qin-zhang. Design of multi-detectors imaging control system based on field bus[C]. Cross strait quad-regional radio science and wireless technology conference (CSQRWC),2011:1502-1505.
    [20]阳宪惠.现场总线技术及其应用[M].清华大学出版社,2008.10.
    [21]岳秀梅,马学军,康勇.基于CAN总线的大功率逆变电源监控系统设计[J].电测与仪表,2008,45(10):37-40.
    [22]方彦军,刘经宇,潘婧等.基于PROFIBUS-DP总线的电厂备用保安电源自动监控系统设计[J].电气应用,2008,27(5):34-37.
    [23]Eric R Wade, Haruhiko Harry Asada. Design of a broadcasting modem for a DC PLC scheme[J]. IEEE transactions on mechatronics,2006, 11(5):533-540.
    [24]M A Mannah, C Batard, et al. Power line communication over feeder cables in an industrial environment[C]. IEEE international symposium on power line communications and its applications,2009:255-260.
    [25]Stefano Galli, Anna Scaglione, Zhifang Wang. For the grid and through the grid: The role of power line communications in the smart grid[J]. Proceedings of the IEEE,2011,99(6):998-1027.
    [26]Maneerung A, Sittichivapak S, et al. Application of power line communication with OFDM to smart grid system[C]. Eighth international conference on fuzzy systems and knowledge discovery (FSKD),2011(4):2239-2244.
    [27]Galli S, Scaglione A, Zhifang Wang. Power line communications and the smart grid[C], First IEEE international conference on smart grid communications (SmartGridComm),2010:303-308.
    [28]Korki M, Hosseinzadeh N, Moazzeni T. Performance evaluation of a narrowband power line communication for smart grid with noise reduction technique[J]. IEEE transactions on consumer electronics,2011,57(4):1598-1606.
    [29]罗玉涛,张智明,赵克刚.一种集散式动力电池组动态均衡管理系统[J].电工技术学报,2008,23(8):131-136,142.
    [30]连于峰,郑杭波,齐国光.基于CAN总线的分布式电池管理系统[J].电源技术应用,2003,6(12):41-44.
    [31]Ranhotitogamage C, Mukhopadhyay S C, et al. Measurement and monitoring of performance parameters of distributed solar panels using wireless sensors network[C]. Instrumentation and measurement technology conference (I2MTC), IEEE,2011:1-6.
    [32]Sanchez-Pacheco F J, Sotorrio-Ruiz, et al. Low cost DC lines PLC based photovoltaic plants parameters smart monitoring communications and control module[C]. International conference on power engineering, energy and electrical drives (POWERENG),2011:1-6.
    [33]汪裕民.OFDM关键技术与应用[M].机械工业出版社.2007.1.
    [34]王辉,汪晓岩,胡庆生.基于电力线信道的OFDM同步算法的仿真[J].电力系统通信,2008,29(8):26-31.
    [35]Mihalic F, Kos D. Conductive EMI reduction in DC-DC converters by using the randomized PWM[C]. Proceedings of the IEEE international symposium on industrial electronics,2005:809-814.
    [36]Balcells J, Gonzalez D, et al. Frequency modulation techniques for EMI reduction in SMPS[C]. European conference on power electronics and applications,2005:8-10.
    [37]周正,王世山.频率抖动技术抑制变换器输入电流电磁干扰[J].电力电子技术,2007,41(12):14-15.
    [38]田日才.扩频通信[M].清华大学出版社,2007.4.
    [39]Roger L Peterson, David E Borth著,沈丽丽等译.扩频通信导论[M].电子工业出版社,2006.7.
    [40]郭芳华.软件无线电技术综述[J].现代电子技术,2003(21):67-70,73.
    [41]丁哲.基于软件无线电技术的高速直接序列扩频接收机的设计[D].哈尔滨,哈尔滨工业大学,2007.7.
    [42]胡海兵,吕征宇,钱照明.浮点协处理器设计及其在电力电子数字控制平台中的应用[J].中国电机工程学报,2008,28(3):29-34.
    [43]杨郑浩,高艳霞等.数字控制高频Boost变换器设计与实现[J].电力电子技术,2011,45(7):89-91.
    [44]Yen-Shin Lai. Practical considerations for the design and implementation of digital-controlled power converters[C].36th annual conference on IEEE industrial electronics society,2010:662-667.
    [45]Texas Instruments, TMS320x2802x,2803x piccolo enhanced pulse width modulator (ePWM) module[R].2008.12.
    [46]H de Groot, H Janssen, et al. Design of a 1 MHz LLC resonant converter based on a DSP-driven SOI half-bridge power MOS module[C], Power electronics specialists conference,2006:1-14.
    [47]Mooney J, Mahdi A. et al. DSP-based controller for multi-output/multi-phase high switching frequency DC-DC converters[C]. Control and modeling for power electronics,2008:1-6.
    [48]齐淑清.电力线通信(PLC)技术与应用[M].中国电力出版社,2005.8.
    [49]杨刚等.电力线通信技术[M].电子工业出版社,2011.1.
    [50]曹惠彬.电力线通信(PLC)技术综述[J].电力系统通信,2004,25(1):11-6,,44.
    [51]张金波,张学武,郑雪峰.限制低压电力载波通信的因素及解决方法[J].电工技术杂志,2004(4):15-17.
    [52]张玥,李春茂.一种新型电力线收发器在电力线载波通信中的应用[J].电气应用,2006,25(12):76-79.
    [53]张容娟,刘大茂.电力线载波扩频通信调制模块的设计[J].现代电子技术,2010(3):114-115,118.
    [54]丁冠军,刘岩等.低压电力线通信技术综述[J].电子科技,2011(11):35-39.
    [55]张平泽,赵振勇.基于低压电力线载波通信方法的比较[J].电子设计工程,2010(2):26-28.
    [56]李庆,胡捍英.基于子载波加权降低OFDM系统峰均功率比的方法[J].电路与系统学报,2011,16(4):40-43,39.
    [57]刘世辉,赛颖夫.低压电力线自适应OFDM系统比特功率分配算法[J].哈尔滨理工大学学报,2011,16(4):73-77.
    [58]王翥,孙嘉宁.低压电力线信道特性分析[J].电测与仪表,2010,47(A07):32-35.
    [59]Holger P. Modelling of powerline communication channels[C]. Proceedings of the 3rd international symposium on power-Line comunications and its applications (ISPLC'99),1999:14-21.
    [60]Chen S, Guan YL, et al. A transmission line model for high-frequency power line communication channel [C]. Proceedings of international conference on power system technology,2002:1290-1295.
    [61]H Meng, S Chen, et al. Modeling of transfer characteristics for the broadband power line communication Channe[J], IEEE transactions on power delivery, 2004,19(3):1057-1064.
    [62]高锋,董亚波.低压电力线载波通信中信号传输特性分析[J].电力系统自动化,2000(7):36-40.
    [63]张有兵,程时杰等.低压电力线高频载波通信信道的建模研究[J].电力系统自动化,2002,26(23):62-66.
    [64]乐健,靳超等.电力线载波通信信道建模技术综述[J].中国科技论文在线,2011,6(8):622-628.
    [65]刘晓胜,周岩,戚佳.电力线载波通信的自动路由方法研究[J].中国电机工程学报,2006,26(21):76-81.
    [66]刘晓胜,戚佳金等.基于蚁群算法的低压配电网电力线通信组网方法[J].中国电机工程学报,2008,28(1):71-76.
    [67]赵杰卫,卢文冰等.电力线载波自动抄表动态路由技术研究[J],电力系统通信,2007,28(11):1-5.
    [68]徐炜,李智等,电力线通信自适应中继路由算法[J],信息与电子工程,2010,8(6)738-741,746.
    [69]肖雳.电力线通信技术的电磁兼容问题和测量方法[J].安全与电磁兼容,2007(2),22-24.
    [70]孙轩,梁明等.高速电力线通信的电磁兼容探讨[J].电气应用,2005,24(10):79-82.
    [71]傅静波.电力线载波设备的电磁兼容性[J].电力系统通信,2006,27(11):7-11.
    [72]IEC61158-2-2002. Fieldbus standard for use in industrial control systems-part 2: physical layer specification and service definition[S]. IEC,2002.
    [73]IEEE Std 802.3af-2003 [S]. IEEE,2003.
    [74]White R V. Electrical isolation requirements in power-over-Ethernet (PoE) power sourcing equipment (PSE) [C]. Applied power electronics conference and exposition, IEEE,2006.
    [75]陈海川,李茜等.高功率以太网供电技术综述[J].通信电源技术,2009,26(3):31-34.
    [76]胡云.高功率以太网供电的应用分析[J].低压电器,2011(12):24-28.
    [77]Wilsun Xu, Wencong Wang. Power electronic signaling technology-A new class of power electronics applications[J]. IEEE transactions on smart grid.2010,1(3): 332-339.
    [78]Wade E R, Asada H H. Design of a broadcasting modem for a DC PLC scheme[J]. IEEE transactions on mechatronics,2006,11(5):533-540.
    [79]Eduardo Roman, Ricardo Alonso, et al. Intelligent PV module for grid-connected PV systems[J]. IEEE transactions on industry electronics,2006,53(4):1066-1073.
    [80]Nosato H, Kasai Y, et al. A very low-cost low-frequency PLC system based on DS-CDMA for DC power lines[C]. IEEE International symposium on power line communications and its applications,2012:398-403.
    [81]Saggini S, Stefanutti W, et al. Power line communication in dc-dc converters using switching frequency modulation[C]. Applied power electronics conference and exposition,2006.
    [82]Stefanutti W, Mattavelli P, et al. Communication on power lines using frequency and duty-cycle modulation in digitally controlled dc-dc converters[C]. IECON, 2006:2144-2149.
    [83]Walter Stefanutti, Stefano Saggini, et al. Power line communication in digitally controlled DC/DC converters using switching frequency modulation [J]. IEEE transactions on industry electronics,2008,55(4):1509-1518.
    [84]Maxim integrated products, Inc. Maxim 1-wire products design guide[J],4th ed. www.maxim-ic.com.
    [85]贺翔,刘青.基于单总线网络的防盗报警系统[J].电子设计应用,2009(3):85-86.
    [86]宋鹏,王俊杰.仪表总线M-Bus协议的研究[J].自动化仪表,2004,25(8):19-21,25.
    [87]吴林高,赵健等.基于M-Bus的楼宇温控系统的设计与实现[J].哈尔滨理工大学学报,2006,11(1):26-29.
    [88]Luo S. A review of distributed power systems part I:DC distributed power system[J]. Aerospace and electronic systems magazine, IEEE,2005,20(8):5-16.
    [89]李颂伦.实时递推离散傅里叶变换算法(RTR—DFTA)[J].西北工业大学学报,1991,9(1):106-112.
    [90]黄咏梅,张宏建等.新DFT递推算法在涡街流量信号处理中的应用[J].浙江大学学报,2003,37(1):51-55.
    [91]周庭阳,江维澄.电路原理(下)[M].浙江大学出版社,1994.
    [92]Clayton R Paul著,闻映红等译.电磁兼容导论(第二版)[M],人民邮电出版社,2007:138-148,157-161.
    [93]Eric Bogatin著,李玉山,李丽平等译.信号完整性分析[M],电子工业出版社,2005:177-178.
    [94]孙韬.传输线方程解析解的研究[D].重庆大学博士学位论文,2005.
    [95]孙韬,刘宗行,江泽佳.无畸变传输线方程的解析解[J].电路与系统学报,2007,12(6):70-74.
    [96]谢希仁.计算机网络(第三版)[M],大连理工大学出版社,2000.
    [97]胡道元.计算机局域网[M],清华大学出版社,1996.
    [98]P Tsao. Simulation of PV systems with power optimizers and distributed power electronics[C].35th IEEE photovoltaic specialists conference (PVSC),2010: 389-393.
    [99]P Tsao, S Sarhan, I Jorio. Distributed max power point tracking for photovoltaic array[C].34th IEEE photovoltaic specialists conference(PVSC),2009:2293-2298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700