用户名: 密码: 验证码:
铁基材料粉末锻造及致密化成形技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粉末冶金技术具有低成本、近净成形等显著优点,已广泛用于生产发动机传动件、通用机械零件和工具等。粉末冶金材料的密度及其分布是影响粉末冶金制品力学性能和尺寸精度的关键因素,开发高密度高性能的粉末冶金制品已成为粉末冶金技术的发展方向和研究重点。粉末锻造技术结合了粉末冶金和精密锻造的优势,提高了传统粉末冶金多孔零件的力学性能,简化了精密锻造的制坯工艺,可实现高性能复杂形状零件的低成本、高效率生产。
     本文开展了粉末锻造用Fe-0.5C-2Cu烧结合金的制备及粉末锻造和烧结Fe-0.5C-2Cu合金的高温流变和致密化行为研究,建立了粉末锻造和烧结合金的高温流变本构模型,并运用有限元数值模拟技术研究了粉末烧结多孔材料的热变形致密化过程,优化了粉末锻造工艺。同时对材料力学性能与密度的关系,热处理工艺对粉末锻造材料力学性能的影响进行了研究:
     (1)采用有限元数值模拟技术研究了金属粉末的模压致密化成形机理,在此基础上通过机械混合,双向压制和保护气氛烧结工艺制备了密度为6.43g/cm3的低成本粉末锻造用Fe-0.5C-2Cu合金,评价了粉末烧结合金的力学性能,分析了粉末烧结合金的断裂行为。
     (2)粉末锻造和烧结Fe-0.5C-2Cu合金的高温热压缩实验表明,高致密的粉末锻造合金由于存在动态回复和动态再结晶软化,流变应力曲线出现明显的峰值应力。而粉末烧结合金在热变形过程中伴随着材料硬化和几何硬化两种硬化方式,随着变形量的增大,材料致密度提高,使得流变应力持续增加。在这一过程中粉末烧结合金的致密化效果同时受到变形速率、变形温度、变形量、初始密度和摩擦的影响,其中变形速率的影响尤为突出。
     (3)采用应变量耦合的Arrhenius双曲正弦模型和逐步回归模型分别建立了粉末锻造和烧结Fe-0.5C-2Cu合金的本构方程,两个模型对合金高温流变应力的预测平均绝对相对误差分别为3.07%和3.88%,均具有良好的预测能力。
     (4)分别将粉末锻造和烧结Fe-0.5C-2Cu合金的高温流变本构模型嵌入有限元分析软件模拟合金的恒温恒应变速率压缩过程,模拟结果与热压缩实测载荷—位移曲线吻合较好。粉末烧结合金热压缩致密化过程和密度分布的数值模拟结果与实测值基本一致,平均密度最大绝对相对误差为3.97%,且高应变速率下的预测精度(误差不大于0.53%)比低应变速率下更高。
     (5)通过粉末锻造过程有限元模拟优化粉末锻造工艺,成功锻造出密度为7.85g/cm3的粉末锻造试样,材料极限拉伸强度和屈服强度分别为932MPa和667MPa,硬度为HB294.4,延伸率为9%,断面收缩率为20%,冲击韧性为22.7J/cm2。对比密度对材料力学性能的影响表明,随着密度增加,材料极限拉伸强度、屈服强度和硬度近似线性增大,延伸率、断面收缩率成幂函数增大,而冲击韧性则随密度增加成指数增大。试样断裂表面随着材料密度提高,撕裂区增大,并在高致密区向穿晶断裂转变,形成包含韧性和脆性的混合断裂。当材料密度接近全致密时,断裂面全部转变为穿晶脆性断裂。
     (6)粉末锻造Fe-0.5C-2Cu合金不同热处理工艺下的力学性能测试表明,油冷+回火试样的冲击韧性、拉伸强度和硬度均高于空冷+回火试样,但塑性比后者低。试样经油冷和空冷后均在450℃回火时表现出较好的力学性能。
Powder metallurgy technology with low-cost, near net shape and other significant advantages has been widely used for production of engine transmission parts, general machinery parts and tools, etc. Density and distribution of powder metallurgy materials is a key factor to affect the mechanical properties and dimensional accuracy of powder metallurgy products. The development of high density and high performance powder metallurgy products has become the powder metallurgy technology development direction and research priorities. Powder forging technology combining the advantages of powder metallurgy and precision forging, improving the mechanical properties of porous powder metallurgy parts, simplifying the process of precision forging billet system, can produce the high performance complex shape parts with high efficiency and low cost. The research contents are as follows:the preparation of Fe-0.5C-2Cu alloy for powder forging; the hot deformation and densification behavior of Fe-0.5C-2Cu alloy. The constitutive equations of flow stress of the powder forged and sintered alloy at elevated temperature were established. The hot deformation and densification process of sintered alloy with pores was investigated, and the process parameters of powder forging were optimized by the means of FENS (finite element numerical simulation). Finally, the relationship between mechanical properties and density of porous materials and the effects of heat treatment process on mechanical properties of powder forged steel were studied. The following main conclusions are obtained:
     (1) The densification mechanism of metal powder compaction process was studied by the means of FENS. The low cost Fe-0.5C-2Cu alloy samples with density of6.43g/cm3were prepared through mechanical mixing, double-action pressing and sinter in the protection atmosphere. The mechanical properties and fracture behavior of sintered alloy were evaluated and analysed.
     (2) The hot compressive tests of powder forged and sintered Fe-0.5C-2Cu alloy at elevated temperature were carried out. The results indicated that the peak stresses on flow stress curves of high-density powder forged steel are found due to the effects of dynamic recovery and dynamic recrystallization. While the flow stress of sintered alloy continue to increase in the hot deformation process with the increase of deformation extent and density because of the effects of both material hardening and geometry hardening.
     (3) Utilizing hyperbolic sine function and introducing the strain with nonlinear fitting, the modified Arrhenius equation of flow stress of powder forged Fe-0.5C-2Cu alloy at high temperature was established. Considering the impact of deformation on the flow behavior, the constitutive equations of flow stress of sintered Fe-0.5C-2Cu alloy were also established using stepwise regression method. The average absolute relative error between predicted results and experimental data of powder forged and sintered alloy are3.07%and3.88%respectively, which indicates that the two constitutive equations have good predication ability.
     (4) The constitutive equations of flow stress of powder forged and sintered Fe-0.5C-2Cu alloy were implanted into finite elements analysis software to simulate the constant temperature and strain rate compression process. The simulative load-stroke curves agree well with the experimental results. The simulative densification and density distribution of sintered alloy during the hot compression process is basically consistent with the testing results. The max relative error of average density is3.97%, while the accuracy of prediction under the high strain rate condition (no more than0.53%) is higher than that under the low strain rate condition.
     (5) The powder forged alloy samples with density of7.85g/cm3were prepared under the optimum process conditions by the means of FENS. The values of ultimate tensile strength (UTS), yield strength (YS), elongation (EL), Brinell hardness (HB), reduction in area (RA) and impact toughness (IT) are932MPa,667MPa,9%, HB294.4,20%and22.7J/cm2respectively. The relationships between mechanical properties and density indicated that the UTS, YS and HB increases linearly, and the EL and AR increases in power function, as well as the IT increases exponentially with increasing density respectively. Fracture took place in sintered necks of the material at the low density and the mode of fracture is pure ductile. With the increase of density, the fracture morphology is a combination of ductile rupture as well as brittle fracture from fully dense pearlitic grains. When the density close to full dense, the fracture surface is composed of transgranular cleavage and the mode of fracture is complete brittle.
     (6) The mechanical properties of powder forged Fe-0.5C-2Cu alloy after different heat treatment were tested. The test results indicate that the IT, UTS, YS and HB of the specimens after oil cooling and tempering is higher than that after air cooling and tempering, while the plasticity is lower than the latter. The specimens cooled in oil and air after tempering at450℃have good mechanical properties.
引文
[1]Kuhn H A, Ferguson B L. Powder Forging[M]. Princeton, New Jersey:Metal Powder Industries Federation,1990:3.
    [2]Wang C L, Jia P H, Li Z X, et al. Mechanical properties of powder forged low alloy steels[C]. Freiburg, Germany:Verlag Schmid Gmbh,1986.917-920.
    [3]Wang C L, Liu W K, Li Z X, et al. Preparation and propertites of co-reduced Fe-Mo alloy powder from metal oxides [C]. Freiburg, Germany:Verlag Schmid Gmbh,1986.
    [4]李念辛,李森蓉.我国铁基粉末冶金锻造技术的发展[J].粉末冶金技术.1996,14(1):58-62.
    [5]王崇琳.粉末锻造汽车行星齿轮的研制历程[C].粉末冶金产业技术创新战略联盟论坛暨中国钢协、机械粉末冶金协会二十周年纪念文集,北京,2010:104-116.
    [6]葛昌纯.金属粉末锻造工艺[J].国外金属粉末锻造发展概况.1974:1-9.
    [7]Selecka M, Salak A. Durability and failure of powder forged rolling bearing rings[J]. Wear.1999,236(1-2):47-54.
    [8]Jandeska W, Slattery R, Hanejko F, et al. Rolling Contact Fatigue Performance Contrasting Surface Densified, Powder Forged, and Wrought Materials [J]. Advance in Powder Metallurgy and Particulate Materials.2005,3:1244-1255.
    [9]Ilia E, Tutton K, O'Neill M. Forging a way towards a better mix of PM automotive steels[J]. Metal Powder Report.2005,60(3):38-44.
    [10]Sonti N, Rao S, Anderson G. Bending fatigue, impact and pitting resistance of ausform finished P/M gears[C]. Alexandria, United states:American Gear Manufacturers Association,2009.168-181.
    [11]Han H N, Lee Y, Oh K H, et al. Analysis of hot forging of porous metals [J]. Materials Science and Engineering A.1996,206(1):81-89.
    [12]汪俊,李从心,阮雪榆.基于实验参数修正的粉末金属压制过程数学模型[J].上海交通大学学报.2000,34(3):322-325.
    [13]Kuhn H A, Downey C L. Deformation characteristics and plasticity theory of sintered powder materials [J]. International Journal of Powder Metallurgy.1971, 7(1):15-20.
    [14]Tewari H N, Sharan R. Forgeability rvaluation of steel powder preforms [J]. Metal Powder Report.1983,38(8):441-443.
    [15]屠挺生,林大为.金属粉末烧结材料泊松比模型的探讨[J].金属成形工艺.2001(02):4-7.
    [16]任学平,王尔德,霍文灿.粉末体的屈服准则[J].粉末冶金技术.1992,10(1):9-12.
    [17]Kuhn H A. Deformation processing of sintered powder metals [M]. Powder Metallurgy Processing:New Techniques and Analyses, New York:Academic Press, 1978,99.
    [18]Zhao Z Z, Hua L, Wang H C. The forming and densification of sintered powder materials[J]. Science of Sintering.1987,19(2):65-80.
    [19]黄培云.粉末冶金原理(第2版)[M].北京:冶金工业出版社,1997.
    [20]Tripodi M A, Puri V M, Manbeck H B, et al. Elastoplastic finite element model development and validation for low pressure uniaxial conlpaction of dry cohesive powders[J]. Powder Technology.1995,85:241-251.
    [21]Haggblad H A. Constitutive models for powder materials [J]. Powder Technology.1991,61:127-136.
    [22]Fleck N A, Otoyo H, Needleman A. Indentation of porous solids [J]. Internationaljournal of Solids and Structures.1992,29(13):1613-1636.
    [23]Khoei A R, Mofid M, Bakhshiani A. Modeling of powder compaction process using an endochronic plasticity model[J]. Journal of Materials Processing Technology.2002,130-131:175-180.
    [24]Oliver J, Oller S, Cante J C. A plasticity model for simulation of industrial powder compaction process[J]. International Journal of Solids and Structures.1996, 33:3161-3178.
    [25]Budiansky B O, Conneill R J. Elastic moduli of a cracked solid[J]. International Solids Fracture.1976,2(1):81-87.
    [26]赵伟斌.金属粉末温压成形的力学建模和数值模拟[D].广州:华南理工大学,2005.
    [27]王崇琳.论粉末冶金材料的密度测定[J].粉末冶金工业.2010,20(6):1-4.
    [28]Cn-Gb.烧结金属材料(不包括硬质合金)可渗性烧结金属材料.密度、含油率和开孔率的测定[S].北京,全国有色金属标准化技术委员会,2006.
    [29]周照耀,李元元.金属粉末成形力学建模与计算机模拟[M].广州:华南理工 大学出版社,2011.
    [30]Zhao Z Z, Hua L, Wang H C. The forming and densification of sintered powder materials[J]. Science of Sintering.1987,19(2):65-80.
    [31]Gurson A L. Plastic flow and fracture behaviour of ductile materials incorporating nucleation,growth,and interaction[D]. Providence:Brown University, 1975.
    [32]Shima S, Oyane M. Plasticity theory for porous metals[J]. International Journal of Mechanical Sciences.1976,18(6):285-291.
    [33]Doraivelu S M, Gegel H L, Gunasekera J S, et al. A new yield function for compressible materials [J]. International Journal of Mechanical Sciences.1984, 26(9-10):527-535.
    [34]Lee D N, Kim H S. Plastic yield behavior of porous metals[J]. Powder Metallurgy.1992,35(4):275-279.
    [35]Hua L, Zhao Z Z. Plastic deformation and densification for sintered powder materials[J]. Transactions Nonferrous Metals Society of China.1992,2(4):82-87.
    [36]Park J J. Constitutive relations to predict plastic deformations of porous metals in compaction[J]. International Journal of Mechanical Sciences.1995,37(7):709-719.
    [37]Green R J. A plasticity theory for porous solids [J]. International Journal of Mechanical Sciences.1972,14(4):215-224.
    [38]Qin X P, Hua L. Deformation and strengthening of sintered ferrous material[J]. Journal of Materials Processing Technology.2007,187-188:694-697.
    [39]Hua L, Qin X P, Mao H J, et al. Plastic deformation and yield criterion for compressible sintered powder materials [J]. Journal of Materials Processing Technology.2006,180(1-3):174-178.
    [40]Alves L M M, Martins P A F, Rodrigues J M C. A new yield function for porous materials[J]. Journal of Materials Processing Technology.2006,179(1-3):36-43.
    [41]贺鹏飞,朱晓玲,潘琼瑶,et a1.具有随机分布孔洞材料塑性变形的数值模拟[J].同济大学学报(自然科学版).2008,36(6).
    [42]Tane M, Ichitsubo T, Hirao M, et al. Extended mean-field method for predicting yield behaviors of porous materials[J]. Mechanics of Materials.2007,39(1):53-63.
    [43]Narayanasamy R, Ponalagusamy R, Subramanian K R. Generalised yield criteria of porous sintered powder metallurgy metals [J]. Journal of Materials Processing Technology.2001,110(2):182-185.
    [44]Ponalagusamy R, Narayanasamy R, Subramanian K R. Prediction of limit strains in sheet metals by using new generalized yield criteria[J]. Materials & Design. 2007,28(3):913-920.
    [45]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,2003.
    [46]刘明俊.金属粉末成形有限变形本构模型及数值模拟[D].华南理工大学,2007.
    [47]Chtourou H, Guillot M, Gakwaya A. Modeling of the metal powder compaction process using the cap model. Part I Exprimental material characterization and validation[J]. International Journal of Solids and Structures.2002,39:1059-1075.
    [48]Mori K, Osakada K. Analysis of the forming process of sintered powder metals by a rigid-plastic finite element method[J]. Powder Metallurgy.1987,29:229-238.
    [49]Michrafy A, Ringenbacher D, Tchoreloff P. Modelling the compaction behaviour of powders:application to pharmaceutical powders[J]. Powder Technology.2002,127:257-266.
    [50]郭彪,葛昌纯,颜永年,et a1.金属粉末压制成形机理及影响因素模拟分析[J].材料导报.2012,7(26):141-145.
    [51]Szanto M, Bier W, Frage N, et al. Experimental based finite element simulation of cold isostatic pressing of metal powders [J]. International Journal of Mechanical Sciences.2008,50(3):405-421.
    [52]Lee S C, Kim K T. Densification behavior of aluminum alloy powder under cold compaction[J]. International Journal of Mechanical Sciences.2002,44(7): 1295-1308.
    [53]杜艳迎,史玉升,魏青松,et a1.不锈钢粉末冷等静压数值模拟与实验验证[J].材料工程.2010,(3).
    [54]Song Y, Li Y, Zhou Z, et al. Improved model and 3D simulation of densification process for iron powder [J]. Transactions of Nonferrous Metals Society of China. 2010,20(8):1470-1475.
    [55]Kim K T, Lee S C, Ryu H S. Densification behavior of aluminum alloy powder mixed with zirconia powder inclusion under cold compaction[J]. Materials Science and Engineering A.2003,340(1-2):41-48.
    [56]汪俊,李从心,阮雪榆.基于实验参数修正的粉末金属压制过程数学模型[J]. 上海交通大学学报.2000,34(3).
    [57]贺峻,康永林,任学平,et al.陶瓷粉末冷等静压成形密度缺陷模拟分析[J].粉末冶金技术.2001,19(6).
    [58]贺峻,王艳丽,康永林.粉末冶金零件等静压成形过程数值模拟[J].钢铁研究.2001,1(1).
    [59]Huang C M, Chen P Q, Shao M, et al. Numerical simulation in powder compaction of metallurgy component[J]. Transactions of Nonferrous Metals Society of China.2006,16(6):1353-1357.
    [60]Kim H S. Yield and compaction behavior of rapidly solidified Al-Si alloy powders[J]. Materials Science and Engineering:A.1998,251(1-2):100-105.
    [61]Kim H S, Estrin Y, Gutmanas E Y, et al. A constitutive model for densification of metal compacts:the case of copper[J]. Materials Science and Engineering:A. 2001,307(1-2):67-73.
    [62]欧阳鸿武,何世文,韦嘉,et al.装粉方式对钛粉压制成形影响的数值模拟[J].中国有色金属学报.2004,14(8).
    [63]王德广,焦明华,俞建卫,et al.压坯高径比对粉末冶金制品性能影响的有限元模拟[J].中国机械工程.2007,18(20):2493-2497.
    [64]Li Y, Zhao W, Zhou Z, et al. Coupled mechanical and thermal simulation of warm compaction[J]. Transactions of Nonferrous Metals Society of China.2006, 16(2):311-315.
    [65]Li Y, Chen P, Xia W, et al. Numerical modeling and simulation of metal powder compaction of balancer[J]. Transactions of Nonferrous Metals Society of China. 2006,16(3):507-510.
    [66]赵伟斌.上二下三台面零件压制成型的数值模拟[J].现代制造工程.2009,(9):96-99.
    [67]Riedel O C A H. Numerical simulation of metal powder die compaction with special consideration of cracking[J]. Powder Metallurgy.2000,43(2):123-131.
    [68]张昊,陈振华,陈鼎.喷射沉积5A06铝合金楔压变形的数值模拟[J].中国有色金属学报.2008,18(12):2132-2139.
    [69]Biswas K. Comparison of various plasticity models for metal powder compaction processes[J]. Journal of Materials Processing Technology.2005,166(1):107-115.
    [70]Zhang X Q, Peng Y H, Li M Q, et al. Study of workability limits of porous materials under different upsetting conditions by compressible rigid plastic finite element method[J]. Journal of Materials Engineering and Performance.2000,9(2): 164-169.
    [71]Huang C C, Cheng J H. Forging simulation of sintered powder compacts under various frictional conditions [J]. International Journal of Mechanical Sciences.2002, 44(3):489-507.
    [72]周明智,萍李,薛克敏.粉末烧结体镦粗成形过程热力耦合有限元分析[J].塑性工程学报.2005,12(6):11-15.
    [73]Lee Y S. An Eulerian Finite Element Model for the Steady State Forming of Porous Materials[J]. Metals and Materials International.2006,12(2):161-166.
    [74]Kim H S, Won C W, Chun B S. Plastic deformation of porous metal with an initial inhomogeneous density distribution[J], Journal of Materials Processing Technology.1998,74(1-3):213-217.
    [75]Ilia E, O'Neill M, Tutton K, et al. Benchmarking the industry:powder forging makes a better connecting rod[J]. SAE paper 2005-01-0713.2005.
    [76]Ilia E, Tutton K, O'Neil M L. Forging a way towards a better mix of PM automotive steels[J]. Metal Powder Report.2005,60(3):38-44.
    [77]Geiman T, Christopherson D, Marra M, et al. Machinability and performance of precision powder-forged connecting rods[J]. SAE paper 2001-01-0351.2001.
    [78]Crunch time at SAE leaves the C-70 con rod case bent and very battered[J]. Metal Powder Report.2005,60(6):14-16.
    [79]王崇琳.扩散方程解和烧结材料中合金元素的分布[J].粉末冶金材料科学与工程.2006,11(2):80-84.
    [80]韩凤麟.美国MPIF标准35“P/F钢零件材料标准”简介[J].粉末冶金技术.2000(4):292-300.
    [81]ASTM. Standard specification for powder forged (P/F) ferrous materials [S]. United State,2005.
    [82]Dale J R. Powder forged or C-70 steel? Now the MPIF strikes back[J]. Metal Powder Report.2005,60(2):14-17.
    [83]Paek S. Y.,沈永生.高性能粉末冶金连杆在V6发动机中的应用[J].国外内燃机.1999,31(5):50-56.
    [84]Ilia E, Tutton K, O'Neill M, et al. New improvements in materials used to manufacture powder forged connecting rods[J]. SAE paper 2007-01-1556.2007.
    [85]Ilia E, O'Neill M, Tutton K. Higher fatigue strength materials for powder metal forged connecting rods[J]. SAE paper 2002-01-0611.2002.
    [86]Ilia E, Tutton K, O'Neill M. Impact of copper and carbon on mechanical properties of iron-carbon-copper alloys for powder metal forging applications: United States, US2006/0086204A1[P].2006-04-27.
    [87]Ilia E, Tutton K, Lanni G. Fuel economy the driver for new materials[J]. Metal Powder Report.2007,62(9):24-31.
    [88]Donaldson I W, Geiman T E, Williams R K, et al. Prealloyed copper powder forged connecting rod:United States, WO2009/088771A2[P].2009-07-16.
    [89]Takada K, Kogure R, Sato M, et al. Development of high fatigue strength for powder-forged connecting rods[J]. SAE paper 2008-01-0849.2008.
    [90]Sato M, Takada M, Takaka K, et al. Powder forged member, powder mixture for powder forging, method for producing powder forged member, and facture split type connecting rod using the same:Jpan, US2009/0311122 A1[P].2009-12-17.
    [91]Koenig W, Roeber G, Stroemgren M. Powder forging of helical gears for car manual gear boxes-concept and properties [J]. Metal Powder Report.1990,45(4): 272-273.
    [92]农机部杭州粉末冶金研究所,水利电力部热工研究所,西安交通大学金属材料及强度研究所.粉锻齿轮与18CrMnTi齿轮单齿多次冲击试验研究[J].西安交通大学学报.1979(04):21-28.
    [93]冶金部金属研究所粉末冶金组.粉末冶金精锻[J].机械工人技术资料.1975(06):52-54.
    [94]益阳市粉末冶金厂,中南矿冶学院粉末冶金教研室,益阳市粉末冶金研究所.喷雾预合金钢粉末热锻工农—10小拖末端传动主动齿轮研制报告[J].中南矿冶学院学报.1977(01):38-47.
    [95]唐华生.粉末冶金烧结热锻及冷锻的技术发展[J].锻压技术.1992(01):14-18.
    [96]南京粉末冶金厂,杭州粉末冶金厂,上海材料研究所.水雾化法制取低合金钢粉[J].机械工程材料.1977(03):52-59.
    [97]Alven D A, Imbrogno P G. The effect of density on the bending fatigue of powdered metal gears[C]. Las Vegas, United states:American Society of Mechanical Engineers,2007.879-885.
    [98]Sonti N, Rao S, Anderson G. Surface durability of ausform finished P/M gears[J]. Powder Metallurgy & Particulate Materials.2009:1-12.
    [99]王佳玲,陈卓,陈华.铁基粉末烧结热锻材料的组织和性能[J].长春工业大学学报(自然科学版).2005,26(1):61-65.
    [100]Park J O, Kim K J, Kang D Y, et al. An experimental study on the optimization of powder forging process parameters for an aluminum-alloy piston[J]. Journal of Materials Processing Technology.2001,113(1-3):486-492.
    [101]韩凤麟.粉末锻造连杆用Fe-Cu-C材料的改进[C].2009粉末冶金技术商务论坛,苏州,2009:157-168.
    [102]Cn-Gb.金属粉末流动性的测定标准漏斗法(霍尔流速计)[S].北京,全国有色金属标准化技术委员会,2010.
    [103]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics.1944,15(22):22-32.
    [104]P R K, B H E. Development of constitutive relationships using compression testing of a medium carbon steel [J]. Transactions of the ASME Journal of Engineering Materials and Technology.1992,114:116-123.
    [105]井上胜郎.钢の高温加工强度に关する研究(Ⅱ)[J].高温高速度引张り实验装置.1955,41(6):593-601.
    [106]井上胜郎.钢の高温加工强度に关する研究(Ⅰ)[J].高温高速度引张り实验装置.1955,41(5):506-515.
    [107]聂蕾,李付国,方勇.TC4合金的新型本构关系[J].航空材料学报.2002,13(3):13-18.
    [108]侯红亮,姜波,王耀奇等.基于正交回归的TC4合金本构关系研究[J].航空制造技术.2004,11:75-77.
    [109]孙志超,杨合,沈昌武.基于逐步回归法的TA15钛合金本构模型的建立[J].锻压技术.2008(02):110-115.
    [110]吴琳,王克鲁,鲁世强.基于逐步回归法的TB6钛合金本构关系研究[J].热加工工艺.2010(08):29-31.
    [111]崔军辉,杨合,孙志超.几种基于回归方法的本构模型研究及其在TB6合金上的应用[J].热加工工艺.2011(10):30-33.
    [112]Jonas J J, Sellars C M, Tegart W J. Strength and structure under hot working conditions[J]. International Materials Reviews.1969,14(24):1-24.
    [113]Samantaray D, Mandal S, Bhaduri A K. A comparative study on Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel [J]. Computational Materials Science.2009,47(2):568-576.
    [114]Phaniraj M P, Lahiri A K. The applicability of neural network model to predict flow stress for carbon steels[J]. Journal of Materials Processing Technology.2003, 141(2):219-227.
    [115]Aivazov M I, Domashnev I A. Influence of porosity on the conductivity of hot-pressed titanium-nitride specimens[J]. Test Methods and Properties of Materials.1968,7(9):708-710.
    [116]王继新,郭昌明,朱志远,et al.烧结合金致密化过程及其对性能的影响[J].粉末冶金材料科学与工程.2006,11(1):19-23.
    [117]任慧平,刘宗昌,王海燕,et al.含铜高纯钢的沉淀硬化[J].材料热处理学报.2007,28(增刊):119-122.
    [118]李闯,王学敏,尚成嘉,et al.连续冷却过程中含Cu相在钢中析出行为的研究[J].金属学报.2010,46(12):1488-1494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700