c-Abl激酶在β2整合素介导的信号转导途径中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白细胞沿着血管内皮滚动、稳定粘附和跨内皮迁移,最终到达炎症部位是一个复杂的多步骤的过程,它的精确调控与机体的宿主防御和炎症反应密切相关。有多种粘附分子参与这一事件,其中β2整合素主要介导白细胞稳定粘附于血管内皮上和跨内皮的迁移。β2整合素是一类仅表达于白细胞表面的粘附分子家族,它包括四个成员,由一个共同的β亚基分别与四种α亚基形成非共价结合的异源二聚体。在静息的白细胞中,β2整合素以一种低亲和力和非粘附的状态存在。在炎症部位产生的细胞因子和趋化因子的刺激下,β2整合素能够迅速活化与其配体结合,这个过程为整合素的“inside-out”信号。活化的整合素能产生“outside-in”信号来调节细胞的骨架变化以及信号转导。β2整合素的信号对于中性粒细胞的稳定粘附和伸展非常关键,大量证据表明中性粒细胞的呼吸爆发、脱颗粒、蛋白的酪氨酸磷酸化等生理事件都依赖于β2整合素介导的细胞粘附。但是,对于中性粒细胞中β2整合素是如何调控细胞粘附的机制还不十分清楚。在中性粒细胞中,粘附引起的β2整合素的交联能够活化多种非受体酪氨酸激酶,这些激酶与细胞的骨架重排、生长、存活、运动密切相关。c-Abl激酶是一种非受体酪氨酸激酶,它参与多种受体引起的信号转导,并且参与了F-肌动蛋白依赖的细胞骨架变化。我们推测,c-Abl激酶可能参与了β2整合素介导的中性粒细胞粘附。本文主要探讨了c-Abl激酶在中性粒细胞的β2整合素信号转导中的功能和作用机制。
     我们的研究发现,在中性粒细胞中,β2整合素的交联能够增强c-Abl激酶的活性。细胞因子TNF-α能够引起细胞表面整合素表达的增加和活性的增强,但是c-Abl激酶抑制剂STI571并不影响这一变化,表明c-Abl激酶不参与TNF-α引起的整合素inside-out活化。而c-Abl激酶的抑制能显著降低细胞的稳定粘附和伸展,当干涉胞内的c-Abl激酶表达后也有相似的作用,因此c-Abl激酶主要参与了β2整合素的outside-in信号通路。
     在静息的中性粒细胞中,c-Abl激酶均匀的分布在细胞质内,而β2整合素介导细胞粘附之后,c-Abl激酶就募集到β2整合素富集的部位。通过蛋白质免疫沉淀和GST pull-down等实验,我们发现在β2整合素交联的中性粒细胞中,β2整合素与c-Abl激酶存在于同一个蛋白质复合体中,但二者的结合不是直接的。talin是一类骨架蛋白,它的头部与中性粒细胞中的β2整合素的胞浆尾部直接并持续地结合。活化的c-Abl激酶通过其SH3结构域与talin的头部结合,进而募集到β2整合素的胞浆尾部。
     Vav是一类鸟苷酸交换因子,它参与了β2整合素对中性粒细胞粘附的调控。我们的实验发现,在中性粒细胞中c-Abl激酶与Vav持续结合,并且在β2整合素产生的信号通路中c-Abl激酶能够调节Vav的活性。二者的作用方式是通过c-Abl激酶的SH3结构域与Vav的SH2结构域的结合。通过点突变实验,我们发现c-Abl激酶SH3结构域中的134位酪氨酸对于二者的结合很关键。
     我们的结果证明了,在β2整合素介导的中性粒细胞粘附过程中,c-Abl激酶能够被β2整合素活化。talin作为持续与β2整合素胞浆尾部结合的骨架蛋白,对于c-Abl激酶募集到β2整合素非常关键。活化的c-Abl激酶能够通过调节Vav的活性进而参与了对中性粒细胞的稳定粘附和伸展的调控。本论文揭示了c-Abl激酶在天然免疫过程中的新作用。
Recruitment of leukocytes from blood into tissues plays an important role in host defense and inflammation, including tethering, rolling, adhesion and transmigration. This process is controlled by a variety of adhesion molecules, and members ofβ2 integrin subfamily are critical for the regulation of cellular adhesive activity in this event.β2 integrins are noncovalently associated heterodimers composed of a commonβ-chain and one of four uniqueα-chains.β2 integrins are in low affinity and nonadhesive state in resting leukocytes, and are rapidly activated to bind ligands in response to local inflammatory stimuli, such as cytokines or chemoattractants, a process known as“inside-out”activation. Once activated, integrins can deliver“outside-in”signals to regulate the cytoskeleton and signaling complex. Integrin signaling is critical for neutrophil firm adhesion and spreading, and oxidative burst, degranulation and protein tyrosine phosphorylation are all dependent on the cell adhesion mediated byβ2 integrin. However, the molecular mechanisms by which integrins regulate adhesive events in neutrophils are largely undefined. In neutrophils, adhesion-induced ligation ofβ2 integrin activates various non-receptor tyrosine kinases, which have been demonstrated critical in integrin signaling and leads to cytoskeleton rearrangements, cell growth, survival, and motility. c-Abl kinase as a non-receptor protein tyrosine kinase plays an essential role in signaling transduction from various receptors and in F-actin reassembly. Thus, we speculate that c-Abl kinase plays a role in neutrophilβ2 integrin signaling. In this paper, we focus on the function and mechnism of c-Abl kinase in neutrophils induced byβ2 integrin engagement.
     c-Abl kinase is activated byβ2 integrin engagement. The expression ofβ2 integrin on neutrophils induced by TNF-αis not affected by c-Abl kinase inhibitor STI571, suggesting that c-Abl kinase is not involved in TNF-αinduced integrin inside-out activation. Inhibiton of c-Abl kinase impaires neutrophil sustained adhesion and spreading, which is similar with c-Abl kinase knock-out cells. Thus, we conclude that c-Abl kinase is mainly involved inβ2 integrin outside-in signaling.
     In resting neutrophils, c-Abl kinase is approximatively uniform in the cytosol. After neutrophil adhesion mediated byβ2 integrin, c-Abl kinase is redistributed and colocalized withβ2 integrin. We have shown that c-Abl kinase interacts with the cytoplasmic domain ofβ2 integrin afterβ2 integrin engagement by immunoprecipitation and GST pull-down assay, but this interaction is not direct. Talin is a major cytoskeletal protein and constitutively and directly binds to integrinβ2 cytoplasmic domains with its head domain. The recruitment of c-Abl kinase toβ2 integrin is dependent on the interaction between c-Abl kinase SH3 domain and talin head domain.
     The Vav family proteins are cytoplasmic guanine nucleotide exchange factors, and involved in the regulation of neutrophil adhesion mediated byβ2 integrin. Our results show that c-Abl kinase constitutively and directly associates with Vav, and the activity of Vav is regulated by c-Abl kinase inβ2 integrin signaling transduction. c-Abl kinase SH3 domain and Vav SH2 domain are involved in this association, and Tyr134 in c-Abl kinase SH3 domain is critical.
     Our results have defined that c-Abl kinase can be activated byβ2 integrin engagemnet in neutrophils. Talin head domain, as aβ2 integrin cytoplasmic binding protein, is critical for the recruitment of c-Abl kinase toβ2 integrin. After activated, c-Abl kinase can regulate neutrophil adhesion and spreading via Vav. The c-Abl kinase has a novel role in innate immunity.
引文
[1] Hemler M E. VLA proteins in the integrin family: structures, functions, and their role on leukocytes [J]. Annu Rev Immunol, 1990, 8: 365–400.
    [2] Tatsuo Kinashi. Intracellular signalling controlling integrin activation in lymphocytes [J]. Nature Reviews Immunology, 2005, 5: 546-559.
    [3] Luo Binghao, Springer T A. Integrin structure and conformational signaling [J]. Curr Opin Cell Biol, 2006, 18: 579-586.
    [4] Calderwood D A. Integrin activation [J]. J Cell Sci, 2004, 117: 657-666.
    [5] Critchley D R. Focal adhesions-the cytoskeletal connection [J]. Curr Opin Cell Biol, 2000, 12: 133-139.
    [6] Calderwood D A, Shattil S J, Ginsberg M H. Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling [J]. J Biol Chem, 2000, 275: 22607-22610.
    [7] Liu S, Calderwood D A, Ginsberg M H. Integrin cytoplasmic domain-binding proteins [J]. J Cell Sci, 2000, 113; 3563-3571.
    [8] Giancotti F G, Ruoslahti E. Integrin signaling [J]. Science, 1999, 285: 1028-1032.
    [9] Kishimoto T K, Baldwin E T, Anderson D C. In Inflammation:Basic Principles and Clinical Correlates [M]. 1999: 537–570.
    [10] Lorant D E, Patel K D, McIntyre T M, et al. Coexpression of GMP-140 and PAF by endothelium stimulated by histamine or thrombin: a juxtacrine system for adhesion and activation of neutrophils [J]. J Cell Biol, 1999, 115: 223–234.
    [11] Rainger G E, Buckley C, Simmons D L, et al. Cross-talk between cell adhesion molecules regulates the migration velocity of neutrophils [J]. Curr Biol, 1997, 7: 316–325.
    [12] Feldhaus M J, Kessel J M, Zimmerman G A, et al. Engagement of ICAM-3 activates polymorphonuclear leukocytes: aggregation without degranulation or ?2 integrin recruitment [J]. J Immunol, 1998, 161: 6280–6287.
    [13] Campbell J J, Hendrick K, Zlotnick A, et al. Chemokines and the arrest of lymphocytes rolling under flow conditions [J]. Science, 1998, 279: 381–384.
    [14] Johnston B, Burns A R, Suematsu M, et al. Chronic inflammation upregulates chemokine receptors and induces neutrophil migration to monocyte chemoattractant protein-1 [J]. J Clin Invest, 1999, 103: 1269–1276.
    [15] Krissansen G W, Elliott M J, Lucas C M, et al. Identification of a novel integrin beta subunit expressed on cultured monocytes (macrophages): evidence that one alpha subunit can associate with multiple beta subunits [J]. J Biol Chem, 1990, 265: 823–830.
    [16] Bohnsack J F, Akiyama S K, Damsky C H, et al. Human neutrophil adherence to laminin in vitro.Evidence for a distinct neutrophil integrin receptor for laminin [J]. J Exp Med, 1990, 171: 1221–1237.
    [17] Kubes P, Niu X F, Smith C W, et al. A novel beta 1-dependent adhesion pathway on neutrophils: a mechanism invoked by dihydrocytochalasin B or endothelial transmigration [J]. FASEB J, 1995, 9: 1103–1111.
    [18] Hendey B, Lawson M, Marcantonio E E, et al. Intracellular calcium and calcineurin regulate neutrophil motility on vitronectin through a receptor identified by antibodies to integrins alphav and beta3 [J]. Blood, 1996, 87: 2038–2048.
    [19] Yauch R L, Berditchevski F, Harler M B, et al. Highly stoichiometric, stable, and specific association of integrinα3β1 with CD151 provides a major link to phosphatidylinositol 4-kinase, and may regulate cell migration [J]. Mol Biol Cell, 1998, 9: 2751–2765.
    [20] Taooka Y, Chen J, Yednock T, et al. The integrinα9β1 mediates adhesion to activated endothelial cells and transendothelial neutrophil migration through interaction with vascular cell adhesion molecule-1 [J]. J Cell Biol, 1999, 145: 413–420.
    [21] Lee J O, Rieu P, Arnaout M A, et al. Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18) [J]. Cell, 1995, 80: 631–638.
    [22] Goodman T G, Bajt M L. Apolipoprotein A-I structural modification and the functionality of reconstituted high density lipoprotein particles in cellular cholesterol efflux [J]. J Biol Chem, 1996, 271: 23729–23736.
    [23] Wong D A, Davis E M, LeBeau M, et al. Cloning and chromosomal localization of a novel gene encoding a human b2-integrin a subunit [J]. Gene (Amst.), 1996, 171: 291–294.
    [24] Springer T A. Folding of the N-terminal, ligand-binding region of integrin a-subunits into a b-propeller domain [J]. Proc Natl Acad Sci USA, 1997, 94: 65–72.
    [25] Hughes P E, Diaz-Gonzalez F, Leong L, et al. Breaking the integrin hinge. A defined structural constraint regulates integrin signaling [J]. J Biol Chem, 1996, 271: 6571–6574.
    [26] Qu A, Leahy D J. Crystal structure of the I-domain from the CD11a/CD18 (LFA-1, alpha L beta 2) integrin [J]. Proc Natl Acad Sci USA, 1995, 92: 10277–10281.
    [27] Michishita M, Videm V, Arnaout M A. A novel divalent cation binding site in the A domain of theβ2 integrin CR3 (Cd11b/CD18) is essential for ligand binding [J]. Cell, 1993, 72: 857–867.
    [28] Bajt M L, Goodman T, McGuire S L. beta2 ( CD18 ) mutations abolish ligand recognition by I domain integrins LFA-1 (alphaLbeta2, CD11a/CD18) and MAC-1 (alphaMbeta2, CD11b/CD18) [J]. J Biol Chem, 1995, 270: 94–98.
    [29] Springer T A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration [J]. Annu Rev Physiol, 1995, 57: 827-872.
    [30] Bohnsack J F, Zhou X N. Divalent cation substitution reveals CD18 and very late antigen-dependent pathways that mediate human neutrophil adherence to fibronectin [J]. J Immunol, 1992, 149: 1340-1347.
    [31] Diamond M S, Staunton D E, Marlin S D, et al. Binding of the integrin Mac-1 (CD11b/CD18) to thethird immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation [J]. Cell, 1991, 65: 961-971.
    [32] Xie J, Li R, Kotovuori P, et al. Intercellular adhesion molecule-2 (CD102) binds to the leukocyte integrin CD11b/CD18 through the A domain [J]. J Immunol, 1995, 155: 3619-3628.
    [33] Altieri D C, Agbanyo F R, Plescia J, et al. A unique recognition site mediates the interaction of fibrinogen with the leukocyte integrin Mac-1 (CD11b/CD18) [J]. J Biol Chem, 1990, 265: 12119-12122.
    [34] Altieri D C, Edgington T S. The saturable high affinity association of factor X to ADP-stimulated monocytes defines a novel function of the Mac-1 receptor [J]. J Biol Chem, 1988, 263: 7007-7015.
    [35] Wachtfogel Y T, DeLa Cadena R A, Kunapuli S P, et al. High molecular weight kininogen binds to Mac-1 on neutrophils by its heavy chain (domain 3) and its light chain (domain 5) [J]. J Biol Chem, 1994, 269: 19307-19312.
    [36] Ross G D, Lambris J D. Identification of a C3bi-specific membrane complement receptor that is expressed on lymphocytes, monocytes, neutrophils, and erythrocytes [J]. J Exp Med, 1982, 155: 96-110.
    [37] Wright S D, Jong M T. Adhesion-promoting receptors on human macrophages recognize Escherichia coli by binding to lipopolysaccharide [J]. J Exp Med, 1986, 164: 1876-1888.
    [38] Diamond M S, Alon R, Parkos C A, et al. Heparin is an adhesive ligand for the leukocyte integrin Mac-1 (CD11b/CD18) [J]. J Cell Biol, 1995, 130: 1473-1482.
    [39] Coombe D R, Watt S M, Parish C R. Mac-1 (CD11b/CD18) and CD45 mediate the adhesion of hematopoietic progenitor cells to stromal cell elements via recognition of stromal heparan sulfate [J]. Blood, 1994, 84: 739-752.
    [40] Diamond M S, Staunton D E, de Fougerolles A R, et al. ICAM-1 (CD54)-a counter-receptor for MAC-1 (CD11b/CD18) [J]. J Cell Biol, 1990, 111: 3129-3139.
    [41] Languino L R, Plescia J, Duperray A, et al. Fibrinogen mediates leukocyte adhesion to vascular endothelium through an ICAM-1-dependent pathway [J]. Cell, 1993, 73: 1423-1434.
    [42] Diamond M S, Springer T A. The dynamic regulation of integrin adhesiveness [J]. Curr Biol, 1994, 4: 506–517.
    [43] Stewart M, Thiel M, Hogg N. Leukocyte integrins [J]. Curr Biol, 1995, 7: 690–696.
    [44] Anderson D C, Springer T A. Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p150, 95 glycoproteins [J]. Ann Rev Med, 1987, 38: 175–194.
    [45] Crowley C A, Curnutte J T, Rosin R E, et al. An inherited abnormality of neutrophil adhesion: its genetic transmission and its association with a missing protein [J]. N Engl J Med, 1980, 302: 1163–1168.
    [46] Anderson D C, Schmaistieg F C, Arnaout M A, et al. Contributions of the Mac-1 glycoprotein family to adherence-dependent granulocyte functions: structure-function assessments employing subunit- specific monoclonal antibodies [J]. J Clin Invest, 1984, 74: 536–551.
    [47] Berton, G., C. Laudanna, C. Sorio, F. Rossi. Generation of signals activating neutrophil functions by leukocyte integrins: LFA-1 and gp150/95, but not CR3, are able to stimulate the respiratory burst of human neutrophils [J]. J Cell Biol, 1992, 116: 1007-1017.
    [48] Zhou M, Brown E J. Leukocyte response integrin and integrin-associated protein act as a signal transduction unit in generation of a phagocyte respiratory burst [J]. J Exp Med, 1993, 178: 1165-1174.
    [49] Sharma C P, Ezzel R M, Arnaout M A. Direct interaction of filamin (ABP-280) with the beta 2-integrin subunit CD18 [J]. J Immunol, 1995, 154: 3461–3470.
    [50] Pavalko F M, LaRoche S M. Activation of human neutrophils induces an interaction between the integrin beta 2-subunit (CD18) and the actin binding protein alpha-actinin [J]. J Immunol, 1993, 151: 3795–3807.
    [51] Lowell C A, Fumagalli L, Berton G. Deficiency of src family kinases p59/61hck and p58c-fgr results in defective adhesion-dependent neutrophil functions [J]. J Cell Biol, 1996, 133: 895–910.
    [52] Mo′csai A, Ligeti E, Lowell C A, et al. Adhesion-dependent degranulation of neutrophils requires the Src family kinases Fgr and Hck [J]. J Immunol, 1999, 162: 1120–1126.
    [53] Graham I L, Anderson D C, Holers V M, et al. Complement receptor 3 (CR3, Mac-1, integrin alpha M beta 2, CD11b/CD18) is required for tyrosine phosphorylation of paxillin in adherent and nonadherent neutrophils [J]. J Cell Biol, 1994, 127: 1139–1147.
    [54] Yu¨ru¨ker B, Niggli V. Alpha-actinin and vinculin in human neutrophils: reorganization during adhesion and relation to the actin network [J]. J Cell Sci, 1992, 101: 403–414.
    [55] Allen L A H, Aderem A. Molecular definition of distinct cytoskeletal structures involved in complement- and Fc receptor-mediated phagocytosis in macrophages [J]. J Exp Med, 1996, 184: 627–637.
    [56] Li J, Zhu Z, Bao Z. Role of MacMARCKS in Integrin-dependent Macrophage Spreading and Tyrosine Phosphorylation of Paxillin [J]. J Biol Chem, 1996, 271: 12985–12990.
    [57] Sligh J E, Ballantyne C M, Rich S S, et al. Inflammatory and immune response are impaired in mice deficient in intercellular adhesion molecule 1 [J]. Proc Natl Acad Sci USA, 1993, 90: 8529–8533.
    [58] Bullard D C, Qin L, Quinlin W M, et al. P-selectin/ICAM-1 double mutant mice show a complete block in peritoneal emigration of neutrophils [J]. J Clin Invest, 1995, 95: 1782–1788.
    [59] Berton G, Yan S R, Fumagalli L, et al. Neutrophil activation by adhesion: mechanisms and pathophysiological implications [J]. Int J Clin Lab Res, 1996, 26: 160–177.
    [60] Palecek S P, Loftus J C, Ginsberg M H, et al. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness [J]. Nature, 1997, 385: 537–540.
    [61] Demaurex N, Downey G P, Waddell T K, et al. Intracellular pH regulation during spreading of human neutrophils [J]. J Cell Biol, 1996, 133: 1391–2402.
    [62] Juliano R L, Haskill S. Signal transduction from the extracellular matrix [J]. J Cell Biol, 1993, 120: 577–585.
    [63] Berton G, Fumagalli L, Laudanna C, et al.β2 integrin-dependent protein tyrosine phosphorylation andactivation of the FGR protein tyrosine kinase in human neutrophils [J]. J Cell Biol, 1994, 126: 1111-1121.
    [64] Yan S R, Fumagalli L, Berton G. Activation of p58c-fgr and p53/56lyn in adherent human neutrophils:evidence for a role of divalent cations in regulating neutrophil adhesion and protein tyrosine kinase activities [J]. J Inflamm, 1995, 45: 297-311.
    [65] Berton G, Yan S R, Fumagalli L, et al. Neutrophil activation by adhesion mechanisms and pathophysiological implications [J]. Int J Clin Lab Res, 1996, 26: 160-177.
    [66] Lowell C A, Fumagalli L, Berton G. Deficiency of Src family kinases p59/61hck and p58c-fgr results in defective adhesion-dependent neutrophil functions [J]. J Cell Biol, 1996, 133: 895-910.
    [67] Yan S R, Fumagalli L, Berton G. Activation of SRC family kinases in human neutrophils. Evidence that p58c-FGR and p53/56LYN redistributed to a triton X-100-insoluble cytoskeletal fraction, also enriched in the caveolar protein Caveolin, display an enhanced kinase activity [J]. FEBS Lett, 1996, 380: 198-203.
    [68] Yan S R, Huang M, Berton G. Signaling by adhesion in human neutrophils: activation of the p72syk tyrosine kinase and formation of protein complexes containing p72syk and SRC family kinases in neutrophils spreading over fibrinogen [J]. J Immunol, 1997, 158: 1902-1910。
    [69] Fernandez R, Suchard S J. Syk activation is required for spreading and H2O2 release in adherent human neutrophils [J]. J Immunol, 1998, 160: 5154-5162.
    [70] Fernandez R, Boxer L A, Suchard S J.β2 integrins are not required for tyrosine phosphorylation of paxillin in human neutrophils [J]. J Immunol, 1997, 159: 5568-5575.
    [71] Tabassam F H, Umehara H, Huang J Y, et al.β2-integrin, LFA-1, and TCR/CD3 synergistically induce tyrosine phosphorylation of focal adhesion kinase (pp125(FAK)) in PHA-activated T cells [J]. Cell Immunol, 1999, 193: 179-184.
    [72] Rodriguez-Fernandez J L, Gomez M, Luque A, et al. The interaction of activated integrin lymphocyte function-associated antigen 1 with ligand intercellular adhesion molecule 1 induces activation and redistribution of focal adhesion kinase and prolin-rich tyrosine kinase 2 in T lymphocytes [J]. Mol Biol Cell, 1999, 10: 1891-1907.
    [73] Kanner S B. Focal adhesion kinase-related fakB is regulated by integrin LFA-1 and interacts with the SH3 domain of phospholipase C1 [J]. Cell Immunol, 1996, 171: 164-169.
    [74] Brockdorff J, Kanner S B, Nielsen M, et al.Interleukin-2 inducesβ2-integrin-dependent signal transduction involving the focal adhesion kinase-related protein B (fakB) [J]. Proc Natl Acad Sci USA, 1998, 95: 6959-6964.
    [75] Yan S R, Novak M J.β2 integrin-dependent phosphorylation of protein-tyrosine kinase Pyk2 stimulated by tumor necrosis factor-αand fMLP in human neutrophils adherent to fibrinogen [J]. FEBS Lett, 1999, 451: 33-38.
    [76] Fuortes M, Melchior M, Han H, et al. Role of the tyrosine kinase pyk2 in the integrin dependent activation of human neutrophils by TNF [J]. J Clin Invest, 1999, 104: 327-335.
    [77] Clark E A, King W G, Brugge J S, et al. Integrin-mediated signals regulated by members of the Rho family of GTPases [J]. J Cell Biol, 1998, 142: 573-586.
    [78] Hall A. Rho GTPases and the actin cytoskeleton [J]. Science, 1998, 279: 509-514.
    [79] Zheng L, Sj?lander A, Eckerdal J, et al. Antibody-induced engagement ofβ2 integrins on adherent human neutrophils triggers activation of p21Ras through tyrosine phosphorylation of the protooncogene product Vav [J]. Proc Natl Acad Sci USA, 1996, 93: 8431-8436.
    [80] Dib K, Melander F, Tandersson.β2 integrin engagement induces tyrosine phosphorylation of p190RhoGAP and activation of RhoA in human neutrophils [J]. Mol Biol Cell, 1999, Supl: 10.
    [81] Hellberg C, Molony L, Zheng L. Ca2+ signalling mechanisms of theβ2 integrin on neutrophils: involvement of phospholipase C 2 and Ins (1, 4, 5)P3 [J]. Biochem J, 1996, 317: 403-409.
    [82] Eierman D, Helleberg C, Sj?lander A. Chemotactic factor receptor activation transiently impairs the Ca2+ capacity ofβ2 integrins on human neutrophils [J]. Exp Cell Res, 1994, 215: 90-96.
    [83] F?llman M, Andersson R, Andersson T. Signaling roperties of CR3 (CD11b/CD18) and CR1 (CD35) in relation to phagocytosis of complement-opsonized particles [J]. J Immunol, 1993, 151: 330-338.
    [84] F?llman M, Gullberg M, Hellberg C, et al. Complement receptor-mediated phagocytosis is associated with accumulation of phosphatidylcholine-derived diglyceride in human neutrophils [J]. J Biol Chem, 1992, 267: 2656-2663.
    [85] L?fgren R,Ng-Sikorski J, Sj?lander A, et al.β2 integrin engagement triggers actin polymerization and phosphatidylinositol trisphosphate formation in non-adherent human neutrophils[J], J Cell Biol, 1993, 123: 1597-1605.
    [86] McGilvray I D, Lu Z, Wei A C, et al.MAP-kinase dependent induction of monocytic procoagulant activity byβ2-integrins [J]. J Surg Res, 1998, 80: 272-279.
    [87] Li B, Boast S, de los Santos K, et al. Mice deficient in Abl are osteoporotic and have defects in osteoblast maturation [J]. Nat Genet, 2000, 24: 304-308.
    [88] Schwartzberg P L, Stall A M, Hardin J D, et al. Mice homozygous for the ablm1 mutation show poor viability and depletion of selected B and T cell populations [J]. Cell, 1991, 65: 1165-1175.
    [89] Tybulewicz V L J, Crawford C E, Jackson P K, et al. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene [J]. Cell, 1991, 65: 1153-1163.
    [90] Kipreos E T, Wang J Y J. Cell cycle-regulated binding of c-Abl tyrosine kinase to DNA [J]. Science, 1992, 256: 382-385.
    [91] Wang J Y J. Nuclear protein tyrosine kinases [J]. Trends Biochem Sci, 1994, 19: 373-376.
    [92] Welch P J, Wang J Y J. A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle [J]. Cell, 1993, 75: 779-790.
    [93] Kipreos E T, Wang J Y J. Differential phosphorylation of c-Abl in cell cycle determined by cdc2 kinase and phosphatase activity [J]. Science, 1990, 248: 217-220.
    [94] Vigneri P, Wang J Y J. Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase [J]. Nat Med, 2001, 7: 228-234.
    [95] Wang J Y J. Regulation of cell death by the Abl tyrosine kinase [J]. Oncogene, 2000, 19: 5643-5650.
    [96] Shaul, Y. c-Abl: activation and nuclear targets [J]. Cell Death Differ, 2000, 7: 10-16.
    [97] Puri P, Bhakta K, Wood L, et al. A myogenic differentiation checkpoint activated by genotoxic stress [J]. Nat Genet, 2002, 32: 585-593.
    [98] BariláD, Rufini A, Condo I, et al. Caspase-dependent cleavage of c-Abl contributes to apoptosis [J]. Mol Cell Biol, 2003, 23: 2790-2799.
    [99] Yuan Z M, Huang Y Y, Takatoshi I, et al. Regulation of DNA damage-induced apoptosis by the c-Abl tyrosine kinase [J]. Proc Natl Acad Sci, 1997, 94: 1437-1440.
    [100] Ba X, Chen C, Gao Y et al. Signaling function of PSGL-1 in neutrophil: tyrosine-phosphorylation-dependent and c-Abl-involved alteration in the F-actin-based cytoskeleton [J]. J Cell Biochem, 2005, 94: 365-373.
    [101] Sini P, Cannas A, Koleske A J, et al. Abl-dependent tyrosine phosphorylation of Sos-1 mediates growth-factor-induced Rac activation [J]. Nat Cell Biol, 2004, 6: 268-274.
    [102] Wang J Y. Abl tyrosine kinase in signal transduction and cell-cycle regulation [J]. Curr Opin Genet Dev, 1993, 3: 35-43.
    [103] Woodring P J, Hunter T, Wang J Y J. Regulation of F-actin-dependent processes by the Abl family of tyrosine kinases [J]. J cell science, 2003, 116: 2613-2626.
    [104] Cohen G B, Ren R, Baltimore D. Modular binding domains in signal transduction proteins [J]. Cell, 1995, 80: 237-248.
    [105] Pawson T. SH2 and SH3 domains in signal transduction [J]. Adv Cancer Res, 1994, 64: 87-110.
    [106] Songyang Z, Shoelson S E, McGlade J, et al. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav [J]. Mol Cell Biol, 1994, 14: 2777-2785.
    [107] Kipreos E T, Wang J Y. Cell cycle-regulated binding of c-Abl tyrosine kinase to DNA [J]. Science, 1992, 256: 382-385.
    [108] Ren R, Mayer B J, Cicchetti P, et al. Identification of a ten-amino acid proline-rich SH3 binding site [J]. Science, 1993, 259: 1157-1161.
    [109] Miao J Y, Wang J. Binding of A/T-rich DNA by three high mobility grouplike domains in c-Abl tyrosine kinase [J]. J Biol Chem, 1996, 271: 22823-22830.
    [110] McWhirter J R, Wang J Y. An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias [J]. EMBO J, 1994, 12: 1533-1546.
    [111] Van Etten R, Jackson P K, Baltimore D, et al. The COOH terminus of the c-Abl tyrosine kinase contains distinct Fand G-actin binding domains with bundling activity [J]. J Cell Biol, 1994, 124: 325-340.
    [112] Salme T, David M, Nucelar-cytoplasmic shuttling of c-Abl tyrosine kinase [J]. Proc Natl Acad Sci, 1998, 95: 7457-7462.
    [113] Lewis J, Baskaran R, Taagepera S, et al. Integrin regulation of c-Abl tyrosine kinase activity andcytoplasmic-nuclear transport [J]. Proc Natl Acad Sci, 1996, 93: 15174-15179.
    [114] Pluk H, Dorey K, Superti-Furga G. Autoinhibition of c-Abl [J]. Cell, 2002, 108: 247-259.
    [115] Smith J M , Mayer B J. Abl: mechanisms of regulation and activation [J]. Front Biosci, 2002, 1: d31-42.
    [116] Tanis K Q, Veach D, Duewel H S, et al. Two distinct phosphorylation pathways have additive effects on abl family kinase activation [J]. Mol Cell Biol, 2003, 23: 3884-3896.
    [117] Dorey K, Engen J R, Kretzschmar J, et al. Phosphorylation and structure-based functional studies reveal a positive and a negative role for the activation loop of the c-Abl tyrosine kinase [J]. Oncogene, 2001, 20 (56): 8075-8084.
    [118] Hantschel O, Nagar B, Guettler S, et al. A myristoyl/phosphotyrosine switch regulates c-Abl [J]. Cell, 2003, 112: 845-857.
    [119] BariláD, Superti-Furga G. An intramolecular SH3-domain interaction regulates c-Abl activity [J]. Nat Genet, 1998, 18: 280-282.
    [120] Brasher B, Van Etten R. c-Abl has high intrinsic tyrosine kinase activity that is stimulated by mutation of the Src homology 3 domain and by autophosphorylation at two distinct regulatory tyrosines [J]. J Biol Chem, 2000, 275: 35631-35637.
    [121] Nagar B, Hantschel O, Young M, et al. Structural basis for the auto-inhibition of c-Abl tyrosine kinase [J]. Cell, 2003, 112: 859-871.
    [122] Mayer B J, Baltimore D. Mutagenic analysis of the roles of SH2 and SH3 domains in regulation of the Abl tyrosine kinase [J]. Mol Cell Biol, 1994, 14: 2883-2894.
    [123] Franz W, Berger P, Wang J Y J. Deletion of an N-terminal regulatory domain of the c-Abl tyrosine kinase activates its oncogenic potential [J]. EMBO J, 1989, 8: 137-147.
    [124] Plattner R, Kadlec L, DeMali K A, et al. c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF [J]. Genes Dev, 1999, 13: 2400-2411.
    [125] Pendergast A M, Muller A J, Havlik M H, et al. Evidence for regulation of the human Abl tyrosine kinase by a cellular inhibitor [J]. Proc Natl Acad Sci, 1991, 88: 5927-5931.
    [126] Dorey K, Engen J, Kretzschmar J, et al. Phosphorylation and structure-based functional studies reveal a positive and a negative role for the activation loop of the c-Abl tyrosine kinase [J]. Oncogene, 2001, 20: 8075-8084.
    [127] Welch P J, Wang J Y J. A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle [J]. Cell, 1993, 75: 779-790.
    [128] Wen S T, Jackson P K, Van Etten R A. The cytostatic function of c-Abl is controlled by multiple nuclear localization signals and requires the p53 and Rb tumor suppressor gene products [J]. EMBO J, 1996, 15: 1583-1595.
    [129] Woodring P J, Hunter T, Wang J Y J. Inhibition of c-Abl tyrosine kinase by filamentous-actin [J]. J Biol Chem, 2001, 276: 27104-27110.
    [130] Zhu J, Shore S K. c-Abl tyrosine kinase activity is regulated by association with a novelSH3-domain-binding protein [J]. Mol Cell Biol, 1996, 16: 7054-7062.
    [131] Zipfel P A, Grove M, Blackburn K, et al. The c-Abl tyrosine kinase is regulated downstream of the B-cell antigen receptor and interacts with CD19 [J]. J Immunol, 2000, 165: 6872-6879.
    [132] Agami R, Blandino G, Oren M, et al. Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis [J]. Nature, 1999, 399: 809-813.
    [133] Yuan Z M, Shioya H, Ishiko T, et al. p73 is regulatedby tyrosine-kinase c-Abl in the apoptotic response to DNA damage [J]. Nature, 1999, 399: 814-817.
    [134] Yuan Z M, Huang Y, Ishiko T, et al. Regulation of DNA damage-induced apoptosis by the c-Abl tyrosine kinase [J]. Proc Natl Acad Sci, 1997, 94: 1437-1440.
    [135] Huang Y, Yuan Z M, Ishiko T, et al. Pro-apoptotic effect of the c-Abl tyrosine kinase in the cellular response to 1-beta-D-arabinofuranosylcytosine [J]. Oncogene, 1997, 15: 1947 -1952.
    [136] Gong J G, Costanzo A, Yang H Q, et al. The tyrosine-kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage [J]. Nature, 1999, 399: 806-809.
    [137] Dan S, Naito M, Seimiya H, et al. Activation of c-Abl tyrosine kinase requires caspase activation and is not involved in JNK/ SAPK activation during apoptosis of human monocytic leukemia U937 cells [J]. Oncogene, 1999, 18: 1277-1283.
    [138] Van Etten R A. Cycling, stressed-out and nervous: cellular functions of c-Abl [J]. Trends Cell Biol, 1999, 9: 179-186.
    [139] Shingo D, Mikihiko N, Hiroyuki S, et al. Activation of c-Abl tyrosine kinase requires caspase activation and is not involved in JNK/SAPK activation during apoptosis of human monocytic leukemia U937 cells [J]. Oncogene, 1999, 18: 1277-1283.
    [140] Yuan Z M, Huang Y, Fan M M, et al. Genotoxic drugs induce interaction of the c-Abl tyrosine kinase and the tumor suppressor protein p53 [J]. J Biol Chem, 1996, 271: 26457 -26460.
    [141] Yuan Z M, Huang Y, WhangY, et al. Role for c-Abl tyrosine kinase in growth arrest response to DNA damage [J]. Nature, 1996, 382: 272-274.
    [142] Sawyers C L, McLauglin J, Goga A, et al. The nuclear tyrosine kinase c-Abl negatively regulates cell growth [J]. Cell, 1994, 77: 121-131.
    [143] Wen S T, Jackson P K, Van Etten R A. The cytostatic function of c-Abl is controlled by multiple nuclear localization signals and requires the p53 and Rb tumor suppressor gene product [J]. EMBO J, 1996, 15: 1583-1595.
    [144] Goga A, Liu X, Hambuch T M, et al. p53 dependent growth suppression by the c-Abl nuclear tyrosine kinase [J]. Oncogene, 1995, 11: 791-799.
    [145] Sionov R V, Moallem E, Berger M, et al. c-Abl neutralizes the inhibitory effect of Mdm2 on p53 [J]. J Biol Chem, 1999, 274: 8371-8374.
    [146] Welch P J, Wang J Y. A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle [J]. Cell, 1993, 75: 779-790.
    [147]Knudsen E S, Wang J Y. Differential regulation of retinoblastoma protein functionby specific Cdkphosphorylation sites [J]. J Biol Chem, 1996, 271: 8313-8320.
    [148] Goga A, Liu X, Hambuch T M, et al. p53 dependent growth suppression by the c-Abl nuclear tyrosine kinase [J], Oncogene, 1995, 11: 791-799.
    [149] Welch P J, Wang J Y. Abrogation of retinoblastoma protein function by c-Abl through tyrosine kinase-dependent and -independent mechanisms [J]. Mol Cell Biol, 1995, 15: 5542-5551.
    [150] Agami R, Shaul Y. The kinase activity of c-Abl but not v-Abl is potentiated by direct interaction with RFXI, a protein that binds the enhancers of several viruses and cell-cycle regulated genes [J]. Oncogene, 1998, 16: 1779-1788.
    [151] Arcinas M, Sizer K C, Boxer L M. Nuclear c-Abl is a COOH-terminal repeated domain (CTD)-tyrosine (CTD)-tyrosine kinase-specific for the mammalian RNA polymerase II: possible role in transcription elongation [J]. J Biol Chem, 1994, 269: 21919-21924.
    [152] Shi Y, Alin K, Goff S. Abl-interactor-1, a novel SH3-protein binding to the carboxy-terminal portion of the v-Abl protein, suppresses v-abl transforming activity [J]. Genes Dev, 1995, 9: 2583-2597.
    [153] Dai Z, Pendergast A M. Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity [J]. Genes Dev, 1995, 9: 2569-2582.
    [155] Chen C X, Shang X, Xu T, et al. c-Abl is required for the signaling transduction induced by L-selectin ligation [J]. Eur J Immunol, 2007, 37: 3246-3258.
    [156] Xu T, Chen L, Shang X, et al. Critical role of Lck in L-selectin induced by sulfatides engagement [J]. J Leukocyte Biol, 2008, 84: 1192-1201.
    [157] Chen C X, Ba X Q, Xu T, et al. c-Abl is involved in the F-actin assembly triggered by L-selectin crosslinking [J]. J Biochem, 2006, 140: 229-235.
    [158] Lewis J M, Baskaran R,Taagepera S, et al. Integrin regulation of c-Abl kinase activity and cytoplasmic-nuclear transport [J]. Proc Natl Acad Sci USA, 1996, 93: 15174-15179.
    [159] Renshaw M W, Lewis J M, Schwartz M A.The c-Abl tyrosine kinases contribute to the transient activation of MAP kinase in cells plated on fibronectin [J]. Oncogene, 2000, 19: 3216-3219.
    [160] Karin K H, Klemke R L. Inhibition of cell migration by Abl family tyrosine kinases through uncoupling of Crk-CAS complexes [J]. J Biol Chem, 2001, 276: 16185-16192.
    [161] Lewis J M, Schawartz M A. Integrins regulate the association and phosphorylation of paxillin by c-Abl [J]. J Biol Chem, 1998, 273: 14225-14230.
    [162] Robert Roskoski Jr. STI-571: an anticancer protein-tyrosine kinase inhibitor [J]. Biochem Biophys Res Commun, 2003, 309: 709-717.
    [163] Schindler T, Bornmann W, Pellicena P, et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase [J]. Science, 2000, 289: 1938-1942.
    [164] Nagar B, Bornmann W G, Pellicena P, et al. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571) [J]. Cancer Res, 2002, 62: 4236–4243.
    [165] Kurzrock R, Kantarjian H M, Druker B J, et al. chromosome-positive leukemias: from basicmechanisms to molecular therapeutics [J]. Ann Int Med, 2003, 138: 819-830.
    [166] Cowan-Jacob S W, Guez V, Fendrich G, et al. Imatinib (STI571) resistance in chronic myelogenous leukemia: molecular basis of the underlying mechanisms and potential strategies for treatment [J]. Mini Rev Med Chem, 2004, 4 (3): 285-299.
    [167] Hubbard S R, Till J H. Protein tyrosine kinase structure and function [J]. Annu Rev Biochem, 2000, 69: 373-398.
    [168] Corbin A S, Rosee P L, Stoffregen E P, et al. Several Bcr-Abl kinase domain mutants associated with imatinib mesylate resistance remain sensitive to imatinib [J]. Blood, 2003, 101: 4611-4614.
    [169] Monkley S J, Pritchard C A, Critchley D R. Analysis of the mammalian talin2 gene TLN2 [J]. Biochem Biophys Res Commun, 2001, 286: 880-885.
    [170] Isenberg G, Goldmann WH. Peptide-specific antibodies localize the major lipid binding sites of talin dimers to oppositely arranged N-terminal 47 kDa subdomains [J]. FEBS Lett, 1998, 426: 165–170.
    [171] Winkler J, Lunsdorf H, Jockusch BM. Energy-filtered electron microscopy reveals that talin is a highly flexible protein composed of a series of globular domains [J]. Eur J Biochem, 1997, 243: 430–436.
    [172] Rees D J R, Ades S E, Singer S J, et al. Sequence and domain structure of talin [J]. Nature, 1990, 347: 685-689.
    [173] Garcia-Alvarez B, de Pereda J M, Calderwood D A, et al. Structural determinants of integrin interaction with talin [J]. Mol Cell, 2003, 11: 49–58.
    [174] Borowsky M L, Hynes R O. Layilin, a novel talin-binding transmembrane protein homologous with C-type lectins,is localized in membrane ruffles [J]. J Cell Biol, 1998, 143: 429–442.
    [175] Ling K, Doughman R L, Firestone A J, et al. Type I phosphatidylinositol phosphate kinase targets and regulates focal adhesions [J]. Nature, 2002, 420: 89–93.
    [176] Di Paolo G, Pellegrini L, Letinic K, et al. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1γby the FERM domain of talin [J]. Nature, 2002, 420: 85–89.
    [177] Ling K, Doughman R L, Iyer V V, et al. Tyrosine phosphorylation of type Ig phosphatidylinositol phosphate kinase by Src regulates an integrin/talin switch [J]. J Cell Biol, 2003, 163: 1339–1349.
    [178] Hemmings L, Rees D J G, Ohanian V, et al. Talin contains three actin-binding sites each of which is adjacent to a vinculin-binding site [J]. J Cell Sci, 1996, 109: 2715–2726.
    [179] Muguruma M, Nishimuta S, Tomisaka Y, et al. Organization of the functional domains in membrane cytoskeletal protein talin [J]. J Biochem, 1995, 117: 1036–1042.
    [180] Jockusch B M, Rudiger M. Crosstalk between cell adhesion molecules: vinculin as a paradigm for regulation by conformation [J]. Trends Cell Biol, 1996, 6: 311–315.
    [181] Tremuth L, Kreis S, Melchior C, et al. A fluorescence cell biology approach to map the second integrin-binding site of talin to a 130-amino acid sequence within the rod domain [J]. J Biol Chem, 2004, 279: 22258–22266.
    [182] Calderwood DA, Zent R, Grant R, et al. The talin head domain binds to integrinβsubunitcytoplasmic tails and regulates integrin activation [J]. J Biol Chem, 1999, 274: 28071–28074.
    [183] Yan B, Calderwood D A, Yaspan B, et al. Promotes Talin Binding to the beta 3 Integrin Cytoplasmic Domain [J]. J Biol Chem, 2001, 276: 28164–28170.
    [184] Seelig A, Blatter X L, Frentzel A, et al. Phospholipid binding of synthetic talin peptides provides evidence for an intrinsic membrane anchor of talin [J]. J Biol Chem, 2000, 275: 17954–17961.
    [185] Martel V, Racaud-Sultan C, Dupe S, et al. Conformation, localization, and integrin binding of talin depend on its interaction with phosphoinositides [J]. J Biol Chem, 2001, 276: 21217–21227.
    [186] Horwitz A, Duggan K, Buck C A, et al. Interaction of plasma membrane fibronectin receptor with talin-a transmembrane linkage [J]. Nature, 1986, 320: 531–533.
    [187] Calderwood D A. Talin controls integrin activation [J]. Biochemical Society Transactions, 2004, 32: 434-437.
    [188] Critchley D R. Focal adhesions-the cytoskeletal connection [J]. Curr Opin Cell Biol, 2000, 12: 133–139.
    [189] Calderwood D A, Shattil S J, Ginsberg M H. Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling [J]. J Biol Chem, 2000, 275: 22607–22610.
    [190] Tadokoro S, Shattil SJ, Eto K, et al. Talin binding to integrinβtails: a final common step in integrin activation [J]. Science, 2003, 302: 103–106.
    [191] Kim M, Carman C V, Springer T A. Biodirectional transmembrane singaling by cytoplasmic domain separation in integrins [J]. Science, 2003, 301: 1720–1725.
    [192] Pearson M A, Reczek D, Bretscher A, et al. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain [J]. Cell, 2000, 101: 259–270.
    [193] Calderwood D A, Yan B, de Pereda J M, et al. The phosphotyrosine binding-like domain of talin activates integrins [J]. J Biol Chem, 2002, 277: 21749–21758.
    [194] Schlessinger J, Lemmon M A. SH2 and PTB Domains in Tyrosine Kinase Signaling [J]. Sci STKE, 2003, RE12.
    [195] Ulmer T S, Yaspan B, Ginsberg M H, et al. NMR analysis of structure and dynamics of the cytosolic tails of integrinαIIbβ3 in aqueous solution [J]. Biochemistry, 2001, 40: 7498–7508.
    [196] O’Toole T E, Ylanne J, Culley B M. Regulation of integrin affinity states through an NPXY motif in theβsubunit cytoplasmic domain [J]. J Biol Chem, 1995, 270: 8553–8558.
    [197] Patil S, Jedsadayanmata A, Wencel-Drake J J, et al. Identification of a talin-binding site in the integrin beta(3) subunit distinct from the NPLY regulatory motif of post-ligand binding functions. The talin n-terminal head domain interacts with the membrane-proximal region of the beta(3) cytoplasmic tail [J]. J Biol Chem, 1999, 274: 28575–28583.
    [198] Martel V, Racaud-Sultan C, Dupe S, et al. Conformation, localization, and integrin binding of talin depend on its interaction with phosphoinositides[J]. J Biol Chem, 2001, 276: 21217–21227.
    [199]Tapley P, Horwitz A, Buck C A, et al. Integrins isolated from Rous sarcoma virus-transformed chicken embryo fibroblasts [J]. Oncogene, 1989, 4: 325–333.
    [200] Johansson M W, Larsson E, Luning B, et al. Altered localization and cytoplasmic domain-binding properties of tyrosine-phosphorylated 1 integrin [J]. J Cell Biol, 1994, 126: 1299–1309.
    [201] Datta A, Huber F, Boettiger D. Phosphorylation ofβ3 Integrin Controls Ligand Binding Strength [J]. J Biol Chem, 2002, 277: 3943–3949.
    [202] Sakai T, Jove R, Fassler R, et al. Role of the cytoplasmic tyrosines of beta 1A integrins in transformation by v-src [J]. Proc Natl Acad Sci USA, 2001, 98: 3808–3813.
    [203] Chang D D, Hoang B Q, Liu J, et al. Molecular basis for interaction between Icap1 alpha PTB domain and beta 1 integrin [J]. J Biol Chem, 2002, 277: 8140–8145.
    [204] Bouvard D, Vignoud L, Dupe-Manet S, et al. Disruption of focal adhesions by integrin cytoplasmic domain-associated protein-1 [J]. J Biol Chem, 2003, 278: 6567–6574.
    [205] Gakidis M A M, Cullere X, Olson T, et al. Vav GEFs are required forβ2 integrin-dependent functions of neutrophils [J]. J Cell Biol, 2004, 166: 273-282.
    [206] Boguski M S, McCormick F. Proteins regulating Ras and its relatives [J]. Nature, 1993, 366: 643-654.
    [207] Bustelo X R. Regulatory and signaling properties of the Vav family [J]. Mol Cell Biol, 2000, 20: 1461–1477.
    [208] Manetz T S, Gonzalez-Espinosa C, Arudchandran R, et al. Vav1 regulates phospholipase cgamma activation and calcium responses in mast cells [J]. Mol Cell Biol, 2001, 21: 3763–3774.
    [209] Fischer KD, Kong Y Y, Nishina H, et al. Vav is a regulator of cytoskeletal reorganization mediated by the T- cell receptor [J]. Curr Biol, 1998, 8: 554–562.
    [210] Holsinger LJ, Graef I A, Swat W, et al. Defects in actin-cap formation in Vav-deficient mice implicate an actin requirement for lymphocyte signal transduction [J]. Curr Biol, 1998, 8: 563–572.
    [211] Doody G M, Bell S E, Vigorito E, et al. Signal transduction through Vav-2 participates in humoral immune responses and B cell maturation[J]. Nat Immunol, 2001, 2: 542–547.
    [212] Tedford K, Nitschke L, Girkontaite I, et al. Compensation between Vav-1 and Vav-2 in B cell development and antigen receptor signaling [J]. Nat Immunol, 2001, 2: 548–555.
    [213] Fujikawa K, Miletic A V, Alt F W, et al. Vav1/2/3-null mice define an essential role for Vav family proteins in lymphocyte development and activation but a differential requirement in MAPK signaling in T and B cells [J]. J Exp Med, 2003, 198: 1595–1608.
    [214] Miranti C K, Leng L, Maschberger P, et al. Identification of a novel integrin signaling pathway involving the kinase Syk and the guanine nucleotide exchange factor Vav1 [J]. Curr Biol, 1998, 8: 1289–1299.
    [215] Obergfell A, Eto A, Mocsai A, et al. Coordinate interactions of Csk, Src, and Syk kinases withαIIbβ3 initiate integrin signaling to the cytoskeleton[J]. J Cell Biol, 2002, 157: 265–275.
    [216] Gotoh A, Takahira H, Geahlen R L, et al. Cross-linking of integrins induces tyrosine phosphorylation of the proto-oncogene product Vav and the protein tyrosine kinase Syk in human factor-dependent myeloid cells [J]. Cell Growth Differ, 1997, 8: 721–729.
    [217] Yron I, Deckert M, Reff M E, et al. Integrin-dependent tyrosine phosphorylation and growth regulation by Vav [J]. Cell Adhes Commun, 1999, 7: 1–11.
    [218] Cichowski K, Brugge J S, Brass L F. Thrombin receptor activation and integrin engagement stimulate tyrosine phosphorylation of the protooncogene product, p95vav, in platelets [J]. J Biol Chem, 1996, 271: 7544–7550.
    [219] Marignani P A, Carpenter C L. Vav2 is required for cell spreading [J]. J Cell Biol, 2001, 154: 177–186.
    [220] del Pozo MA, Schwartz M A, Hu J, et al. Guanine exchange-dependent and -independent effects of Vav1 on integrin-induced T cell spreading [J]. J Immunol, 2003, 170: 41–47.
    [221] Schymeinsky J, Then C, Walzog B. The non-receptor tyrosine kinase Syk regulates lamellipodium formation and site-directed migration of human leukocytes [J]. J Cell Physiol, 2005, 204: 614-622.
    [222] Berton G, Laudanna C, Sorio C, et al. Generation of signals activating neutrophil functions by leukocyte integrins: LFA-1 and gp150/95, but not CR3, are able to stimulate the respiratory burst of human neutrophils [J]. J Cell Biol, 1992, 116: 1007-1017.
    [223] Zhou M, Brown E J. Leukocyte response integrin and integrin-associated protein act as a signal transduction unit in generation of a phagocyte respiratory burst [J]. J Exp Med, 1993, 178: 1165-1174.
    [224] Sampath R, Gallagher P J, Pavalko F M. Cytoskeletal interactions with the leukocyte integrinβ2 cytoplasmic tail: activation-dependent regulation of associations with talin andα-actinin [J]. J Biol Chem, 1998, 273: 33588-33594.
    [225] Lin J, Wiedemann A, Tzicotis G, et al. An essential role of talin duringαMβ2-mediated phagocytosis [J]. Mol Biol Cell, 2007, 18: 976-985.
    [226] Ley K. Integration of inflammatory signals by rolling neutrophils [J]. Immunol Rev, 2002, 186: 8–18.
    [227] Ross G D. Regulation of the adhesion versus cytotoxic functions of the Mac-1/CR3/αMβ2 integrin glycoprotein [J]. Crit Rev Immunol, 2000, 20: 197–222.
    [228] Ginsberg M H, Du X, Plow E F. Inside-out integrin signalling [J]. Curr Opin Cell Biol, 1992, 4: 766–771.
    [229] Hynes R O. Integrins: versatility, modulation, and signaling in cell adhesion [J]. Cell, 1992, 69: 11–25.
    [230] Woodring P J, Hunter T, Wang J Y. Regulation of F-actin-dependent processes by the Abl family of tyrosine kinases [J]. J Cell Sci, 2003, 116: 2613-2626.
    [231] Fuortes M, Jin W W, Nathan C. Adhesion-dependent protein tyrosine phosphorylation in neutrophils treated with Tumor Necrosis Factor [J]. J Cell Biol, 1993, 120: 777-784.
    [232] Jenei V, Deevi R K, Adams C A, et al. Nitric oxide produced in response toβ2 integrin engagements on human neutrophils activates the monomeric GTPases Rap1 and Rap2 and promotes adhesion [J]. J Biol Chem, 2006, 281: 35008-35020.
    [233] Hayashi Y, Haimovich B, Reszka A, et al. Expression and function of chicken integrinβ1 subunitand its cytoplasmic domain mutants in mouse NIH 3T3 cells [J]. J Cell Biol, 1990, 110: 175-184.
    [234] Marcantonio E E, Guan J L, Trevithick J E, et al. Mapping of the functional determinants of the integrinβ1 cytoplasmic domain by site-directed mutagenesis [J]. CR, 1990, 1: 597-604.
    [235] O’Toole T E, Katagiri Y, Faull R J, et al.Integrin cytoplasmic domains mediate inside-out signal transduction [J]. J Cell Biol, 1994, 124: 1047-1059.
    [236] Solowska J, Guan J L, Marcantonio E E, et al. Expression of normal and mutant avian integrin subunits in rodent cells [J]. J Cell Biol, 1989, 109: 853-861.
    [237] Yan S R, Berton G. Antibody-inducedβ2 integrin engagements in human neutrophils causes a rapid redistribution of cytoskeletal proteins, Src-family tyrosine kinases, and p72syk that precedes de novo actin polymerization [J]. J Leukocyte Biol, 1998, 64: 401-408.
    [238] Schumann M A, Gardner P, Raffin T A. Recombinant human Tumor Necrosis Factorαinduces calcium oscillation and calcium-activated chloride current in human neutrophils: the role of calcium/calmodulin-dependent protein kinase [J]. J Biol Chem, 1993, 268: 2134-2140.
    [239] Jaconi M E E, Theler J M, Schlegel E, et al. Multiple elevations of cytoslic free Ca2+ in human neutrophils: initiation by adherence to receptors of the integrin family [J]. J Cell Biol, 1991, 112: 1249-1257.
    [240] Berton G, Mocsai A, Lowell C A. Src and Syk kinases: key regulators of phagocytic cell activation [J]. Trends Immunol, 2005, 26: 208-214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700