序批式活性污泥工艺(SBR)自动化控制及工艺性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文系统总结了SBRs类活性污泥工艺的发展历史、工艺类型以及其所涉及到的生物学理论。在此基础上通过实验系统研究了实现典型SBR工艺的自动化控制方式、典型SBR工艺处理有机污水的效果、典型SBR工艺处理有机污水过程中COD的浓度变化曲线以及SBR工艺耐冲击负荷能力,最后,系统地研究了重金属铬离子对于SBR工艺系统活性污泥的影响以及活性污泥对铬离子的吸收。现将研究结果总结如下:
     (1)利用PLC技术成功实现SBR工艺的自动化运行,并针对SBR工艺的运行特点总结了其PLC编程技巧,提出了循环可执行事件概念,并给出了一个循环可执行事件的编程模式。
     (2)利用SBR工艺处理有机污水均能取得良好效果。但SBR工艺处理高浓度有机污水和低浓度有机污水所应注意的事项不同:SBR工艺处理较低有机物浓度的污水时应注意提高污泥有机物负荷,可通过采用较高的排水比或缩短反应时间来实现,因为较低的有机负荷易造成活性污泥的内源氧化以及低有机物浓度下的丝状菌污泥膨胀,并且还有可能出现沉淀期缺氧反硝化产氮浮泥现象;SBR工艺处理高浓度有机物污水时,应注意降低污泥有机物负荷,宜采用较低的排水比或延长反应时间来实现,处理高浓度有机污水时易出现出水混浊及反应期缺氧丝状菌污泥膨胀现象。
     (3) SBR工艺系统具有很强的耐冲击负荷能力,其耐冲击负荷能力的大小一方面与活性污泥浓度有关,另一方面也与SBR工艺系统反应时间的长短有关。冲击负荷对SBR工艺所造成的影响,并不是破坏SBR工艺的活性污泥系统,而是有机物的冲击浓度超过了活性污泥的吸收能力。当恢复正常进水时,系统也将恢复正常。为说明SBR工艺的耐冲击负荷现象,本文提出了“贮存——利用(增殖)”模型,来解释SBR工艺的耐冲击负荷能力。
     (4)铬离子对活性污泥的毒性作用按照挥发性污泥(MLVSS)铬负荷可划分为四个范围:耐受性范围(0~~30mg/gmlvss)、崩溃范围(30~~65mg/gmlvss)、强絮凝范围(70~~100mg/gmlvss)、细胞分解范围(>100mg/gmlvss)。活性污泥容积指数(SVI)的大小对此范围数值有影响。SVI数值低,则范围上下限数值向上偏移;SVI数值高,则范围上下限数值向下偏移。
     (5) SBR工艺系统活性污泥对铬离子的吸收即受铬负荷的影响也受污泥容积指数SVI的影响。铬负荷低于30mg/gMLVSS时对SBR工艺活性污泥吸收铬离子的影响不是很大,但会随污泥容积指数的增大而降低;铬负荷水平超过30mg/gMLVSS时,由于铬离子的毒性作用,SBR工艺系统活性污泥吸收铬离子的能力就会大大下降。
     (6)铬离子的毒性作用将导致活性污泥体积增大,而铬离子的絮凝作用则将导致活性污泥体积减小。二者的交叉作用,将随着铬负荷的增大(也即溶液中铬离子浓度的增大)而导致活性污泥30分钟污泥沉降体积呈现出波浪式变化。污泥容积指数(SVI)的大小影响铬离子对活性污泥30分钟污泥沉降体积大小的作用,使波浪式变化特征变得明显或不明显。
     (7)铬离子毒性作用、絮凝作用以及铬离子所造成的活性污泥比重上升都是影响活性污泥沉降过程的因素,同时活性污泥容积指数也明显得影响着铬离子对活性污泥沉降过程的作用。控制污泥沉降速度的因素与控制污泥最终沉降体积的因素并不一致。活性污泥沉降速度会因为铬离子浓度的增加而加快,但活性污泥的最终体积却是由铬离子对活性污泥菌群的毒性作用和絮凝作用共同作用的结果。
     (8) 120ml/gmlvss左右的污泥容积指数的活性污泥比较特殊。在此容积指数随近的活性污泥,随着铬负荷水平的升高,会发生逆膨胀现象,也即在低铬负荷影响下,活性污泥的沉降速度加快,而在高铬负荷下,却发生活性污泥体积比对照系统体积变大,活性污泥沉降速度变慢的情况,当然,这是在本论文实验的铬负荷范围内。
This paper systematically summarizes the development, process style and biology theories involved in the SBRs process. And on that basis, the paper searches automatic control, the change of COD value and the shock resistant capacity of typical SBR process, as well as the influence of the heavy metals chrome ion on SBR and the activated sludge of SBR to the absorption of the chrome ion is also studied. Now the summary of the research result is as follows:
     (1) The experiment adopts the PLC technique to carry out the SBR process automatization circulation successfully, summarizing its PLC plait distance technique to the movement characteristics of SBR process. In the light of the experiment the thesis puts forward the concept of the cyclic performable occurrences ,and give a plait distance mode of the cyclic performable occurrences.
     (2) Making use of SBR to treat the organic wastewater can obtain good result .But the ways of treating the high concentration and the low concentration organic sewage are not the same: To the low concentration organic sewage, we must raise the organic loading by high drain rate or shortening the time of the period of reaction; and to the high concentration organic sewage, we must reduce the organic loading by low drain rate or lengthening the time of the period of reaction
     (3) The SBR process has a very strong ability to bear the impact load .The ability of its bearing the organic impact load, on the one hand, has something to do with the concentration of the activated sludge, on the other hand, has something to do with the time of reaction of SBR process. The influence of the organic impact load to the SBR process is not to destroy the activated sludge system of SBR, but to cause absorption ability of the activated sludge to be exceeded by the organic sewage .While recovering the primary wastewater normally, the system will also recover normally. In order to explain the bearing impact load phenomenon of SBR, this text puts forward a hypothesis," the stockpile - usage (generation)", to explain the ability of the bearing organic impact load of SBR.
     (4) The chrome load can be divided four scopes according to the toxicity function of the chrome ion to the mixed liquor volatile suspended solid (MLVSS): beating scope (0~~30mg/gmlvss)、collapse scope(30~~65mg/gmlvss)、flocculation scope (70~~100mg/gmlvss)、the scope of breaking cell (>100mg/gmlvss). The size of SVI has influence to this scope value. When the SVI value is low, the scope value of top and bottom limit will increase; and when the SVI value is high, the scope value of top and bottom limit will decrease.
     (5) The chrome load and SVI all influence the absorption of the chrome ion by the activated sludge of SBR process. When the chrome load is under 30mg/gmlvss, its influence on the absorption of chrome ion by the activated sludge of SBR system isn't very much, but will diminish with the aggrandizement of SVI. When the chrome load level is over 30mg/gMLVSS, because of the toxicity function of the chrome ion, the absorption ability to the chrome ion of the activated sludge of SBR process will descend consumedly.
     (6) The toxicity function of the chrome ion will cause the physical volume of the activated sludge to enlarge, but the flocculation function of the chrome ion will then cause the physical volume of the activated sludge decrease. Their interactions will cause the sediment sludge volume in 30 minutes present a wave type variety with the aggrandizement of the chrome load (namely the aggrandizement of the chrome ion concentration in the aqua). The size of SVI influences the function of the chrome ion to the size of the sediment sludge volume in 30 minutes, and makes the wave type variety characteristic become obvious or not obvious.
     (7) All the chrome ion toxicity function, the flocculation function and the activated sludge specific gravity gain that the chrome ion result in are the factors that influence the subsidence process of the activated sludge. The SVI value also influences the function of the chrome ion to the subsidence process of the activated sludge obviously in the meantime. The factors of controlling the settling velocity of sludge and controlling the final sediment sludge volume are not same. The settling velocity of the activated sludge will increase with the increment of the chrome ion concentration, and it will increase with the increment of the chrome ion concentration, but the finial volume of the activated sludge is the interactive result of the toxicity function and the flocculation function by the chrome ion.
     (8) The activated sludge whose SVI is in 120ml/gmlvss or so is more special .The activated sludge at this SVI or so, along with the aggrandizement of the chrome load, will cause negative bulge phenomenon, namely, in the low chrome concentration, the settling velocity of sludge will speed, but in the high chrome load level, the sludge volume becomes bigger than the sludge volume of comparison, and the settling velocity of sludge become slow. Certainly, this is in the scope of the chrome load in the article experiment.
引文
[1] Wardle Sir Thomas. Wewage Treatment and Disposal. J. Royal San. Inst. 1893
    [2] Ardern E., Lockett W. T.. Experiments on the oxidation of Sewage Without the Aid of filters, j. Soc. Chem. Ind., 1914. 33: 523.
    [3] Mclling S. E.. Purification of Salford Sewage along the Line of the Manchester Experiments. J. Soc. Chem. Ind., 1914, 33: 1124.
    [4] O'Shaughbessy F. R... The Physical Aspects of Sewage Disposal. J. Soc. Chem. Ind., 1923, 42: 359
    [5] 刘建林.序批式活性污泥工艺(SBR)运行模式和设计方法研究:[硕士论文].上海,同济大学,1994.
    [6] Irvine R. L., Fox T. R., Richter R. O.. Investigation of fill and Batch Periods of Sequencing Batch Biological Reactors. Wat. Res. ,1977, 11: 713~717
    [7] Irvine R. L., Busch A, W., Sequencing Batch Biological Reactors-An Overview. JWPCF, 1979, 51: 235
    [8] Irvine R. L., Ketchum Jr. L. H., Breyfolge R. et. al. Municipal Application of Sequencing Batch Treatment at Culver. JWPCF, 1983, 55: 484
    [9] Irvine R. L., Ketchum Jr. L. H.. Sequencing Batch Reactor for Biological Wastewater Treatment. CRC. Crit. Rev. Environ. Control, 1988, 18: 255
    [10] Irvine R. L., Wilderer P. A. Flemming H. C. Controlled Unsteady State Processes and Technologies-An Overview, Wat. Sci. Tech. 1997, (1): 1~10
    [11] 王国生.间歇活性污泥法述评.给水排水,1989,15(1):40~44
    [12] 日本下水道事业主编.序批式活性污泥法指南.1990.
    [13] Handbuch des SBR-Verfahrens. Cyklar Abwassertechnic, 1995
    [14] Arbeitsblatt ATV-M210. Belebungsanlagen mit Aufstaubetrieb, 1997
    [15] 张统等主编.SBR及其变法污水处理与回用技术.2002.9,前言.
    [16] 张统等主编.间歇式活性污泥法污水处理技术及工程实例.2002.3:2~3.
    [17] 张大群,王秀朵.SBR工艺新DAT-IAT法及新型滗水器.中国给水排水.1996,12(1):26~29
    [18] Hoover S. R., PorgesN.. Assimilation of Dairy Wastes by Activated Sludge Ⅱ. The Equation of Synthesis and Rate of Oxygen Utilization. Sew. Ind. Waste, 1952, 24: 306
    [19] Pasveer A.. Contribution to the Development in Activated Sludge Treatment. J. Ind. Sew. Purif., 1957, 4: 436.
    [20] Goronszy M. C.. Intermittent Operation of the Extended Aeration Process for Small System. JWPCF, 1979, 51: 235
    [21] 沈耀良,王宝贞等.废水生物处理新技术理论与应用.1999,6:110~112
    [22] Goronszy M.C..朱明权,Wutscher K..循环式活性污泥法(CAST)的应用及其发展.中国给水排水,1996,12(6):4~10
    [23] 冯生华.澳大利亚IDEA工艺污水处理厂简介.给水排水,1996,Vol.22,No.11:26~27.
    [24] 张大群,王秀朵.SBR工艺新DAT—IAT法及新型尾水器.中国给水排水,1996,Vol.12,No.1:26~29.
    [25] 王秀朵,周雹.DAT-IAT工艺处理城市污水.中国给水排水,1999,Vol.15,No.1:15~18.
    [26] 王维斌,王秀朵,张大群等.抚顺三宝屯污水处理厂DAT--IAT工艺设计.给水排水,2002,Vol.28,No.2:9~14.
    [27] 杜新宪,蒋国胜,孙仙鹤.番茄酱生产废水处理DAT—IAT工艺的应用与研究.新疆环境保护,2003,25(2):23—26.
    [28] Segrers Engineering Water. UNITANK—Advanced treatment of industrial and municipal [J]. waste water, 1996.
    [29] 吴文峰.小区污水处理UNITANK工艺方案设计.福建环境,2002,19(3):19~21.
    [30] 熊杨,刘章富,杨羽寒.一种新型除磷脱氮工艺—廊道交替池.给水排水,2001,Vol.27.No.11:27~29.
    [31] Ketchum L. H. et al. First cost analysis of seqluencing batch biological reactor. JWPCF, 1979, 51(2).
    [32] AroraM. L.Etal:Technologyevaluationofsequencingbatch reactor, JWPCF, 1985, 57(8).
    [33] Ng Wun-Jern Sequencing batch reactor (SBR) treatment of waste water. Environmental sanitation reviews, 1989, 28(9).
    [34] 赵忠富,付忠志.污水MSBR系统工艺设计.给水排水,2000,Vol.26,No.11:6~10.
    [35] 杨殿海,顾国维.改进型MSBR工艺特点与运行效果.中国给水排水,2004,Vol.20,No.1:62~65.
    [36] 罗万申.新型污水处理工艺——MSBR.中国给水排水,1999,Vol.15,No.6:22~24.
    [37] 孙剑辉,王海燕.ASBR法研究进展及展望.环境污染治理技术与设备,2002.2,Vol.1,No.1:84~90.
    [38] 岳秀萍,李亚平,曹京哲.ASBR研究进展.环境科学与技术.2004.5,Vol.27,No.3:94~97.
    [39] 倪国,况武,缪应棋.厌氧序批式活性污泥工艺的研究及进展.环境科学动态.2000,No.3:37~39.
    [40] 郑一新,王宏,何跃.DAF-ASBR处理香料废水工艺研究.给水排水,2000,Vol.26,No.11:43~46.
    [41] Joanna surmacz- Gorsra- Andrzej Cichon, Korneliusz Miksch Nitrogen removal From waste water with high ammonia nitrogen concentration via shorter nitrification [J]. Wat Sci Tech, 1997, 36(10): 73~78
    [42] 詹伯君,陈国喜.膜法SBR工艺处理印染废水工程设计.给水排水,1997,Vol.23,No.7:25~28.
    [43] 王乾扬,方士,陈国喜等.膜法SBR工艺处理皮革废水研究.中国给水排水,1999,Vol.15,No.3:54~56.
    [44] 詹伯君,陈国喜等.皮革废水SBR工艺对比试验研究.污染防治技术,1998,11(3):134~136.
    [45] 彭永臻等.两段SBR法处理石油化工废水.给水排水,1996,22(6):29.26~28.
    [46] 陈坚,任洪强等.环境生物技术应用与发展.2001.6:52~55
    [47] 蔡木林,江跃林等.二级SBR法处理高浓度氨氮化工废水研究.应用与环境生物学报,2000,6(6):581—585.
    [48] 钱易等.二级SBR系统处理染料废水长期运行的稳定性.环境科学,2002,1,Vol.23,No.1:50~53.
    [49] 陈国喜等.SBR生化系统的应用及其发展.环境科学进展.1998,4,Vol.6,No.2:35~39
    [50] Warren L. Jones Operation of a Three — stage SBR System for Nitrogen Removal Waste water, IWPCF, 62(3): 268—273(1990).
    [51] 张统,侯瑞琴,王守中等.间歇式活性污泥法污水处理技术及工程实例.化学工业出版社,2002,4:1~2.
    [52] 汪大羽军,雷乐成.水处理新技术及工程设计.化学工业出版社,2001.5:174~~185
    [53] 张统,侯瑞琴,王守中等.间歇式活性污泥法污水处理技术及工程实例.化学工业出版社,2002,4:6~7
    [54] 沈耀良,王宝贞.废水生物处理新技术——理论与应用.中国环境科学出版社,1999,6:82~~85
    [55] 沈耀良,王宝贞.废水生物处理新技术——理论与应用.中国环境科学出版 社,1999,6:220~222
    [56] 沈耀良,王宝贞.废水生物处理新技术——理论与应用.中国环境科学出版社,1999,6:92~94
    [57] 汪大羽军,雷乐成.水处理新技术及工程设计.化学工业出版社,2001.5:191~~197
    [58] 沈耀良,王宝贞.废水生物处理新技术——理论与应用.中国环境科学出版社,1999,6:112~123
    [59] 孙剑辉,闫怡新.循环式活性污泥法中厌氧生物选择区的运行条件研究.重庆环境科学,2003,25(9):38~41.
    [60] 魏永,闪红光.循环式活性污泥法(CASS)的研究进展.辽宁城乡环境科技,2004,24(4):7~10.
    [61] Mervyn C.Goronszy,朱明权,K.Wutscher.循环式活性污泥法(CAST)的应用及其发展.中国给水排水,1996,Vol.12,No.6:4~10
    [62] Mervyn C.Goronszy,朱明权,K.Wutscher.循环式活性污泥法(CAST~(TM))在工业废水处理中的应用.中国给水排水,1997,Vol.13增刊:7~12.
    [63] 孙大群,边德军,张文华.循环活性污泥系统(CASS).长春工程学院学报(自然科学版),2001,Vol.2,No.3:15~17.
    [64] 沈耀良,王宝贞.废水生物处理新技术——理论与应用.中国环境科学出版社,1999,6:110~112.
    [65] 汪大羽军,雷乐成.水处理新技术及工程设计.化学工业出版社,2001.5:187~~189
    [66] 李淑更,张立秋,吴学伟等.ICEAS反应器处理城市污水的试验研究.广州大学学报 (自然科学版),2004,Aug,Vol.3,No.4:361~364,368.
    [67] 潘建良.对住宅小区污水处理工艺技术的调研.自然杂志,2003,Vol.25,No.3:171~173.
    [68] 陈庆星,马玉麟.昆明市第三污水处理厂(ICEAS)工艺简介.给水排水,1994,No.8:17~20.
    [69] 段存礼.青岛城阳污水处理厂的自控系统.中国给水排水,2004,Vol.20,No.8:81
    [70] 丁航,陈艳艳,张策.污水处理的新工艺——SBR法及改进型ICEAS法.煤矿环境保护,1995,9(4):21~22.
    [71] 孙杰,蔡泽武.厌氧水解——ICEAS工艺处理高速公路服务区高浓度生法污水.武汉科技学院学报,2004,Vol.17,No.5:35~38.
    [72] 汪大羽军,雷乐成.水处理新技术及工程设计.化学工业出版社, 2001,5:189~191.
    [73] 王秀朵,周雹.DAT-IAT工艺处理城市污水.中国给水排水,1999,Vol.15,No.1:15~17.
    [74] 张大群,王秀朵.DAT-IAT工艺及设备的研究及应用.给水排水,2001,Vol.27,No.1:68~72.
    [75] 兰蔚,万金保,王水金.DAT-IAT工艺一体化污水处理设备工艺的研究.贵州环保科技,2003,Vol.9,No.4:39~41,43.
    [76] 张大群,王秀朵.SBR工艺新DAT-IAT法及新型滗水器.中国给水排水,1996,Vol.12,No.1:26~29.
    [77] 童武.浅谈SBR的改进型DAT-IAT工艺.有色冶金设计与研究.2002,23(1):29~31.
    [78] 冯凯,杭世王君.UNITANK工艺处理城市污水工程实践.SBR及其变法污水处理与回用技术,化学工业出版社,2003,3:276~280
    [79] 羊寿生.一体化活性污泥法UNITANK工艺及其应用.给水排水,1998,Vol.24,No.11:16~19.
    [80] 吴文峰.小区污水处理UNITANK工艺方案设计.福建环境,2002,19(3):19~21.
    [81] 张可方,塔怀勇.污水处理的一种新方法(UNTK).华南建设学院西院学报,1999,Vol.7,No.1:40~41.
    [82] 杨波,陈兰.适用于中小城市污水处理的UNITANK技术.中国环保产业,2003,No.4(Total No.57):34~36.
    [83] 汪大羽军,雷乐成.水处理新技术及工程设计.化学工业出版社,2001,5:197~~202.
    [84] 李探微,彭永臻,何金.UNITANK(?)系统及污水处理研究方向的思考.中国给水排水,1999,Vol.15, No.7:21~23.
    [85] 祁佩时,李欣,刘云芝.UNITANK工艺处理制药废水中试.中国给水排水,2004,Vol.20,No.10:43~45.
    [86] 喻学梅,姜伟立,邹梅.UNITANK废水处理工艺及其应用.污染防治技术,2001,14(4):14~16.
    [87] 石明岩,曾苏,吕锡武.UNITANK法除磷工艺特性研究.中国市政工程,2003,No.3(Total,No.103):60-64
    [88] 彭永兴,郭常安等.Unitank工艺的改良设计.黑龙江水利科技,2002,No.3:74~75.
    [89] 杨殿海,顾国维.改进型MSBR工艺特点与运行效果.中国给水排水,2004,Vol.21,No.1:62~65
    [90] 赵忠富,付忠志.污水MSBR系统工艺设计.给水排水,2000,Vol.26,No.11:6~9.
    [91] 常新国,杨海真.污水处理的改良性SBR工艺.交通环保,1999,20(5):22~26.
    [92] 邵志刚.上海市合流污水处理方法研究(中型).中国市政工程,2001,8,增刊:13~16.
    [93] 汪大羽军,雷乐成.水处理新技术及工程设计.化学工业出版社,2001,5:202~~206
    [94] 任洁,顾国维.MSBR系统的特点及其除磷脱氮的机理分析.给水排水,2002,Vol.28,No.1:22~24.
    [95] 王国华,任鹤云.工程菌MSBR法处理制药废水研究.SBR及其变法污水处理与回用技术,化学工业出版社,2003,3:240~~246
    [96] 李春鞠,顾国维,杨海真.城市污水除磷脱氮MSBR工艺试验研究.环境工程,2000,Vol.18,No.6:19~22.
    [97] 王闯,杨海真,顾国维.改进型序批式反应器(MSBR)的试验研究.中国给水排水,2003,Vol.19,No.5:41~43.
    [98] 李春鞠,顾国维,杨海真.改善MSBR系统脱氮效果的试验研究.中国给水排水,2001,Vol.17,No.1:9~14.
    [99] 赵耘挚.SBR及其改良工艺数学模型与仿真软件研究:[硕士学位论文].上海,东华大学,2003:17~~18
    [100] 王翠萍.活性污泥法处理污水的原理及影响因素.山西建筑,2002,Vol.28,No.8:98~99
    [101] Baiey J. E. and D. F. Quis. Biochemical Engineering Fundamentals, McGraw-Hill Book Company. 1986.
    [102] 张杰,刘永生,孟玲,邵立东,张忠泽.多环芳烃降解菌筛选及其降解特性.应用生态学报.Oct.2003,14(10):1783~~1786
    [103] 王东海,文湘华,钱易.处理难降解有机物的新型SBR反应器的发展.环境科学进展.Dec.,1999,Vol.7,No.6:38~44.
    [104] R. L. Irvine et. al. Periodic Process for in Situ And On-Site Bioremedation of Leachates and Soils. Wat. Sci. Tech., Vol. 27(7-8): 97-104(1993).
    [105] Kolb-FR Wilderer-PA. Activated Carbon Sequencing Batch Biofilm Reactor to Treat Industrial Waste-Water. Wat. Sci. Tech. Vol 35, Iss 1, pp169-176(1997)
    [106] Woosuk Cha et al. The Buffer Effect of Biological Activated Carbon to the Shock Loading in Sequencing Batch Reactor. pp 147-152
    [107] 陈郭建.PCA-SBR法处理高浓度有机废水.环境工程.1995,Vol.13(5):3~6.
    [108] Hanqing Yu et al. Posttreatment of Effluent From Coke-Plant Waste water Treatment System in Sequencing Batch Reactor. J. of Engineering.(3), pp305~308(1997)
    [109] Kolb-FR Wilderer-PA. Activated Carbon Sequencing BatchBiofilm Reactor toTreatIndustrialWaste-Water.Wat.Sci.Tech.Vol35, Iss 1, pp169~176(1997)
    [110] H. H. P. Fang et al. Removal of COD and Nitrogen in Wastewater Using Sequencing Batch Reactor With Fibrous Packing. Wat. Sci. Tech. Vol 28, Iss 7, pp125~135(1993)
    [111] A. Wobus et al. Degradation of Chlorophenols by Biofilms on Semi-permeable Membranes in Two Types of Fixed Bed Reactors. Wat. Sci. Tech. Vol 32, Iss 8 pp205~212(1995)
    [112] 詹伯君等,膜法SBR工艺处理印染废水工程设计.给水排水,1997,Vol.23(7):25~28.
    [113] Ketchun, Jr et al. Anaerobic Sequencing Batch Reactor of Coal Conversion Wastewater. In: Anaerobic Treatment of Industrial Wastewaters(Torpy, M. F. cd) Noyes Data Corp., Pak Ridge, N J, 90.
    [114] Shihwu Sung et al., Laboratory Studies on the Anaerobic Sequencing Batch Reactor. Water Environ. Res. 1995, Vol. 67(3), pp294~301.
    [115] Wirtz-RA, Dague-RR. Enhancement of Granulation and Start-up in the Anaerobic Sequencing Batch Reactor. WATER ENVIRONNENT RESEARCH Vol 68, Iss 5, pp883~892(1996)
    [116] Wirtz-R. A., Dague-R. R. Laboratory studies on Enhancement of Granulation in theAnaerobicSequencingBatch Reactor.Wat.Sci.Tech.,Vol 36, (4): 279~286(1997)
    [117] Irvine-DA Earley-JP Cassidy-DP Harvey-SP. Biodegradation of Sulfur Mustard Hydrolysate in the Sequencing Batch Reactor. Wat. Sci. Tech. Vol 35, Iss 1, pp 67~74(1997)
    [118] Chen-CH Horng-RY Juang-SS Tzou-WY Hsinshao Yao-HS Cheng-SS. A Successful Case-Study of Fine Chemical-Plant Waste-Water Treatment. Wat. Sci. Tech.. Vol 35, Iss 1, pp87~94(1997)
    [119] Zaloum-R Abbott-M. Anaerobic Pretreatment Improves Single Sequencing Batch Reator Treatment of Landfill Leachates. Wat. Sci. Tech., Vol 35, Iss 1, pp207~214(1997)
    [120] 汪耀斌.H.S.B.技术的特点及其在高难度废水处理中的应用.水资源保护, 2001,6,No.2:23~24,34.
    [121] 周祖鸿.H.S.B 菌在焦化废水治理中的应用.上海化工,2000,No.24:4~5,26.
    [122] 顾加兵,雷俐玲.H.S.B.微生物生化法处理苯胺污水.工业用水与废水, 2000,Vol.31,No.5:20~22.
    [123] 汪大羽军,雷乐成.水处理新技术及工程设计.化学工业出版社,2001,4:212~264
    [124] 沈耀良,王宝贞.废水生物处理新技术——理论与应用.中国环境科学出版社,1999,6:155~~226
    [125] 沈耀良,赵丹.强化SBR工艺脱氮除磷效果的若干对策.中国给水排水,2000,Vol.16,N0.7:23~25.
    [126] 张可方,张朝升,方茜等.SBR法处理城市污水的脱氮除磷功效.中国给水排水,2001,Vol.17,No.11:17~20.
    [127] 陈红,李昊翔.强化序批式活性污泥工艺脱氮除磷的实验研究.浙江大学学报(工学版),2004,Vol.38,No.9:1235~1238.
    [128] 熊建英,杨海真.城市污水除磷脱氮处理工艺概况.环境导报,1999,No.1:11~13.
    [129] 张统,方小军,张志仁等.SBR及其变法污水处理与回用技术.化学工业出版社,2003,3:121~~131
    [130] 王亚宜,彭永臻,王淑莹等.反硝化除磷理论、工艺及影响因素.中国给水排水,2003,Vol.19,No.1:33~36.
    [131] 袁林江,张小玲,韩玮等.同步反硝化聚磷的试验研究.环境科学,Nov.,2004,Vol.25,No.6:92~96.
    [132] 罗宁,罗固源,吉芳英等.SBR的反硝化吸磷脱氮现象研究.重庆环境科学,2003,25(9):14~16,30.
    [133] 卢锋,杨殿海.反硝化除磷工艺的研究开发进展.中国给水排水,2003,Vol.19,No.9:32~34.
    [134] Wachtmeister A,Kuba T.A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge [J]. Wat Res, 1997,31 (3):471~478
    [135] 吴凡松,彭永臻,王维斌.生物选择器与除磷脱氮.给水排水,2003,Vol.29,No.12:32~34.
    [136] 孟建丽,崔利军,杨云龙.丝状菌性污泥膨胀及生物选择器控制.科技情报开发与经济,2004,14(9):210~211.
    [137] 李彩斌,李京.生物选择器的作用机理和设计方法.中国给水排水,2003, Vol.19, No.4: 69~70.
    [138] Wentzel, M. C., Lotter, L. H. ,Ekama, G. A., Loewenthal, R. E. and Marais, G. v. R.. Evaluation of biological models for biological excess phosphourus removal. Wat. Sci. Tech. 1991,23(4~6),567~576
    [139] US Patent 5013441
    [140] 孙剑辉,闫怡新.循环式活性污泥法中厌氧生物选择区的运行条件研究.重庆环境科学,2003,25(9):38~41.
    [141] 王宇光,李亚新.生物选择反应器的理论与设计计算.科技情报开发与经济, 2005 Vol.15 No.18:189-190.
    [142] 郭迎庆.生物选择器控制污泥膨胀的机理及其设计.中国给水排水,2002,Vol.18.No.8:59~61.
    [143] 张本兰,廖连华,裴健等.SBR 活性污泥中的主要微生物类群及其基本生态规律初探.环境科学进展,1994,Vol.2,No.3:32~43.
    [144] 王东海,文湘华,钱易.SBR在难降解有机物处理中的研究与应用.中国给水排水,1999,Vol.15,No.11:29~32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700