采用MOCVD方法在Si和InP衬底上制备ZnO薄膜及其发光器件
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Growth of ZnO Films on Si and InP Substrates and Fabrication of ZnO Based Light Emitting Devices by MOCVD
  • 作者:朱慧超
  • 论文级别:博士
  • 学科专业名称:微电子学与固体电子学
  • 学位年度:2007
  • 导师:杜国同
  • 学科代码:080903
  • 学位授予单位:吉林大学
  • 论文提交日期:2007-03-01
摘要
ZnO是一种具有压电和光电特性的直接宽带隙半导体材料,是人们关注的短波长光电材料的新焦点。其具有高的激子束缚能(60meV),极好的抗辐照性能和化学稳定性能,低的外延生长温度和大尺寸衬底材料等一些独特的优点,有望用于制备UV发光二极管和低阈值激光器。
     本论文即采用MOCVD技术,在n-Si、n-InP衬底上生长ZnO薄膜,研究了外延生长过程中生长温度和气体流量对ZnO薄膜结构性质、表面形貌和光学性质的影响,同时采用生长薄膜后热处理的方法,通过热扩散使衬底中含有的V族元素进入ZnO薄膜中,取代O元素或者占据O空位成为受主,从而成功制备出p-ZnO薄膜,我们利用XPS技术已经证实了P元素在ZnO薄膜中的存在。我们利用真空蒸发技术制备了金属点状电极,并且研究了n-Si/p-ZnO异质结的整流特性。
     实验发现,生长温度对ZnO薄膜的结构、表面形貌和光学质量有重要的影响:不同温度下生长的样品,在610°C生长样品的(002)峰最强,薄膜晶粒尺寸较大,说明在此温度下生长的薄膜质量最好。氧气流量对ZnO薄膜的晶体结构、表面形貌和表面形貌有显著影响:当氧气流量为180sccm时,样品只出现ZnO(002)面的衍射峰,且峰强度最强,薄膜晶粒较大;当氧气流量超过180sccm时,随着其流量的增加,(002)衍射峰和其他峰强度逐渐减弱。氮气流量对ZnO薄膜的晶体结构、表面形貌和光学特性有显著影响:实验发现,最佳的流量为600sccm。通过对样品的XRD谱的比较可知,当氮气流量超过600sccm时ZnO(002)衍射峰强度降低,半高宽增大,薄膜的晶体质量显著降低。
     我们首次采用MOCVD生长技术,在n-Si衬底上通过P元素热扩散的方法制备出p-ZnO薄膜。采用X光电子能谱仪(XPS)分析了P在ZnO薄膜中的存在状态,结果表明,随着刻蚀深度的增大,P元素的含量有所提高,许多P原子取代O的格点位置,作为受主存在,使得薄膜转为p型。通过重复实验我们发现,热扩散是改变薄膜电导类型的关键原因。高温改善了薄膜的结晶质量,减少了晶粒间界原子所占的比例,使存在于晶粒间界的P原子扩散入晶体内部而占据O的位置,从而使薄膜变为p型。
     我们首次采用MOCVD外延生长技术,在掺杂不同元素(磷,砷,锑)的三种n-Si衬底上生长ZnO薄膜成功地制作了n-Si/p-ZnO/n-ZnO发光器件并分析了电致发光特性。所有n-Si/p-ZnO/n-ZnO异质结都表现出典型的整流特性,正向开启电压大约为2V,反向电流随反向偏压线性增加。在达到一定的正向电流时,器件发出白色的光芒,我们记录并分析发光主要是由于电子和深受主能级辐射复合。
     我们首次采用MOCVD技术在两种n-InP衬底上观察到n-InP/p-ZnO/n-ZnO异质结的电注入发光,并分析了其发光特性。同样的,由于衬底中含有大量的P元素可于通过热扩散进入ZnO薄膜中取代O元素或者O空位成为受主,从而使靠近衬底的ZnO薄膜成为p型,而远离衬底的ZnO薄膜仍为n型,这样我们就得到了n-InP/p-ZnO/n-ZnO异质结构。我们测试了n-InP/p-ZnO/n-ZnO异质结的电致发光特性。发光在可见光区,它与我们所期待的紫外发光相比,出现了红移,我们认为这是p-ZnO层的载流子浓度很低的缘故,或者是因为薄膜中存在部分缺陷使得注入的电子在经过势垒层到达p-ZnO区时容易与价带深能级发生辐射复合。
Title: Growth of ZnO films on Si and InP substrates and fabrication of ZnO based light emitting devices by MOCVD
     Major: Micro-electronics and solid-electronics Tutor: Prof. Guotong Du
     With the fast developing information technology, communication and network which are depended on optoelectronics and microelectronics becomes the core of new technology. Short wavelength LEDs and LDs have great uses in light memory, display and laser print, etc. ZnO films attract much more attention as ZnSe and GaN in optoelectronics research field. ZnO, as a promising wide direct-gap II-VI semiconductor, has remarkable optical and electrical characteristics, and use in domain semiconductor illumination. It can also be used in sensors, piezoelectric transducers, transparent conductor, surface acoustic wave devices, and lasers. There are lots of methods have been used to deposit ZnO films such as pulsed laser deposition (PLD), molecular beam epitaxy (MBE), metalorganic chemical vapor deposition (MOCVD), atomic layer epitaxy (ALE), sputtering, chemical vapor deposition(CVD), e-beam evaporation, sol-gel, spray pyrolysis.
     In this thesis, we prepare ZnO films on Si and InP substrates by MOCVD. Simultaneously, we investigate thoroughly the influence of the growth temperature and flow rate of O2 and N2 on the properties of the films, and successfully prepare p-ZnO thin film by P diffusion from n-Si(P doped) substrate. The heterojunction of n-Si/p-ZnO, n-Si/p-ZnO/n-ZnO and n-InP/p-ZnO/n-ZnO are fabricated and their characteristics are investigated.
     ZnO films are grown by MOCVD on Si substrates. The effects of the growth temperature on the properties of the films are analyzed and the optimized growth conditions are obtained. The results show that the ZnO film deposited at 610°C has the best cry stall inity, surface morphology and the biggest grain size. Increasing the growth temperature, the growth speed of ZnO films was increased. Under low temperature, it depends on the surface reactive velocity. When the temperature is moderate, it is affected by the quality transport of the source. Under higher temperature, because ZnO films decomposed, the speed decreases with the increasing of the temperature.
     It was found that the flow rate of O2 strongly influenced on the structural properties and surface morphology of ZnO films. The film grown at 180sccm had only one intense (002) diffraction, and had the biggest grain size. Increasing the flow rate of O2, the intense of (002) and other diffraction were decreased, when it reaches 260sccm, the crystalline quality of the ZnO films was degraded to polycrystal.
     The flow rate of N2 strongly influenced on the structural and optical properties of the ZnO thin films. The optimized flow rate of N2 is 600sccm. Increasing the flow rate of N2, the intense of (002) and other diffraction were decreased, when it reaches 1200sccm, the crystalline quality of the ZnO films was degraded to polycrystal.
     The ultraviolet emission in ZnO epilayer enhanced obviously after annealed, so annealing can improve the quality of ZnO films.
     The p-ZnO films are firstly prepared by MOCVD through P diffusion from P-doped n-Si substrates. After annealing, P atoms substitute O lattice bonded with Zn atoms, acted as acceptors, so films present p-type conduction. So n-Si/p-ZnO heterojunctions are fabricated by MOCVD. Ohmic contacts to p-ZnO are made by applying AuZn dots by evaporating, and to the n-Si by evaporating of Al. Rectifying behaviors are observed in all heterjunctions. The forward turn-on voltage is about 3V, the reverse current increases lightly with the increase of the reverse bias voltage.
     The n-Si/p-ZnO/n-ZnO light emitting devices are firstly fabricated by MOCVD deposition ZnO on different n-Si substrates through thermal annealing. Different V-group elements P, As and Sb can diffuse in ZnO films. Ohmic contacts to the ZnO and n-Si are made by evaporating AuZn and Al. All of the n-Si/p-ZnO/n-ZnO heterjunction exhibit typical rectifying behavior. Under forward bias the device produces weak white EL covering from 400nm to 600nm. By comparing the EL spectrum of our LED with the PL spectra of the individual heterostructure layer it can be concluded that the blue EL emission emerges from the ZnO region of the device due to the defects or low hole concentration in it.
     The n-InP/p-ZnO/n-ZnO light emitting devices are firstly fabricated by MOCVD deposition ZnO on n-InP substrates because P element from substrates can diffuse in ZnO. Ohmic contacts to the ZnO and n-InP are made by evaporating AuZn and Al. All of the n-InP/p-ZnO/n-ZnO heterjunction exhibit typical rectifying behavior. The turn-on voltage is ~3V. Under forward bias the device produces weak white EL covering from 400nm to 600nm. By comparing the EL spectrum of our LED with the PL spectra of the individual hetero structure layer it can be concluded that the white EL emission emerges from the ZnO region of the device due to the defects or low hole concentration in it.
引文
[1] P. Yu, Z.K. Tang, G.K.L Wong, et al. 23rd Int Conf on the Physics ofSemiconductors, World Scientific, Singapore. 1996, pl453.
    [2] Robert F. Service, Will UV Lasers Beat the Blues, Science, 276 (1997)895.
    [3] D. M. Bagnall, Y. F. Chen, Z. Zhu, et al., High temperature excitonicstimulated emission from ZnO epitaxial layers, Appl. Phys. Lett. 73(1998) 1038.
    [4] Z. K. Tang, G. K. L.Wong, P. Yu, et al., Room-temperature ultraviolet laseremission from self-assembled ZnO microcrystalline thin films, Appl.Phys. Lett. 72(1998)3270.
    [5] M.H. Huang, S. Mao, H. Feick, H.Q. Yan, et al. Room-temperatureultraviolet nanowire nanolasers. Science. 2001, 292, p1897.
    [6] Pan ZW, Dai ZR, Wang ZL, Nanobelts of semiconducting oxides,SCIENCE 291 (5510): 1947-1949 MAR 9 2001
    [7] Nomura, K, Ohta, H, Ueda, K, et al. Thin-film transistor fabricated insingle-crystalline transparent oxide semiconductor, SCIENCE 300 (5623):1269-1272 MAY 23 2003
    [8] Kong XY, Wang ZL, Spontaneous polarization-induced nanohelixes,nanosprings, and nanorings of piezoelectric nanobelts, NANO LETT 3(12): 1625-1631 DEC 2003
    [9] Kong, XY, Ding, Y, Yang, R, et al. Single-crystal nanorings formed byepitaxial self-coiling of polar nanobelts, SCIENCE 303 (5662):1348-1351 FEB 27 2004
    [10] A. Tsukazaki, A. Ohtomo, T. Onuma, et al., Repeated temperaturemodulation epitaxy for p-type doping and light-emitting diode based onZnO, Nature Materials, 4 (2005) 42.
    [11] Gao PM, Ding Y, Mai WJ, et al. Conversion of zinc oxide nanobelts intosuperlattice-structured nanohelices, SCIENCE 309 (5741): 1700-1704SEP 9 2005
    [12] S. J. Jiao, Z. Z. Zhang, Y. M. Lu, D. Z. Shen et al, ZnO p-n junctionlight-emitting diodes fabricated on sapphire substrates, Appl. Phys. Lett.2006,88,031911
    [13] Zhong Lin Wang and Jinhui Song, Piezoelectric Nanogenerators Based onZinc Oxide Nanowire Arrays, Science, 14 April 2006: 242-246.
    [14] Yungryel Ryu et al, Next generation of oxide photonic devices:ZnO-based ultraviolet light emitting diodes, Appl. Phys. Lett. 88, 241108,2006
    [15] K. Minegishi, Y. Koiwai, Y. Kikuchi, et al. Growth of p-type zinc oxidefilms by Chemical Vapor Deposition. Jpn. J. Appl. Phys. Part 2, 1997,36(11), pL1453.
    [16] D.C. Look, D.C. Reynolds, C.W. Litton, et al. Characterization ofhomoepitaxial p-type ZnO grown by molecular beam epitaxy. Appl. Phys.Lett. 2002, 81(10), p1830.
    [17] K.K. Kim, H.S. Kim, D.K. Hwang, et al. Realization of p-type ZnO thinfilms via phosphorus doping and thermal activation of the dopant. Appl.Phys. Lett. 2003, 83(1), p63.
    [18] T. Yamamoto and H.K. Yoshida. Solution using a codoping method tounipolarity for the fabrication of p-type ZnO. Jpn. J. Appl. Phys. Part 2,1997, 38(2), pL166.
    [19] M. Joseph, H. Tabata and T. Kawai. P-type electrical conduction in ZnOthin films by Ga and N codoping. Jpn. J. Appl. Phys. Part 2, 1997, 38(11),pL1205.
    [20] A.V. Singh and R.M. Mehra. P-type conduction in codoped ZnO thinfilms. J. Appl. Phys. 2003, 93(1), p396.
    [21] J.M. Bian, X.M. Li, X.D. Gao, et al. Deposition and electrical propertiesof N-In codoped p-type ZnO films by ultrasonic spary pyrolysis. Appl.Phys. Lett. 2004, 84(4), p541.
    [22] B.M. Bian, X.M. Li, C.Y. Zhang, et al. Synthesis and characterization oftwo-layer-structured ZnO p-n homoj unctions by ultrasonic spraypyrolysis. Appl. Phys. Lett. 2004, 84(19), p3783.
    [23] D.C. Look, D.C. Reynolds, J.R. Sizelove, et al. Electrical properties ofbulk ZnO. Solid State Commun. 1998, 105(6), p399.
    [24] D.C. Reynolds, C.W. Litton, D.C. Look, et al. High-quality, melt-grownZnO single crystal. J. Appl. Phys. 2004, 95(9), p4802.
    [25] Y. Kashiwaba, F. Katahira, K. Haga and H. Watanabe. Hetero-epitaxialgrowth of ZnO thin films by atmospheric pressure CVD method. J.Crystal Growth. 2000, 221(3), p431.
    [26] D.H. Zhang and D.E. Brodie. Transparent conducting ZnO filmsdeposited by ino-beam-assisted reactive deposition. Thin Solid Film,1992, 213(1), pl09.
    [27] T. Makino, C.H. Chia, N.T. Tuan, Y. Segawa, et al. Radiative andnonradiative recombination processes in lattice-matched (Cd,Zn)O/(Mg,Zn)O multiquantum wells. J. Appl. Phys. 2000, 77(11),pl632.
    [28] S. Muthukumar, J. Zhong, Y. Chen, Y. Lu and T. Siegrist. Growth andstructural analysis of metalorganic chemical vapor deposited (11-20)MgxZnl-xO films on (01-12) R-plane A12O3 substrates. Appl. Phys. Lett.2003, 82(5), p742.
    [29] R. Schmidt, B. Rheinlander, M. Schubert, et al. Dielectric functions (1 to6 eV) of wurtzite MgxZnl-xO thin films. Appl. Phys. Lett. 2003, 82(14),p2260.
    [30] A. Valentini, F. Quaranta, M. Rossi and G. Battaglin. Preparation and characterization of Li-doped ZnO films. J. Vac. Sci. Technol. A, 1991, 9(2), p286.
    [31] H.J. Ko, Y.F. Chen, S.K. Hong, and T. Yao. Doping effects in ZnO layersusing Li3N as a doping source. J. Crystal Growth. 2003, 251(3), p628.
    [32] A.N. Gruzintsev, V.T. Volkov, I.I. Khodos and M.N.Koval'chuk.Luminescent properties of ZnO films doped with group-IB acceptors.Russ. Microelectron. 2002, 31(3), p200.
    [33] K. Minegishi, Y. Koiwai, Y. Kikuchi, et al. Growth of p-type zinc oxidefilms by Chemical Vapor Deposition. Jpn. J. Appl. Phys. Part 2, 1997,36(11), pL1453.
    [34] D.C. Look, D.C. Reynolds, C.W. Litton, et al. Characterization ofhomoepitaxial p-type ZnO grown by molecular beam epitaxy. Appl. Phys.Lett. 2002, 81(10), pl830.
    [35] T. Aoki, Y. Hatanaka and D.C. Look. ZnO diode fabricated byexcimer-laser doping. Appl. Phys. Lett. 2000, 76(22), p3257.
    [36] K.H. Bang, D.K. Hwang, M.C. Park, et al. Formation of p-type ZnO filmon InP substrate by phosphor doping. Appl. Sur. Sci. 2003, 210(3), p177.
    [37] Y.R. Ryu, T.S. Lee and H.W. White. Properties of arsenic-doped p-typeZnO grown by hybrid beam deposition. Appl. Phys. Lett. 2003, 83(1),p87.
    [38] C.C. Lin, S.Y. Chen, S.Y. Cheng and H.Y. Lee. Properties ofnitrogen-implanted p-type ZnO films grown on Si3N4/Si byradio-frequency magnetron sputtering. Appl. Phys. Lett. 2004, 84(24),p5040.
    [39] T. Aoki, Y. Shimizu, A. Miyake, et al. p-type ZnO layer formation byexcimer laser doping, phys. stat. sol. (b), 2002, 229(2), p911.
    [40] H.J. Lee, S.Y. Jeong, C.R. Cho and C.H. Park. Study of diluted magneticsemiconductor: Co-doped ZnO. Appl. Phys. Lett. 2002, 81(21), p4020.
    [41] K. Sato and H.K. Yoshida. Material desigh for transparent ferromagnetswith ZnO-based magnetic semiconductors. Jpn. J. Appl. Phys. Part 2,2000, 39(6), pL555.
    [42] T. Fukumura, Z. Jin, A. Ohtomo, et al. An oxide-diluted magneticsemiconductor: Mn-doped ZnO films. Appl. Phys. Lett. 1999, 75(21),p3366.
    [43] S. Kolesnik, B. Dabrowski and J. Mais. Structural and magneticproperties of transition metal substituted ZnO. J. Appl. Phys. 2004, 95(5),p2582.
    [44] K.S. Kim, H.W. Kim. Synthesis of ZnO nanorod on bare Si substrateusing metal organic chemical vapor deposition. Physica B. 2003, 328(4),p368.
    [45] B.P. Zhang, N.T. Binh, Y. Segawa, et al. Photoluminescence study of ZnOnanorods epitaxially grown on sapphire (11-20) substrates. Appl. Phys.Lett. 2004, 84(4), p586.
    [46] X. Liu, X.H. Wu, H. Cao and R.P.H. Chang. Growth mechanism andproperties of ZnO nanorods synthesized by plasma-enhanced chemicalvapor deposition. J. Appl. Phys. 2004, 95(6), p3141.
    [47] W.I. Park, G.G. Yi, J.W. Kim and S.M. Park. Schottky nanocontacts onZnO nanorod arrays. Appl. Phys. Lett. 2003, 82(24), p4358.
    [48] S. F. Yu, C. Yuen, S.P. Lau, et al. Random laser action in ZnO nanorodarrays embedded in ZnO epilayers. Appl. Phys. Lett. 2004, 84(17),p3241.
    [49] J.W. Chiou, J.C. Jan, H.M. Tsai, et al. Electronic structure of ZnOnanorods studied by angle-dependent x-ray absorption spectroscopy andscanning photoelectron microscopy. Appl. Phys. Lett. 2004, 84(18),p3462.
    [50] M.H. Huang, S. Mao, H. Feick, H.Q. Yan, et al. Room-temperatureultraviolet nanowire nanolasers. Science. 2001, 292, p1897.
    [51] Q.H. Li, Q. Wan, Y.X. Liang and T.H. Wang. Electronic transport throughindividual ZnO nanowires. Appl. Phys. Lett. 2004, 84(22), p4556.
    [52] Q. Wan, Q.H. Li, Y.J. Chen, et al. Positive temperature coefficientresistance and humidity sensing properties of Cd-doped ZnO nanowires.Appl. Phys. Lett. 2004, 84(16), p3085.
    [53] X. Wang, Q. Li, Z. Liu, et al. Low-temperature growth and properties ofZnO nanowires. Appl. Phys. Lett. 2004, 84(14), p4941.
    [54] Z.W. Pan, Z.R. Dai and Z.L. Wang. Nanobelts of semiconducting oxides.Science, 2001, 291, p1947.
    [55] X.Y. Kong and Z.L. Wang. Polar-surface dominated ZnO nanobelts andthe electrostatic energy induced nanohelixes, nanospings, and nanospirals.Appl. Phys. Lett. 2004, 84(6), p975.
    [56] Y.W. Zhu, H.Z. Zhang, X.C. Sun, et al. Efficient field emission from ZnOnanoneedle arrays. Appl. Phys. Lett. 2003, 83(1), p144.
    [57] Y.B. Li, Y. Bando and D. Golberg. ZnO nanoneedles with tip surfaceperturbations: Excellent field emitters. Appl. Phys. Lett. 2004, 84(18),p3603.
    [58] S.W. Kim, M. Ueda, T. Kotani, et al. Self-tailored one-dimensional ZnOnanodot arrays formed by metalorganic chemical vapor deposition. Jpn. J.Appl. Phys. Part 2, 2003, 42(6), pL568.
    [59] X.L. Guo, J.H. Choi, H. Tabata and T. Kawai. Fabrication andoptoelectronic properties of a transparent ZnO homostructurallight-emitting diode. Jpn. J. Appl. Phys. Part 2, 2001, 40(3), pL177.
    [60] Y. Liu, C.R. Gorla, S. Liang, et al. Ultraviolet detectors based on epitaxialZnO films grown by MOCVD. J. Electron. Mater. 2000, 29(1), p69.
    [61] P.F. Carcia, R.S. Mclean, M.H. Reilly and G. Nunes. Transparent ZnOthin-film transistor fabricated by rf magnetron sputtering. Appl. Phys.Lett. 2003, 82(7), p1117.
    [62] R.L. Hoffman. ZnO-channel thin-film transistors: Channel mobility. J.Appl. Phys. 2004, 95(10), p5813.
    [63] Q. Wan, Q.H. Li, Y.J. Chen, et al. Fabrication and ethanol sensingcharacteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 2004,84(18), p3654.
    [64] M.H. Koch, A.J. Hartmann, R.N. Lamb, Self-Texture in the initial stagesof ZnO film growth, J.Phys.Chem. B 101 (1997) 8231.
    [65] Yoji Imai, Akio Watanabe, Isao Shimono, Comparison of electronicstructures of doped ZnS and ZnO calculated by a first-principle .. pseudopotential method, Journal of materials science: Materials inelectronics 14, 149-156,2003
    [66] B. K. Meyer, H. Alves, D. M. Hofmann et al, Bound exciton anddonor-acceptor pair recombinations in ZnO, phys. Stat. sol. (b) 241, No.2,231-260,2004
    [67] D. C. Reynolds, D. C. Look, B. Jogai, Optically pumped ultraviolet lasingfrom ZnO, Solid State Communications, 1996, 99:873
    [68] V. Srikant, D. R. Clarke. On the optical band gap of zinc oxide, J.Appl.Phys., 1998, 83:5447
    [69] C. Klingshim. The luminescence of ZnO under high one- andtwo-quantum excitation. Phys stat Sol B ,1975, 71(2):547
    [70] D.C. Look, J.W. Hemsky, J.R. Sizilove. Residual native shallow donor inZnO. Phys. Rev. Lett. 1999, 82(12), p2552.
    [71] W.T. Gregory, L.R. Jules, O.R. Tohoms. Zinc self-diffusion, electricalproperties, and defect structure of undoped, single crystal zinc oxide. J.Appl. Phys. 2000, 87(1), p117.
    [72] O. Fumiyasu, R.N. Shigeto, I. Seiji, et al. Energetics of native defects inZnO. J. Appl. Phys. 2001, 90(2), p824.
    [73] C.G.V. Walle. Phys. Rev. Lett. Hydrogen as a cause of doping in zincoxide. 2000, 85(5), p1012.
    [74] M.H Detlev, H. Albrecht, et al. Hydrogen: A relevant shallow donor inzinc oxide. Phys. Rev. Lett., 2002, 88(4), p045504.
    [75] H. Fabricius, T. Skettrup and P. Bisgaard, Ultraviolet detector in thinsputtered ZnO films, Appl. Optics 25 (1986) 2764.
    [76] Y. Liu, C. R. Gorla, S. Liang, et al., Ultraviolet detectors based onepitaxial ZnO films grown by MOCVD, J. of Electronic Materials. 29(2000) 60.
    [77] W.Yang, R.D. Vispute, S. Choopun, et al., Ultraviolet photoconductivedetector based on epitaxial Mg0.34Zn0.66O thin films, Appl. Phys. Lett.78(2001)2787.
    [78] Ya. I. Alivov, J. E. Van Nostrand, D. C. Look, et al., Observation of 430run electroluminescence from ZnO/GaN heteroj unction light-emittingdiodes, Appl. Phys. Lett. 83 (2003) 2943.
    [79] Qing-Xuan Yu, Bo Xu, Qi-Hong Wu, et al., Optical properties ofZnO/GaN heterostructure and its near-ultraviolet light-emitting diode,Appl. Phys. Lett. 83 (2003) 4713.
    [80] Fortunato EMC, Barquinha PMC, Pimentel ACMBG, et al.,Wide-bandgap high-mobility ZnO thin-film transistors produced at roomtemperature, Appl. Phys. Lett., 85 (2004) 2541.
    [81]《中国大百科全书》物理卷,中国大百科全书出版社,北京,1987
    [82] 《元协简报》,1999年第9期。
    [83] Hideaki Nakahata, Kenjiro Higaki, Akihiro Hachigo, et al., HighFrequency Surface Acoustic Wave Filter Using ZnO/Diamond/Si Structure, Jpn. J. Appl. Phys. 33 (1994) 324.Hideaki Nakahata, Kenjiro Higakin, Akihiro Hachigo et al. High Frequecy surface acoustic wavefilter using ZnO/Diamond/Si structure.
    [84] H. Nakahata, A. Hachigo, S. Fujii and S. Shikata, Equivalent circuitparameters of surface-acoustic-wave interdigital transducers forZnO/diamond and SiCVZnO/diamond structures, Jpn. J. Appl. Phys. 41(2002) 3489.
    [85] H. Nakahata, S. Fujii, K. Higaki, et al., Diamond-based surface acousticwave devices, Semiconductor Science and Technology 18 (2003) 596.
    [86] S. Muthukumar, J. Zhong, Y. Chen, Y. Lu and T. Siegrist. Growth andstructural analysis of metalorganic chemical vapor deposited (11-20)MgxZnl-xO films on (01-12) R-plane A12O3 substrates. Appl. Phys. Lett.2003, 82(5), p742.
    [87] Y. Ma, G.T. Du, S.R. Yang, et al. Control of conductivity type in undoped ZnO thin films grown by metalorganic vapor phase epitaxy. J. Appl. Phys.2004, 95(11), p6268.
    [88] X. L. Guo, H. Tabataga and T. Kawai. Pulsed laser reactive deposition ofp-type ZnO film enhanced by an electron cyclotron resonance source. J.Cryst. Growth. 2001, 223(1-2), p135.
    [89] X. L. Guo, J.H. Choi, H. Tabata and T. Kawai. Fabrication andoptoelectronic properties of a transparent ZnO homostructurallight-emitting diode. Jpn. J. Appl. Phys. Part 2, 2001, 40(3), pL 177.
    [90] M. Joseph, H. Tabata and T. Kawai. P-type electrical conduction in ZnOthin films by Ga and N codoping. Jpn. J. Appl. Phys. Part 2, 1997, 38(11),pL1205.
    [91] S. Kim, B.S. Kang, F. Ren, Y.W. Heo, et al. Contacts to p-type ZnMgO.Appl. Phys. Lett. 2004, 84(11), pl904.
    [92] Y. W. Heo, Y.W. Kwon, Y. Li, S.J. Pearton and D.P. Norton. P-typebehavior in phosphorus-doped (Zn,Mg)O device structures. Appl. Phys.Lett. 2004, 84(18), p3474.
    [93] S. K. Hong, Y. Chen, H. J. Ko, H. Wenisch, et al. ZnO and relatedmaterials : plasma-assisted Molecular Beam Epitaxial growth,characterization, and application. J. Electron. Mater. 2001, 30(6), p647.
    [94] T. Makino, C.H. Chia, N.T. Tuan, Y. Segawa, et al. Radiative andnonradiative recombination processes in lattice-matched(Cd,Zn)O/(Mg,Zn)O multiquantum wells. J. Appl. Phys. 2000, 77(11),pl632.
    [95] D.C. Look, D.C. Reynolds, C.W. Litton, et al. Characterization ofhomoepitaxial p-type ZnO grown by molecular beam epitaxy. Appl. Phys.Lett. 2002, 81(10), pl830.
    [96] C.C. Lin, S.Y. Chen, S.Y. Cheng and H.Y. Lee. Properties ofnitrogen-implanted p-type ZnO films grown on Si3N4/Si byradio-frequency magnetron sputtering. Appl. Phys. Lett. 2004, 84(24),p5040.
    [97] K.K. Kim, H.S. Kim, D.K. Hwang, et al. Realization of p-type ZnO thinfilms via phosphorus doping and thermal activation of the dopant. Appl.Phys. Lett. 2003, 83(1), p63.
    [98] A.V. Singh and R.M. Mehra. P-type conduction in codoped ZnO thinfilms. J. Appl. Phys. 2003, 93(1), p396.
    [99] M.A.L. Johnson, S. Fujita, W.H. Rowland, et al. MBE grown andproperties of ZnO on sapphire and SiC substrates. J. Electron. Mater.1996, 25(5), p855.
    [100] Z.Z. Ye, J.G. Lu, H.H. Chen, et al. Preparation and characteristics ofp-type ZnO films by DC reactive magnetron sputtering. J. Cryst. Growth.2003, 253(2), p258.
    [101] S. Tuzemen, G. Xiong, J. Wilkinson, et al. Production and properties of p-n junctions in reactively sputtering ZnO. Physic B. 2001, 308-310, pll97.
    [102]H.M.Manasevit,Single—crystal gallium arsenide on insulating substrates. Appl.Phys.Lett.12(1968)156.
    [103]H.M.Manasevit and W.I.Simpson,The Use of Metal.Organics in the Preparation of Semiconductor Materials.I.Epitaxial Gallium-V Compounds,J.Electrochem.Soc.116(1969)1725.
    [104]杨树人,丁墨元著,外延生长技术,国防工业出版社(1992)278。
    [105]D.A.Skoog,D.M.West,Principles of Instrument analysis,Holt,Rineheart and Winston,Inc.1971
    [106]李树棠《晶体X射线衍射学基础》,冶金工业出版社,1990
    [107]常铁军,祁欣《材料近代分析测试方法》,哈尔滨工业大学出版社,1999年8月
    [108]E.利弗森《材料的特征检测》(第1部分)科学出版社,1998年6月
    [109]F.Paraguay,D.W.Estrada.L,D.R.Acosta N,E.Andrade,M. Miki—Yoshida,Growth,structure,and optical characterization of high quality ZnO thin films obtained by spray pyrolysis,Thin Solid Films, 1999,350,192
    [110]丛秋滋《多晶二维X射线衍射》科学出版社1997 p36
    [111]C.L.Yang,J.N.Wang,W.K.Ge,L.Guo,S.H.Yang,D.Z.Shen, Enhanced Ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots,J.Appl.Phys.200 1, 90,4489
    [112]方容川,固体光谱学,中国科学技术大学出版社,p60
    [113]马金鑫,朱国凯《扫描电子显微镜入门》科学出版社,1985,p49
    [114]马剑钢, 磁控溅射及真空蒸镀制备的纳米氧化锌薄膜的光电性质 研究,中国科学院长春光机与物理所博士论文
    [115]沈学础,半导体光学性质,科学出版社(1992)307
    [116]唐伟忠 著,薄膜材料制备原理、技术及应用,冶金工业出版社,1998
    [117]许振嘉 著,近代半导体材料的表面科学基础,北京大学出版社,2002
    [118] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A.Voigt, Correlation between photoluminescence and oxygen vacancies inZnO phosphors, Appl. Phys. Lett. 68 (3), 15 January 1996
    [119] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigtand B. E. Gnade, Mechanisms behind green photoluminescence in ZnOphosphor powders, J. Appl. Phys. 79 (10), 15 May 1996
    [120] W. I. Park and G. C. Yi, Photoluminescent properties of ZnO thin filmsgrown on SiO2/Si(100) by metal-organic chemical vapor deposition, J.Electron. Mater., 30 (2001) L32.
    [121] Sunglae Cho, Jing Ma, Yunki Kim et al., Photoluminescence andultraviolet lasing of polycrystalline ZnO thin films prepared by theoxidation of the metallic Zn, Appl. Phys. Lett. 75 (1999) 2761.
    [122] T. Makino, T. Yasuda, Y. Segawa et. al., Strain effects on excitonresonance energies of ZnO epitaxial layers, Appl. Phys. Lett. 79 (2001)1282.
    [123] Huang Keke, Hou Changmin, Gao Zhongmin, Li Xiangshan, FengShouhua, Zhang Yuantao, Zhu Huichao, Du Guotong,Photoluminescence Properties of Two-dimensional Planar Layer andThree-dimensional Island Layer for ZnO Films Growth Using MOCVD,Chem. Res. Chinese U. 2006, 22(6)
    [124] A.F.Kohan,G.Ceder,D.Morgan.First-principles study of native pointdefects in ZnO.Phys.Rev B.2000,61,pi5019
    [125]K.Vanheusden,W.L.Wanren,C.H.Seager,D.R.Tallent,etal.Mechanismsbehind green photoluminescence in ZnO phosphor owders.J.Appl.phys.1996,79,7983.
    [126] D.C. Look, J.W. Hemsky, J.R. Sizilove, Residual native shallow donorin ZnO, Phys. Rev. Lett. 1999, 82(12), p2552.
    [127] D.C.Reynolds,D.C.Look,B-Jogai,Netural-donor-bound-exciton complexin ZnO crystals.Phys. Rev B. 1998,57,pl2151.
    [128] T. Yamamoto, Hiroshi Katayama, Solution Using a Codoping Method toUnipolarity for the Fabrication of p-Type ZnO, Jpn.J.Appl.Phys.38(1999) L166.
    [129] M. Joseph, H.Tabata, H.Saeki, et al., Fabrication of the low-resistivep-type ZnO by codoping method, Physica B 302-303(2001)140.
    [130] J.M.Bian, X.M.Li, X.D.Gao, et al., Deposition and electrical propertiesof N-In codoped p-type ZnO films by ultrasonic spray pyrolysis,Appl.Phys.Lett. 84 (2004)541.
    [131] C.H. Park, et. al., Origin of p-type doping difficulty in ZnO: Theimpurity perspective, Phys.Rev.B. 66(2002) 73202.
    [132] K. Minegishi, Y. Koiwai, Y. Kikuchi, et al., Growth of p-type Zinc OxideFilms by Chemical Vapor Deposition, Jpn.J.Appl.Phy.Part 2, 36 (1997)L1453.
    [133] D.C. Look, D.C. Reynolds, C.W. Litton, et al., Characterization ofhomoepitaxial p-type ZnO grown by molecular beam epitaxy,Appl.Phys.Lett. 81(2002) 1830.
    [134] X.L. Guo, H. Tabata and T. Kawai, Pulsed laser reactive deposition ofp-type ZnO film enhanced by an electron cyclotron resonance source,J.Cryst. Growth 223 (2001) 135.
    [135] W. Xu, Z. Ye, T. Zhou, Low-pressure MOCVD growth of p-type ZnOthin films by using NO as the dopant source, J. Cryst. Growth 265 (2004)133.
    [136] K.K.Kim, H.S. Kim, D.K. Hwang, et al., Realization of p-type ZnO thinfilms via phosphorus doping and thermal activation of the dopant, Appl.Phys. Lett. 83 (2003) 63.
    [137] Y.R. Ryu, T.S. Lee and H.W. White, Properties of arsenic-doped p-typeZnO grown by hybrid beam deposition, Appl. Phys. Lett. 83 (2003) 87.
    [138] G. Xiong, J. Wilkinson, B. Mischuck, et al., Control of p- and n-typeconductivity in sputter deposition of undoped ZnO, Appl.Phys.Lett.80(2002)1195.
    [139] S. Tuzemen, G. Xiong, J. Wilinson, et al., Production and properties ofp-n junctions in reactively sputtered ZnO, Physica B, 308-310(2001)1197
    [140] 崔勇国《采用MOCVD方法在Si和GaAs衬底上生长ZnO薄膜及其特性研究》吉林大学博士论文

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700