X波段五腔渡越管振荡器的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文基于渡越时间效应提出了一种新的渡越管振荡器结构模型,并对基于这种新结构模型的X波段五腔渡越管振荡器进行了理论和实验研究。
     首先,从麦克斯韦方程出发,采用时域有限差分的方法,研究X波段五腔渡越管振荡器谐振腔的TM_(ono)模式的本征频率以及对应的场分布。
     然后,采用荷电质点(即单粒子)模型,从电子的运动方程出发,经过坐标变换,得出了基于渡越时间效应的束波互作用的一维非线性方程组;将五腔渡越管振荡器的模式场代入方程组,通过数值计算,给出了电子束与不同模式场的能量交换关系。一维非线性分析的结果表明,X波段五腔渡越管振荡器可以产生高功率微波。
     接着,采用2.5维粒子模拟程序,对五腔渡越管振荡器进行了粒子模拟,证明了一维非线性分析的结论。并结合一维非线性分析以及谐振腔的高频特性研究,优化设计出工作频率为9.3GHz,输出功率为1GW,束波转换效率大于22%的五腔渡越管振荡器。
     最后,对五腔渡越管振荡器进行了实验研究。设计了阻抗变换器,并对同轴耦合输出的支撑杆以及模式转换结构进行了驻波系数的标定。并在Sinus-700加速器上进行了实验研究。通过调节加速器输出的电压,电流,引导磁场的大小和支撑杆之间的距离,得到了较好的实验结果。当束压约为700kV、束流为7kA时,在大约9.25GHz的频率上,微波输出峰值功率约为780MW,脉宽(半高宽)约为21ns,束波转换效率约为16%。
This dissertation is mainly concerned about the theoretical and experimental research of a npvel high-power microwave device of the X-band five-unit Transit-time Tube Oscillator (TTTO), which is based on the transit-time effect.
    Firstly, the structure model of this kind of oscillator is put forward. Resorting to the method of the finite-unit differential of time domain, the Maxwell equations are solved. Then the frequency of the eigen-modes and its distribution of E-field in the cavities are investigated.
    Secondly, resorting to the model of the single particle and the equation of movement, a pair of nonlinear equation is got by coordinate transformation. The equations are about the interaction of the transit-time effect between the beam and the wave. Then putting the distribution of E-field into the equations, the equations are solved. And the net energy exchange between the electrons and the field of different modes are put out. The one-dimension nonlinear analysis shows that the X-band five-unit TTTO can generate high power microwave.
    Thirdly, the X-band five-unit TTTO is simulated, by using the 2.5-D PIC code. It proves that the conclusion of the 1-D nonlinear analysis is right. Then combining with the 1-D nonlinear analysis and the high-frequency character analysis, the X-band five-unit TTTO is optimized and designed. It can generate the microwave of about 1GW of peak power with 22% of efficiency at 9.3GHz.
    In the last part of this dissertation, the experimental research is conducted on the accelerator of SINUS-700. The impedance transition is designed so as to test the proportion of standing wave for the support poles and modes transformer. After a series of adjustment, employing an annular electron beam of 700KV, 7KA and 40ns duration, the microwave of over 780MW of peak power with 21ns of duration and 16% of efficiency at 9.25GHz, can be generated.
引文
(1)Raymond W.Lemke. M.Collins Clark, and Barry M.Marder. Theretical and experimental investigation of a method for increasing the output power of a microwave tube based on the split-cavity oscillator. J.Appl. Phisi, vol.75,No.10,1994,pp. 5423-5432.
    (2)刘庆想.X波段渡越管振荡器粒子模拟.中国国防科学技术报告,中物院应用电子学研究所,2000.
    (3)何琥,相对论强流电子束调制与群聚理论分析.硕士学位论文,中国工程物理研究院,1997.
    (4)范植开.渡越管振荡器的理论研究与原理性实验.博士学位论文,中国工程物理研究院,1999.
    (5)崔学芳.C波段双间隙输出腔的理论分析和实验研究.硕士学位论文,中国工程物理研究院,2000.
    (6)James Benford, John Swegle. High power microwave Artech House,Norwood,MA, 1991.
    (7)Barry M. Marder et al...The Split-Cavity Oscillator: A High-Power E-Beam Modulator and Microwave Source. IEEE Trans. Plasma Sci.,vol.20.No.3.June 1992.
    (8)R. Bruce Miller, William F. McCullough,Kim T. Lancaster, and Carl A. Muehlenweg, IEEE Trans. Plasma Sci.,vol.20.No.3.June 1992.
    (9)Ramond W. Lemke. Dispersion analysis of symmetric transverse magnetic modes in a split cavity oscillator. J.Appl.Phisi, vol.72, No. 1, 1992, pp.4422-4428.
    (10)G.G. Denisov, D. A. Lukovnikov, and S. V. Samsonov. Resonant Reflector For Free Electron Maser. International journal of Infrared and Millimeter Waves. vol. 16.no.4. 1995.
    (11)Shahar Ben-Menahem and David Yu. A Coaxial Ring-Sidearm Power Extraction Design. SLAC Pub 6724 January 1996.
    
    
    (12)刘庆想等.三腔渡越时间效应高功率微波振荡器研究.中国国防科学技术报告,中物院应用电子学研究所,1998.
    (13)刘庆想等.L波段长脉冲渡越管振荡器理论和实验研究.中国国防科学技术报告,中物院应用电子学研究所,1999.
    (14)范植开,刘庆想.谐振腔链色散关系及场分布的解析研究。物理学报.第49卷 第7期 2000,7.
    (15)谢处方,饶克谨编.电磁场与电磁波.第二版.高等教育出版社,1995.
    (16)赵凯华,陈熙谋编.电磁学.第二册.高等教育出版社,1985.
    (17)高本庆 编著.时域有限差分法.国防工业出版社,1995.
    (18)陈桂明 等编.应用MATLAB语言处理数字信号与数字图像.科学出版社,1999.
    (19)张克潜,李德杰编.微波与光电子学中的电磁理论.电子工业出版社,1994.
    (20)杨祥林等编.微波器件原理.电子工业出版社,1994.
    (21)谭浩强,田淑清.FORTRAN语言一FORTRAN77结构化程序设计.清华大学出版社,1990.
    (22)吴伯瑜,张克潜编.微波电子学.电子工业出版社,1986.
    (23)颜庆津,数值分析编.北京航天航空大学出版社,1991.
    (24)李嗣范编.微波元件原理和设计.人民邮电出版社,1982.
    (25)郑兆翁编.同轴式TEM模通用器无源器件.人民邮电出版社,1982.
    (26)赵永翔等编.速调管群聚理论.科学出版社,1966.
    (27)赵凯华,陈熙谋.电磁学.高等教育出版社,1991.
    (28)(苏)A.魏因施泰因著,徐承和等译.开放腔和开放波导.科学出版社.1987.
    (29)何琥等.三腔分离腔高频特性的数值分析.第三届青年学术交流会论文集,中物院应用电子学研究所五室,1998.
    (30)陈昌华等.引导磁场对相对论返波管微波功率的影响.全国第四届高功率微波学术研讨会,2000.
    (31)顾茂章,张克潜编.微波技术.清华大学电子系,1988.
    (32)李泉凤编.电磁场数值计算.清华大学工程物理系,1999.
    
    
    (33)(美)James Benford,John Swegle编,贺云汉等译.高功率微波.中国工程物理研究院科技信息中心,1994.
    (34)何琥等.FM型三腔高频特性的数值分析.中国国防科学技术报告,中物院应用电子学研究所,1999.
    (35)User's Manual for Code KARAT Ver.5.03,December 1995.
    (36)Y.Y. Lan, Some design considerations on using modulated intense annular electron beams for particle acceleration. J.Appl. Phys.62(2),15 July 1987.
    (37)Stanley Humphries,JR. Equilibria for Foil-focused Relativistic Electron Beams. Particle Accelerators. 1983 .Vol. 13.pp.249-253.
    (38)S.Humphries, Jr. Image Charge Focusing of Relativistic Electron Beams. J.Appl.Phys.63(2),15 January 1988.
    (39)R. Bruce Miller, Carl A. Muehlenweg, et al..Super-Reltron Progress. IEEE Trans. Plasma Sci.,vol.22.No.5. October 1994.
    (40)R.B.Miller. Pulse-shortening in High-power Reltron tubes. SPIE Vol.2843.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700