穿孔过程关键参数软测量与优化控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,国内许多钢铁企业为了提高无缝钢管的生产质量,都采用了加装狄赛尔导盘的斜轧穿孔机进行钢坯穿孔,但是在斜轧穿孔机中,与生产密切相关的工艺参数——导盘转速只能停机离线调整,这大大降低了钢坯穿孔生产效率和质量,成为钢管生产的一个瓶颈。如何实现穿孔机导盘转速的在线可调,进而改善穿孔机穿孔生产的毛管质量,提高无缝钢管生产机组的生产效率,已经成为各钢厂一个迫切需要解决的问题。
     本文以某钢铁公司钢管分公司SWW斜轧穿孔过程为研究背景,建立了导盘转速软测量模型,最优导盘转速确定模型,以及负载力矩软测量模型,并实现了导盘转速的优化控制。另外,通过对穿孔工艺的深入分析,建立了对穿孔生产具有一定指导意义的穿孔效率预报及优化模型。最后,通过建立毛管质量预报模型,实现了前述优化控制效果的检验及毛管质量的实时监测。本文主要工作如下:
     针对导盘转速难以在线测量的问题,提出了基于改进PCA-ELM的导盘转速软测量方法。利用PCA方法对数据进行压缩去噪,并且针对传统ELM方法在建模数据较多时,预报速度较慢的缺陷,提出了利用改进PCA-ELM方法建立软测量模型,实现导盘转速的在线预估。同时,利用短期校正与长期校正相结合的方法实现了软测量模型的更新校正。
     为了提高生产效益,需得到在不同工况下,使毛管质量和穿孔效率较高而能耗较低的最优导盘转速。针对管坯穿孔过程的复杂性及建模数据的特殊性,提出利用适用于非高斯分布数据的ICR建模方法建立独立成分和穿孔机最优导盘转速确定模型,并提出利用误差检验方法确定独立成分个数。最优导盘转速确定模型的建立,可为导盘转速自动控制的最优参数设定提供指导和参考。
     针对导盘转速的自动控制问题,提出了导盘转速的优化控制系统。其中导盘转速软测量模型实现了难于在线测量的关键参数——导盘转速的在线预估,为实现其直接控制奠定了基础;最优导盘转速确定模型根据管坯原材料、生产要求及生产运行工况确定了导盘转速的最优设定参数,为导盘转速的自动控制提供最优设定;负载力矩软测量模型,实现了系统中的主要扰动——负载力矩的实时预估,并在此基础上实现了负载力矩的前馈补偿控制,大大削弱了该主要扰动对导盘转速的影响。
     针对无缝钢管穿孔生产过程,难以一直保持较高穿孔效率这一问题,提出了基于均值子时段的MPLS穿孔生产过程穿孔效率预报模型,并根据生产工艺约束,对其进行了优化求解,获得了最优穿孔效率所对应的穿孔生产工艺参数。同时,为了检验穿孔效率的优化结果,实现毛管质量的在线监测,提出了基于均值子时段的MPLS毛管质量在线预报方法。基于均值子时段预估方法的创新之处在于:(1)提出了子时段的思想;(2)生产处于不同操作子时段,对预报参数的影响因素不同,分段选择辅助变量;(3)提出了数据均值的思想。
     最后,本文给出了穿孔过程关键参数软测量与优化系统的总体结构实施框架,详细地介绍了人机交互系统、下位机以及后台预报与优化系统的功能,同时给出了彼此间的相互联系。
Nowadays, in order to improve the quality of seamless steel tubes, many domestic steel enterprises use skew rolling piercer with Diescher guide disc to pierce steel billet. But in the skew rolling piercer, the guide disc rev, which has significant effect on piercing production, can only be regulated offline. This has greatly reduced the production efficiency and quality of steel billet piercing, and thus become a bottleneck in steel tubes manufacturing. It has been an urgent problem with respect to how to online regulate the guide disc rev of piercer so as to improve the quality of steel tubes in piercing production and increase the production efficiency in seamless steel tubes.
     Based on the SWW skew rolling piercing process in certain Tube Branch of Steel Corporation, this dissertation establishes three types of models, i.e., soft sensing of guide disc rev, determination of optimal guide disc rev and soft sensing of load moment, and realizes the optimization control of guide disc rev. In addition, it builds piercing efficiency prediction and optimization model, which provides instructive significance for piercing producing. Finally, it realizes the effect verification of the above mentioned optimization control and online quality prediction of steel tube based on the construction of quality prediction model of steel tube. The main works of this dissertation are listed as follows:
     To overcome the problem that it is hard to online measure the guide disc rev, an improved PCA-ELM soft sensing method is proposed for the guide disc rev. In this method, PCA method is used to compress and filter process measurements. Moreover, the soft sensing model of guide disc rev is developed based on an improved PCA-ELM method, which overcomes the prediction speed deficiency of traditional ELM method when dealing with much modeling data and realizes the online prediction of guide disc rev. Meanwhile, the soft sensing model is adaptively updated using the combination of short-term and long-term adjustments.
     In order to improve production benefit, it is necessary to obtain the optimal guide disc rev under different conditions, which can not only upgrade steel tubes quality and piercing efficiency but also reduce energy cost. Focusing on the complexity of tube billet pierceing process and particularity of modeling data, ICR modeling method, which is suitable for modeling non-Gaussian data, is introduced to extract the independent components and build the optimal decision-making model of guide disc rev, in which, the number of independent components is determined by cross-validation. The development of above-mentioned optimal model can provide instructions and references for setting the optimal parameters of automatic control of guide disc rev.
     Focusing on the automatic control of guide disc rev, an optimization control system is developed. For the key parameter, the guide disc rev, which is difficult to online measure, the soft sensing model of guide disc rev realizes its online estimation, which establishes the foundation of direct control. The model of optimal guide disc rev determines the optimal setting parameters of guide disc rev according to tube billet raw materials, production requirement and operation status, which can be used to set the optimal setpoint of the guide disc rev automatic control. The soft sensing model of load torque realizes the realtime prediction of load torque, which is the primary disturbance in the system, and further realizes its feedforward compensation control, which, thus, greatly weakens the influence of this disturbance on guide disc rev.
     Considering that it is hard to maintain high pierceing efficiency during seamless steel tubes pierceing process, a pierceing efficiency prediction model is established using MPLS algorithm based on phase-specific average trajectory. Moreover, the optimal problem is solved under the process operation constrain, and the pierceing process parameters are obtained corresponding to the optimal pierceing efficiency. Meanwhile, to verify the optimal result of pierceing efficiency, and realize the online monitoring of tube quality, an MPLS algorithm based on phase-specific average trajectory is proposed for online tube quality prediction. The innovation of the proposed method lies in:(1) it proposes the idea of subphase; (2) it chooses the phase-specific secondary variables according to the different influences on prediction parameters during different process operation phases; and (3) it proposes the idea of average trajectory.
     Finally, this dissertation develops the overall framework of soft sensing of key pierceing parameters and optimization control system, detailedly introduces the human-computer interaction system, supervisor computer and background prediction and optimization system, and meanwhile presents their interrelationship.
引文
1.殷国茂.我国无缝钢管技术装备的现状及发展前景[J].钢管,2004,33(6):1-4.
    2.李群,田军,江永静,庄钢.我国无缝钢管生产技术进步20年[J].轧钢,2004,21(6):31-36.
    3.郝润元,马轶.发展我国的无缝钢管连轧设备[J].钢管,2002,31(3):33-34.
    4.金如菘.轧管机和福伦轧管机[J].钢管,2000,29(2):54-56.
    5.易兴斌,陈宝林.连轧管机组与Accu Roll轧管机组的比较[J].特殊钢,2003,24(1):20-23.
    6.卢于逑.热轧钢管生产知识问答[M].北京:冶金工业出版社,1997,12-13.
    7.吴士明,王健宝,罗上银.新型穿孔机[J].山西冶金,1995,1:51-53.
    8.孙斌煜,申宝成,李国祯,牛金星.三辊联合穿孔机的新结构[J].山西机械,1998,30(2):28-31.
    9.张耘.也谈“单主动导盘二辊斜轧穿孔机”[J].学会月刊,1997,26(9):19-22.
    10.张才安.无缝钢管生产简明教程[M].重庆:重庆大学出版社,1988,39-43.
    11. Hartley P. Numerical modeling of rolling processes [J]. Advanced technology of plasticity, 1993,12(5):742-747.
    12. Glowacki M. Modelling of heat transfer, Plastic flow and microstructural evolution during shape rolling [J]. Process Technol,1995,53(1):159-166.
    13.雷亮.连轧无缝钢管轧制力模型研究[D].长沙:中南大学,2004,21-22.
    14.袁泉.钢管定减径过程的理论计算研究及有限元模拟分析[D].重庆:重庆大学,2003,63-65.
    15. Mori K. Simulation of three-dimensional deformation in shape rolling [J]. Int. J. Num. Meth. Ind. Form.Process, Balkema,1989,30(8):1180-1185.
    16.崔学芳.斜轧穿孔机力能参数的分析及试验研究[D].重庆:重庆大学,2004,74-75.
    17. Beynon J H. An Eulerian finite element method for the thermal and visco plastic deformation of metals in industrial hot rolling [J]. Comp.Meth.Predi.Processing Defects,1987,33(4):19-38.
    18. Kawalla R et al. Simulation of material flow and microstructural evolution during the hot rolling of flat products [J]. J.Mater.Process.Technol.,1996,60(5):27-33.
    19.双远华.斜轧(穿孔)过程质量控制理论与实验研究[D].秦皇岛:燕山大学,1999, 87-91.
    20.双远华,李国祯著.钢管斜轧理论及生产过程的数值模拟[M].北京:冶金工业出版社,2001,69—85.
    21. Ohjoon Kwon. A technology for the prediction and control of microstructural change and mechanical properties in steel [J]. ISIJ international,1992,32(3):350-358.
    22. S. Urbanski and J. Kazanecki. Assessment of the strain distribution in the rotary piercing process by the finite element method [J]. Journal of Materials Processing Technology, 1994,45(1):335-340.
    23.李胜祗,孙中建,李连诗.轧制力参数对斜轧穿孔孔型的影响[J].钢铁研究学报,1999,11(6):18-20.
    24.于静江,周春晖.过程控制中的软测量技术[J].控制理论与应用,1996,13(2):137-144.
    25. W.L.Luyben, Feedback Control of Distillation Column By Double Differential Temperature Control [J]. I & EC Fundamental,1969,8(4):11-15.
    26. D. M. Boyd. Practional Column Control [J]. Chemical Engineering Progress,1975,71(6): 6-10.
    27.罗荣富.推断估计理论及其在精馏过程控制中的应用(D),上海:华东化工学院,1991,32-34.
    28. B. C. Joseph, C. B. Brosillow. Inferential Control of Process [J]. AIChE. J.,1978,24(3).
    29.王玉梅.推断控制及其应注意的问题[J].潍坊学院学报,2005,5(2):47-50.
    30.孙万田,邬齐斌.密炼机的推断控制系统[J].化工自动化及仪表,2001,28(5):44-46.
    31.徐敏,俞金寿.软测量技术[J].石油化工自动化,1998,2(1):1-3.
    32.骆晨钟,邵惠鹤.软仪表技术及其工业应用[J].仪表技术与传感器,1999,(1):32-39.
    33.俞金寿,刘爱伦.软测量技术及其应用[J].世界仪表和自动化,1997,1(2):18-20.
    34.朱学峰.软测量技术及其应用[J].华南理工大学学报,2002,3(11):61-65
    35.俞金寿,刘爱伦等编著.软测量技术及其在石油化工中的应用[M].北京:化学工业出社,2000.
    36.戴葵.神经网络设计[M].北京:机械工业出版社,2002,32-35..
    37.李海清,黄志尧等.软测量技术原理及应用[M].北京:化学工业出版社,2000,12-13.
    38. R.K. Mehra. On the Identification of Variances and Adaptive Kalman Filtering [J]. IEEE Trans. Auto. Control.1970,15(2):175-184.
    39. R. K. Mehra. Approaches to adaptive filtering [J]. IEEE Trans. Auto. Control,1972, 17(7):693-702.
    40.张友民,戴冠中,张洪才.卡尔曼滤波计算方法研究进展[J].控制理论与应用,1995,12(5):529-534.
    41.李人厚,张平安.关于模糊辨识理论与应用实际问题[J].控制理论与应用,1995,12(2):129-137.
    42.陈建勤,席裕庚,张仲俊.用模糊模型在线辨识非线性系统[J].自动化学报,1998,24(1):90-94.
    43.沈建强,李平.神经模糊技术的研究与展望[J].控制与决策,1996,11(9):527-532.
    44.孙欣,王金春,何声亮.过程软测量[J].自动化仪表,1995,16(8):1-5.
    45.陈守煜,陈小冰.模糊模式识别模型及其在化工中的应用[J].化工学报.1991,30(6):660-668.
    46. Thomas E. Q, Y. A. Lin. Artificial Intelligence in Chemical Engineering [M]. ACADEMINPRESS Inc.,1991,56-72..
    47. K. Huni, D. Sbarbaro, et al. Neural Networks for Control Systems-A survey [J]. Automatica,1992,26(6):1083-1112.
    48. J. Savkovice. Neural Networks for Process Analysis and Optimization:Modeling and Application [J]. Comp. Chem. Eng.,1994,18(11):1149-1155.
    49. M. Karmy, K. Warwick. System Identification Using Partial Least Squares [J]. IEE.proc.Control Theory Appl.1995,142(3):223-231.
    50.李华生等.化工过程测量数据中过失误差的侦破[J].炼油化工自动化,1992,10(2):16-19.
    51.项红.青霉素发酵过程[D].北京:北京化工大学硕士学位论文,2001,63-71.
    52. Nan-Ying Liang, Guang-Bin Huang, P. Saratchandran, and N. Sundararajan. A Fast and Accurate Online Sequential Learning Algorithm for Feedforward Networks [J]. IEEE transactions on neural networks,2006,17(6):1411-1423.
    53. Qin-Yu Zhu, A.K. Qin, P.N. Suganthan, Guang-Bin Huang. Rapid and brief communication Evolutionary extreme learning machine [J]. Pattern Recognition 2005, 38(10):1759-1763.
    54. Ming-Bin Li, Guang-Bin Huang, P. Saratchandran, N. Sundararajan. Fully complex extreme learning machine [J]. Neurocomputing,2005,68(10):306-314.
    55. Guang-Bin Huang, Qin-Yu Zhu, K. Z. Mao. Can threshold networks be trained directly [J].IEEE transations on circuits and systems,2006,53(3):187-191.
    56. G B. Huang, Q.Y. Zhu, C.K. Siew. Extreme learning machine:a new learning scheme of feedforward neural networks [C]. IEEE International Conference on Neural Networks, 2004,985-990.
    57. Q. Zhu, A.K.Qin, P.N. Suganthan, G.B.Huang. Evolutionary extreme learning machine Pattern Recognition [J].2005,38(10):1759-1763
    58. Tamura, M.Tateishi. Capabilities of a four-layered feedforward neural network:four layers versus three [J]. IEEE Trans. Neural Networks,1997,8(2):251-255.
    59. G.B. Huang. Learning capability and storage capacity of two-hidden-layer feedforward network [J]. IEEE Trans. Neural Networks,2003,14(2):274-281.
    60. D.Serre, Matrices:Theory and Applications [M]. Springer, New York,2002,72-81.
    61.罗家洪.矩阵理论分析[M].广州:华南理工大学出版社,2003,15-23.
    62.晓群,刘文卿.应用回归分析[M].北京:中国人民大学出版社,2001,53-57.
    63.胡国定,张润楚.多元数据分析方法[M].天津:南开大学出版社,1994,42-43.
    64. Baffi G, Martin E B, Morris A J. Non-linear projection to latent structures revisited:the neural network PLS algorithm [J]. Computers Chem. Engng,1999,23(9):1293-1307.
    65.双远华,赖明道,张中元.斜轧刚塑性有限元模拟中变形历史处理[J].塑性工程学报,2002,9(2):82-86.
    66.双远华,赖明道.人工神经网络在预报斜轧穿孔毛管偏差中的应用[J].中国有色金属学报,2001,11(5):862-866.
    67.李连诗.钢管塑性变形原理[M].冶金工业出版社,1985,82-83.
    68. Hyvarinen A. Independent Component Analysis:algorithms and Applications [J]. Neural Networks,2002,13(2):411-430.
    69. Zhang Zhi-Lin. Morphologically constrained ICA for extracting weak temporally correlated signals [J]. Neurocomputing,2008,71(7):1669-1679.
    70. Chen Q, Wynne R.J, Goulding P. The application of principal component analysis and kernel density estimation to enhance process monitoring [J]. Control Eng. Practice,2000, 8(5):531-543
    71. Jing Wang, Chein-I Chang. Independent Component Analysis-Based Dimensionality Reduction with Applications in Hyperspectral Image Analysis [J]. IEEE Transactions on Geoscience and Remote and Remote Sensing,2006,44(6):1586-1600.
    72. Squartini S, Arcangeli A, Piazza F. Stability analysis of natural gradient learning rules in overdetermined ICA [J]. Signal Processing,2008,88(3):761-766.
    73. Jong-Min Lee, ChangKyoo Yoo, In-Beum Lee.Statistical process monitoring with independent component analysis [J]. Journal of Process Control,2004,14(5):467-485.
    74. R.F. Li, X.Z. Wang. Dimension reduction of process dynamic trends using independent component analysis [J]. Computers and Chemical Engineering,2002,26(3):467-473.
    75. Manabu Kanoa,Shinji Hasebe,Iori Hashimoto,Hiromu Ohno,Evolution of multivariate statistical process control:application of independent component analysis and external analysis[J]. Computers and Chemical Engineering 2004,28(6):1157-1166.
    76. Chang Kyoo Yoo, ong-Min Lee, Peter A. Vanrolleghem,In-Beum Lee.On-line monitoring of batch processes using multiway independent component analysis [J]. Chemometrics and Intelligent Laboratory Systems,2004,71(2):151-163.
    77. Lee Te-Won. Independent Component Analysis:Theory and applications [M]. Boston: Kluwer Academic Publishers,1998,127-130.
    78. Cardoso J-F, Laheld B.H.Equivqriant adaptive source separation [J]. IEEE Trans On Signal Processing,1996,44(12):3017-3030.
    79.章照止,林须端.信息论与最优编码[M].上海:上海科学技术出版社.1993,15-18.
    80.李婷婷.电液比例变量泵—马达恒速控制系统的研究[D].西安:长安大学,2004,112-125.
    81.卢长耿,李金良.液压控制系统的分析与设计[M].北京:煤炭工业出版社,1991,215-259.
    82.王春行.液压伺服控制系统[M].北京:机械工业出版社,1987,193-195.
    83.林国重,盛东初.液压传动与控制[M].北京:北京工业学院出版社,1986,38-65.
    84.刘长年.液压伺服系统优化设计理论[M].北京:冶金工业出版社,1989,155-229.
    85.顾树生,王建辉.自动控制原理[M].北京:冶金工业出版社,2001,216-221.
    86.金以慧.过程控制[M].北京:清华大学出版社,2004,286-297.
    87.金福江.基于过程控制技术的清洁生产及其在制浆生产过程中的应用研究[D].杭州:浙江大学,2002,66-69.
    88.杨效勇,刘烨.建立穿孔效率的数学模型[J].钢管,1995,20(5):30-33.
    89. Leo H. Chiang, Riccardo Leardi, Randy J. Pell. Industrial experiences with multivariate statistical analysis of batch process data [J]. Chemometrics and Intelligent Laboratory Systems,2006,81(2):109-119.
    90. Yale Zhang, Michael Dudzic. Industrial application of multivariate SPC to continuous caster start-up operations for breakout prevention [J]. Control Engineering Practice,2006, 14(11):1357-1375.
    91. Dae Sung Leea, Jong Moon Parka. Adaptive multiscale principal component analysis for on-line monitoring of a sequencing batch reactor [J]. Journal of Biotechnology,2005, 116(3):195-210.
    92. Nomikos, P. and MacGregor, J.F. Monitoring batch processes using multiway principal component analysis [J]. AIChE J,1994,40(8):1361-1375.
    93. Nomikos, P. and MacGregor, J.F. Multi-way partial least squares in monitoring batch processes [J]. Chemometrics and Intelligent Laboratory Systems,1995,30:97-108.
    94. Junghui Chen, Hsin-Hung Chen. On-line batch process monitoring using MHMT-based MPCA [J]. Chemical Engineering Science,2006,61(10):3223-3239.
    95. David K, Philip B. Multi-Cavity pressure control in the filling and packing stage of the injection molding process [J]. Polymer Engineering and Science,1997, 37(11):1865-1879.
    96. Riccardo Leardi. Applocation of genetic algorithm-PLS for feature selection in spectral data sets [J], JOURNAL OF CHEMOMETRICS,2000,40(14):645-655.
    97. Westerhuis, J.A., Kourti, T. and MacGregor, J.F. Comparing alternative approaches for multivariate statistical analysis of batch process data [J]. Journal of Chemometrics,1999, 13(3):397-413.
    98. Holland J H. Adaptation in Natural and artificial Systems [M]. Ann Arbor. The University of Michigan Press,1975.
    99. M.Cavaliere, M. Goldschmit, E. Dvorkin. Finite element analysis of steel rolling processes [J]. Computers and Structures,2001,79(2):2075-2085.
    100.双远华,赖明道,张中元.斜轧穿孔过程金属流动的有限元模拟[J].机器工程学报,2004,40(3):140-143.
    101.庞玉华,周忠民,成友义.顶头形状对穿孔毛管壁厚均匀性及能耗影响的研究[J].钢管.1991,15(5):48-53.
    102.宋箭平,周志杨,吴跃泉.连轧管横向壁厚精度初探[J].宝钢技术,1997,10(6):39-41.
    103.王北明.热轧钢管的质量[M].北京:冶金工业出版社,1987,112-118.
    104.西门子有限公司.深入浅出西门子Wincc V6[M]北京:航空航天大学出版社,2005,12-30.
    105.西门子公司.S7系列可编程控制器设计手册[M].德国:西门子公司出品,2001,58-74.
    106.西门子公司编.S7-300可编程序控制器硬件和安装手册[M].德国:西门子公司出品,2001,24-73.
    107.薛定宇,陈阳泉.高等应用数学问题的MATLAB求解[M].北京:清华大学出版社,2004.
    108.张威MATLAB外部接口编程[M].西安:西安电子科技大学出版社,2004,74-76.
    109.徐昕MATLAB工具箱应用指南[M].北京:电子工业出版社,2000,13-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700