GH4099薄板表面红外高辐射涂层的粉浆法制备与性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以SiC为高辐射填料,分别以硅溶胶和正硅酸乙酯(TEOS)为溶剂采用粉浆法在GH4099薄板表面制备了红外高辐射涂层,研究了涂层的制备工艺,并对涂层的性能进行了表征。
     首先采用等离子喷涂法在GH4099上制备ZrO_2过渡层,之后采用粉浆法在ZrO_2过渡层上制备高辐射层,优化设计后得出了高辐射涂层的最佳制备工艺:硅溶胶为溶剂的涂层按配比100:8:2:0.25、100:4:2:0.25、100:0:2:0.25:0.8逐层涂刷;干燥制度是先室温干燥,再300℃烧结脱水;烧结工艺是首先用硅溶胶浸渍2 min后烧结1h,烧结之后再用硅溶胶浸渍,之后再300℃烧结0.5h,升温速率均为1℃/min。
     TEOS为溶剂的涂层按配比16:3:1:0.2、16:1.5:1:0.2、16:0:1:0.2:0.4逐层涂刷;采取干燥制度是先40℃水蒸气干燥,再室温干燥;烧结工艺为涂层首先300℃预烧结,保温30min。自然冷却后利用硅溶胶浸渍2 min后烧结1h,升温速率均是1℃/min。
     研究表明:硅溶胶为溶剂的涂层干燥过程中出现微裂纹,烧结温度对涂层的表面与截面形貌并无明显影响,而TEOS为溶剂的涂层干燥过程涂层基本不产生裂纹,烧结温度提高后涂层的致密性提高,900℃烧结后的涂层表层中出现了玻璃相;在涂层界面处存在成分突变,高辐射层内ZrO_2存在成分梯度,并且表层的XRD只有YSZ、m-ZrO_2和?-SiC的衍射峰;高辐射层的硬度与弹性模量的值均随着烧结温度的升高而增加,不同温度烧结的涂层在900℃―室温进行100次抗热震性试验后均没有产生宏观裂纹;随着烧结温度与测量温度的升高,涂层的发射率增大,可达0.92,降低涂层厚度发射率降低,TEOS为溶剂的涂层发射率整体上高于硅溶胶为溶剂的涂层发射率;1050℃保温2h后,TEOS为溶剂的涂层表面出现了玻璃相,封填了涂层表面的微裂纹。
The high-emissivity coatings was prepared on GH4099 sheet using slurry method. The silica sol and tetraethoxysilane(TEOS)were solvent, respectively. SiC was filler as high-emissivity agent. The preparation process and characterization of the coatings were investigated.
     First of all transition layer ZrO_2 was prepared on GH4099 by plasma spraying. High-emissivity coatings was prepared on transition layer ZrO_2 by slurry method following. The best process of coating preparation was obtained by optimizing: The coating of silica solvent was brushed layer by layer according to the ratio 100:8:2:0.25, 100:4:2:0.25 and 100:0:2:0.25:0.8.The drying method was that firstly dried at room temperature and then dried at 300℃. The sintering process was that firstly impregnated with silica sol for 2 minutes and sintered for 1h, then impregnated with silica sol again, then sintered at 300℃for 0.5h and the heating rate was 1℃/min.
     The coating of TEOS solvent was brushed layer by layer according to the ratio 16:3:1:0.2, 16:1.5:1:0.2 and 16:0:1:0.2:0.4. The drying method was that dried in steam at 40℃firstly, dried at room temperature then.The sintering process was that pre-sintered at 300℃for 30 minutes. Then the layer was cooled naturally and then impregnated with silica sol for 2 minutes and finally it was sintered for 1h with 1℃/min as the heating rate.
     The results showed that micro-cracks appeared on coating of silica solvent during drying, and sintering temperatures had no significant effect on the morphology of surface and cross section. However, there was no cracks appeared on coating of TEOS during drying, and the density was improved with sintering temperature increasing. Glass phase appeared after the coating was sintered at 900℃.Component mutations existed at the coating interface. ZrO_2 composition gradient existed in the high-emissivity coatings. The XRD showed that there was only YSZ, m-ZrO_2 and ?-SiC on the top layer. Both hardness and elastic modulus of the coatings increased with the sintering temperature increasing. And no micro-crack appeared on the coatings with different sintering temperatures after the thermal shock tested for 100 times from 900℃to room temperature.The emissivity of the coating increased to 0.92 with the sintering temperature and measurement temperature increasing. The emissivity reduced with coating thickness decreased. However the emissivity of coatings with TEOS solvent was higher than that of coatings with silica solvent. Glass phase appeared on coating of TEOS solvent after holding 2h at 1050℃, which sealed micro-cracks on the coating surface.
引文
[1] Goehlich R A, Rucker U. Low-cost Management Aspects for Developing, Producing and Operating Future Space Transportation Systems[J]. Acta Astronautica,2004,56:337-346.
    [2] Bhungalia A, Zweber J, Stevenson M. Thermal Protection System Analysis Materials Integrate Design Environment for Launch Velicle[J]. AIAA-2002-0595.
    [3] Blosser M L, Chen R R, Schmidt I H. Advanced metallic thermal protection systems development[J]. AIAA-2002-0504.
    [4]苏芳,孟宪红.三种典型的热防护系统发展概况[J].飞航导弹,2006,10:57-60.
    [5] Canfield A, Armour W, Clintion R. Development of Improved Ablative Materials for ASRM[J]. AIAA-1991-2067.
    [6] Laub B, Venkatapathy E. Thermal Protection Systems Technology and Facility Needs for Demanding Future Planetary Missions[J]. NASA-2003-TM154266.
    [7]李湘洲.哥伦比亚号坠毁与表面防热材料[J].金属世界,2003,4:4-8.
    [8] Christiansen E L, Friese L. Penetration Equations for Thermal Protection Materials.International Journal of Impact Engineering[J]. 1997,20(1-5):153-164.
    [9] Blosser M L, Chen R R, Schmidt I.H, et al. AdvancedMetallic Thermal Protection System Development[J]. AIAA-2002-0504.
    [10] Poteet C C, Blosser M L. Improving Metallic Thermal Protection System Hypervelocity Impact Resistance Through Design of Experiments Approach[J]. AIAA-2002-0912.
    [11] Porsey J T, Poteet C C, Chen R R, et al. Metallic Thermal Protection System Technology Development:Concepts, Requirements and Assessment Overview[J]. AIAA-2002-0502.
    [12] Chen R R, Blosser M L. Metallic Thermal Protection System Panel Flutter Study[J]. AIAA-2002-0501.
    [13] Blosser M L. Advanced Metallic Thermal Protection Systems for Reusable Launch Vehicles[D]. Virginia:Ph.D Dissertation. University of Virginia,2000.
    [14] Blosser M L. Advanced Metallic Thermal Protection Systems for Reusable Launch Vehicles.doctoral dissertation[D]. Virginia:University of Virginia ,2000: 45-57.
    [15] Blosser M L. Thermal Protection Systems for Reusable Launch Vehices[J]. NASA-2003-tps.
    [16]周立忠.等离子喷涂A2O3/SiC纳米复相陶瓷涂层的研究[D].天津:河北工业大学学位论文,2004:6-13.
    [17]刘荣军,张长瑞,周新贵,等.低温化学气象沉积SiC涂层沉积原理及微观结构[J].材料科学与工程学报,2004:15-19.
    [18]马彬.基于三维镍结构防热涂层的制备及表征[D].哈尔滨:哈尔滨工业大学学位论文,2010:94-106.
    [19]滕敏. EB-PVD制备SiC/ZrO_2防热涂层的微观组织结构与性能研究[D].哈尔滨:哈尔滨工业大学学位论文,2010:94-104.
    [20]糜正瑜,楮治德.红外辐射加热干燥原理与应用[D].北京:机械工业出版社,1996:9-14.
    [21]刘海浪,王宝键,刘永丹,等.热障涂层的研究现状与进展[J].新技术新工艺,2008:92-95.
    [22]丁硕,温广武,雷廷权.碳化硼材料研究进展[J].材料科学与工艺,2008,11(1):92-95.
    [23]宁伟. ZrO_2p/BN-SiO_2复合材料的制备与性能[D].哈尔滨:哈尔滨工业大学学位论文,2009:9.
    [24]周立欣. (ZrB2+ZrO_2)/BN复合材料的制备与抗热震性能[D].哈尔滨:哈尔滨工业大学学位论文,2007:6-7.
    [25] Caogen Yao, Hongjun Lü, Zhonghua Jia, et al. A study on metallic thermal protection system panel for Reusable Launch Vehicle[J]. Acta Astronautica,2008,63:280-284.
    [26] Liang J S, Wang L J, Xu G K, et al. Infrared Radiation Property of Rare Earth Mineral Compsite Materials[J]. Journal of Rare Earths, 2006,24:281-284.
    [27] Manara J, Arduini-Schuster M, et al. Infrared-Optical Properties and Heat Transfer Coefficients of Semitransparent Thermal Barrier Coatings[J]. Surface and Coatings Technology.2008,doi:10.1016/j.surfcoat.2008.09.033.
    [28] Teichman L A, Slemp W S, Witte W G. Evaluation of Selected Thermal Control Coatings for Long-Life Space Structures[J]. NASA-1992-TM4319.
    [29] Blosser M L. Thermal Protection Systems for Reusable Launch Vehicles[J]. NASA-2003-tps.
    [30]李丹虹. NiCr尖晶石型高热发射率陶瓷涂层的制备、结构与性能的研究.武汉:武汉理工大学硕士论文,2006.
    [31] Jiang X, Soltani M, Mishkinis D. Development of La1-xSrxMnO3 [1] thermochromic coatingfor smart spacecraft thermal radiator application[J]. European Space Agency,2006(616).
    [32] Ambrosonea G, Cosciaa U, Murri R, et al. Structural, optical and electrical characterizations ofμc-Si:H films deposited by PECVD[J]. Solar Energy Materials and Solar Cell,2005,87:375-386.
    [33] Du J H, Li Z X, Liu G J, et al. Surface Characterization of CVD Tungsten Coating on Molybdenum Substrate[J]. Surface and Coatings Technology,2005,198:169-172.
    [34] Fonrodona M, Soler D, Escarre J, et al. Low Temperature Amorphous and Nanocrystalline Silicon Thin Film Transistors Deposited by Hot-Wire CVD on glass Substrate[J]. Thin Solid Films,2006,501:303-306.
    [35] Swain B P, Dusane R O. Effect of Substrate Temperature on HWCVD Deposited a-SiC:H Film[J]. Materials Letters,2007,61:4731-4734.
    [36] Swain B P. The Analysis of Carbon Bonding Environment in HWCVD Deposited a-SiC:H Films by XPS and Raman Spectroscopy[J]. Surface and Coatings Technology,2006,201:1589-1593.
    [37] Ricciardi C, Primiceli A, Germani G, et al. Microstructure Analysis of a-SiC:H Thin Films Grown by High-Growth-Rate PECVD[J]. Journal of Non-Crystalline Solids,2006,352:1380-1383.
    [38] Ramamurti R, Becker M, Schuelke T, et al. Synthesis of Boron-Doped Homoepitaxial Single Crystal Diamond by Microwave Plasma Chemical Vapor Deposition[J]. Diamond and Related Materials,2008,17:1320-1323.
    [39]郭洪波,彭立全,宫声凯,等.电子束物理气相沉积热障涂层技术研究进展[J].热喷涂技术,2009,1(2):7-14.
    [40]刘景顺,曾岗,李明伟,等.电子束物理气相沉(EB-PVD)技术研究及应用进展[J].材料导报,2007,21(04):246-255.
    [41]崔巍巍.溶胶凝胶法制备均匀无裂纹的氧化锆薄膜[D].长春:吉林大学学位论文,2005:40-43.
    [42] Miller R A, Lowell C E. Failure Mechanisms of Thermal Barrier Coatings Exposedto Elevated Temperature[J]. Thin Solid Films ,1982,95:265-273.
    [43]沈德久,王玉林,于金库,等.高温处理对SiC颗粒增强镍镀层的影响[J].无机材料学报,1993,8(4):479-482.
    [44]何飞,赫晓东,李垚.二氧化硅干凝胶的制备与结构解析[J].材料工程,2005(l2):13-16.
    [45]王栋.溶胶-凝胶法SiO_2封孔涂层的制备及性能研究[D].武汉:华中科技大学学位论文,2006:24-27.
    [46]林旭平,马景掏,陈乔,等. B2O3添加对(Zn0.5Mg0.5)Nb2O6陶瓷微波介电性能的影响[J].稀有金属材料工程,2009,38(2):395-398.
    [47]王金波,李凯,黄世俊,等.硼酸对熔融石英烧结及其晶化的影响[J].硅酸盐通报,2009,28(6):1107-1111.
    [48] Fergus J W, Worrell W L. Silicon-carbide/boron containing coating for the oxidation protection of graphite[J]. Carbon,1995,33(4):537.
    [49]温广武,雷廷权,周玉.石英玻璃基复合材料的研究进展[J].材料工程,2002(l):40-43.
    [50]多树旺,李美栓,刘庭芝.溶胶凝胶法制备的SiO_2涂层抗原子氧侵蚀性研究[J].功能材料,2007,38:2629-2632.
    [51] Pretsch E, Buhimann? P, Affolter C.波普数据表-有机化合物的结构解析[M].荣国斌,译.上海:华东理工大学出版社,2002:304-308.
    [52]陈国伟.大粒径、高浓度稳定硅溶胶的制备新工艺研究[D].南昌:南昌大学学位论文,2007:64-66.
    [53]武文明,成来飞,王炜. 3D C/ SiC复合材料的热辐射性能[J].复合材料学报,2008,25(5):79-84.
    [54]秦丹丹. SiC陶瓷电容器研究[D].郑州:郑州大学学位论文,2007:34-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700