氧化锆基固体电解质制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池是将燃料中的化学能直接转化为电能的一种新型发电装置,具有发电效率高、污染低、安装容易和维护简单等特点。氧化锆基电解质因具有优异的物理、化学性能,在较宽的氧分压范围具有纯的氧离子导电特性,成为制备燃料电池电解质较理想的候选材料。
     本文用柠檬酸溶胶-凝胶法制备了氧化钇稳定的氧化锆(氧化锆掺量为8mol%,8YSZ)粉体,分别研究了在8YSZ中掺入氧化铁和氧化铋对试样晶体结构、烧结性能和电导率的影响;分别用柠檬酸、聚乙烯醇、乳酸和酒石酸为络合剂,用溶胶-凝胶法制备8YSZ薄膜;选择最佳络合剂,并研究采用此络合剂时,溶胶粘度对薄膜微观结构的影响,研究表明:
     用柠檬酸溶胶-凝胶法制备的8YSZ前躯体凝胶中,有机物完全分解的温度为500℃;凝胶在500℃预烧1h,试样物相为立方相氧化锆,晶粒大小为6nm左右。将预烧后的粉体压制成型后进行烧结,随着烧结温度升高,试样的致密度增加,在1400℃烧结4h,试样的相对密度可达91.6%。
     在8YSZ中分别掺入0.5、1.0、1.5和2.0mol%氧化铁和氧化铋,试样的晶体结构均为立方相。掺入氧化铁后,试样的相对密度随掺杂量增加而增加,掺量为2.0mol%试样的相对密度最高,为96.0%;随着掺杂量增加,试样的电导率下降,但掺杂量为0.5、1.0和1.5mol%时,试样的电导率下降较小。掺入氧化铋后,试样的相对密度也随掺杂量增加而增加,掺量为2.0mol%时试样的相对密度最高,为98.2%;在试样中掺杂后,试样的电导率均低于未掺杂试样的电导率;但掺杂量为1.0和1.5mol%时,试样的电导率下降较小。
     分别用不同络合剂制备8YSZ薄膜时发现,柠檬酸不能作为制备薄膜的络合剂,聚乙烯醇为络合剂制备的薄膜中有较多气孔,乳酸为络合剂制备的薄膜有少量裂纹,酒石酸为络合剂制备的薄膜质量较好。溶胶的粘度对薄膜厚度和微观结构有较大的影响。用酒石酸为络合剂,溶胶粘度分别为65、86和150mPa·s时,制备的薄膜较光滑;但粘度为261mPa·s时,薄膜开始龟裂并从基片上脱落;溶胶粘度大,薄膜的厚度厚,粘度为65mPa·s时,薄膜的厚度为3.8μm左右。
Solid oxide fuel cell is a new energy conversion device that produces electricity power by combination of a fuel. It possesses some advantages, such as high energy conversion efficiency, low pollution, easy installation and maintenance. Zirconia is recognized to be the optimal solid electrolyte used for solid oxide fuel cells, because of its good physical and chemic properties, and high ionic conductivity in wide range of oxygen partial pressures.
     The yttria stabilized zirconia (with an 8mol% of yttria adding, 8YSZ) powder were prepared by sol-gel process using citric acid as chelate agent. The effects of ferric oxide and bismuth oxide on the crystal structure, sintering property and conductivity of 8YSZ were studied, respectively. The effect of different chelate agent on 8YSZ film microstructure were studied, which the film was prepared by sol-gel processes using citric acid, polyvinyl alcohol, lactic acid and tartaric acid as chelate agent, respectively. The effect of sol viscosity on film microstructure was also studied by selecting optimal chelate agent. The results indicated as flowing.
     The temperature of organics decomposition was 500℃in the precursor, which 8YSZ gel was prepared by citric acid sol-gel processes. The cubical zirconia was obtained by sintering the gel at 500℃for 1h, with about 6nm in crystal size. The density of sample increased while the sintered temperature was raised, which the sample was obtained by pressing pre-sintering powder. The relative density was 91.6% when the sample was sintered at 1400℃for 4h.
     The crystal structure of sample was cubical zirconia by adding a 0.5, 1.0, 1.5, and 2.0mol% ferric oxide and bismuth oxide in 8YSZ, respectively. The density of sample increased, but the conductivity gradually decreased, while the addition amounts of ferric oxide enhanced. The relative density was 96.0% when the sample was added 2.0mol%ferric oxide. The conductivity decreased less, when an addition of ferric oxide was 0.5, 1.0 and 1.5mol%, respectively. The density of sample increased while the addition amounts of bismuth oxide enhanced. The relative density was 98.2% when the sample was added 2.0mol%bismuth oxide. But the conductivity of added bismuth oxide sample was lower than the sample without adding bismuth oxide. But, the conductivity decreased less, when the addition was 1.0 and 1.5mol%, respectively.
     The citric acid was not used as chelate agent when the 8YSZ film was prepared by sol-gel method. Some pores were observed in the sample surface that was prepared by using polyvinyl alcohol as chelate agent. A few cracks were observed in the sample surface that was prepared by using lactic acid as chelate agent. But, smooth surface was observed on the sample by using tartaric acid as chelate agent. The thickness and microstructure of film were affected by sol viscosity. The sample was obtained with smooth surface by using the sol with a tartaric acid as chelate agent, 65, 86, and 150mPa·s in viscosity, respectively. But a full of cracks were observed on sample surface and some film fell from substrate when the sol viscosity was 261mPa·s under same conditain. The thickness of film increased when the sol viscosity enhanced. The film was obtained with 3.8μm in thickness when the sol was 65mPa·s in viscosity.
引文
[1] Chen K.F., Tian Y.T., L Z.,et al. Behavior of 3 mol% yttria-stabilized tetragonal zirconia polycrystal film prepared by slurry spin coating[J]. Journal of Power Sources, 2009, 186(1): 128-132
    [2]辛显双.固体氧化物燃料电池的电解质纳米粉和薄膜制备方法研究[D].哈尔滨:哈尔滨工业大学,2006
    [3]李箭.固体氧化物燃料电池发展现状与关键技术[J].功能材料与器件学报, 2007,13(7):683-690
    [4]严端廷. CeO2墓电解质的电性能研究及在中温固体氧化物燃料电池中的应用[D].长春:吉林大学,2010
    [5]孙帆,郑勇,高小龙,等.固体氧化物燃料电池电解质和电极材料的研究进展[J].金属功能材料,2010,17(4):75-80
    [6]韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备[M].北京:科学出版社,2004:1-12
    [7] Maland D., Suciu C., Warnhus I., et al. Sintering of 4YSZ (ZrO2+4mol%Y2O3) nanoceramics for solid oxide fuel cells (SOFC), their structure and ionic conductivity [J]. Journal of the European Ceramic Society, 2009, 29(12): 2537- 2547
    [8] Jung W.C., Hertz J.L., Tuller H.L.. Enhanced ionic conductivity and phase meta-stability of nano-sized thin film yttria-doped zirconia (YDZ) [J]. Acta Materialia, 2009, 57(5): 1399-1404
    [9]薰水祖.多元氧化锆(ZrO2)基陶瓷的相图计算和材料制备[D].上海:上海大学,2003
    [10]简家文,沈杰,章东兴.变频式氧传感器输出特性的研究[J].传感器与微系统,2010,29(1):9-11
    [11]钟勤,宋慎泰,文洪杰,等.化学及纳米掺杂氧化锆材料的性能与应用[J].稀有金属,2006,30(2):172-176
    [12]饶晓晓,胡树兵.纳米ZrO2应用现状及前景研究[J].材料导报,2007,21(5):143-146
    [13]武志红,薛群虎,曹怡,等. ZrO2/Al2O3复相陶瓷的复合机理、制备、应用及展望[J].材料科学与工艺,2009,17(1):137-140
    [14]雷小力.掺杂氧化锆陶瓷的制备及导电性研究[D].武汉:武汉理上大学,2007
    [15]张联盟,黄学辉,宋晓岚.材料科学基础[M].武汉:武汉理工大学出版社,2004:42
    [16]许涛,李麟,王佩玲,等.含氧化锆的氧化物系统计算相图研究与进展[J].无机材料学报,2002,17(3):399-406
    [17]王大宁,郭永权,梁开明,等.应用Rietveld方法研究氧化锆的晶体结构[J].中国科学(A辑) ,1998,28(9):824-829
    [18]李福燊.非金属导电功能材料[M].北京:化学工业出版社,2007:97-112
    [19]王显威.钇稳定氧化锆的制备及电性能研究[D].郑州:郑州大学,2007
    [20]林振汉,张玲秀.氧化锆基固体电解质离子导电的基本原理[J].热处理,2009,24(5):6-10
    [21]李海龙. t-ZrO2对YSZ电解质材料力学性能和电性能的影响[D].天津:天津大学,2005
    [22]钟勤,宋慎泰,文洪杰,等.掺杂不同稳定剂的氧化错材料的性能与应用[A].李文秀.中国钢铁年会论文集[C].北京:冶金工业社,2005:656-659
    [23]郑水林.超微粉体加工技术与应用[M].北京:化学工业出版社,2005:111-128
    [24]毛金龙,郭胜惠,彭金辉,等.二氧化锆的相稳定及其制备方法[J] .无机盐工业,2008,1(40):5-7
    [25]曹茂盛,关长斌,徐甲强.纳米材料导论[M].哈尔滨:哈尔滨工业大学出版社,2001:36-38
    [26] Kanade K.G., Baeg J.O., Apte S.K. et al. Synthesis and characterization of nanocrystallined zirconia by hydrothermal method [J]. Materials Research Bulletin, 2008, 43(3): 723-729
    [27]温立哲,余忠民,黄慧民,等.纳米氧化锆的制备及其干燥技术纳米氧化锆的制备及其干燥技术[J].广东工业大学学报,2002,1(19 ):64-69
    [28] Ghosh A., Suri A.K., Pandey M. et al. Nanocrystalline zirconia-yttria system–a Raman study[J]. Materials Letters, 2006,60(9-10): 1170-1173.
    [29]蒋银花,倪良,李澄,等.溶胶-凝胶法制备钇掺杂氧化锆的工艺研究[J].化工新型材料,2006, 34(1):29-32
    [30]陈黎亮,贾成厂.各种添加剂对ZrO2性能的影响[J].粉末冶金技术,2008,26(2):139-144
    [31] Srdic V., Winterer M., Hahn H.. Sintering behavior of nanocrystalline zirconia doped withalumina by chemical vapor synthesis [J]. Journal of the American Ceramic Society, 2000, 83(8): 1853-1860
    [32] Lybye D., Liu Y. L.. A study of complex effects of alumina addition on conductivity of stabilised zirconia [J]. Journal of the European Ceramic Society, 2006, 26(4–5): 599-604
    [33]程继贵,石平,李洁,等.缓冲溶液法制备氧化钐稳定氧化锆纳米粉体及其表征[J].中国稀土学报,2007,25(1):39-43
    [34] Yamamoto O., Arachi Y., Sakai H, et al. Zirconia based oxide ion conductors for solid oxide fuel cells [J]. Ionics, 1998, 4(5–6): 403-408
    [35] Badwal S.P.S.. Stability of solid oxide fuel cell components [J]. Solid States Ionics, 2001, 143(1): 39-46
    [36] Brune A, Lajavardi M, Fisler D, et al. The electrical con-ductivity of yttria[J]. Solid States Ionics, 2001, 143(4) : 39-46
    [37]韩敏芳,杨志宾,刘泽,等.亚微米晶粒氧化钇稳定氧化锆电解质的稳定性[J].硅酸盐学报,2010,38(1):1-6
    [38]陈平,劳令耳.掺纳米MgO第二相对ZrO2(3Y)材料性能的影响[J].贵州工业大学学报,2004,33(1):10-14
    [39] Kan Y.M., Li S.L., Wang P.L.. Preparation and conductivity of Yb2O3–Y2O3 and Gd2O3–Y2O3 co-doped zirconia ceramics[J]. Solid State Ionics, 2008, 179(27-32): 1531-1534
    [40]谢涛,程金科,劳令耳,等.掺纳米Al2O3的纳米8YSZ相变及电导率[J].贵州工业大学学报(自然科学版),2002,31(2):26-30
    [41]刘涛,李琳,于景坤,等. Al2O3对9YSZ固体电解质烧结及晶粒长大行为的影响[J].东北大学学报(自然科学版),2010,31(8):1137-1140
    [42]黄英才,刘毅,劳令耳,等.纳米ZnO掺杂对ZrO2(8mol%Y2O3稳定)电性能的影响研究[J].材料科学与工程学报,2004,22 (1):91-94
    [43]刘毅,劳令耳,袁望治,等. ZnO掺杂的ZrO2(3Y)纳米复合相材料的中低温电导研究[J].功能材料,2003,34 (3):308-310
    [44]江虹,郭瑞,戴任勋. ZnO对8YSZ电解质材料的烧结性与电化学性能的影响[J].硅酸盐学报,2010,38(8):1434-1439
    [45] Lv Z.G., Guo R.S., Yao P., et al. Effects of Al2O3 and/or CaO on properties of yttria stabilized zirconia electrolyte doped with multi-elements [J]. Materials and Design, 2007, 28(4): 1399-1403
    [46] Matsuda M., Hosomi T., Murata K., et al. Fabrication of bilayered YSZ/SDC electrolyte film by electrophoretic deposition for reduced-temperature operating anode-supported SOFC [J]. Journal of Power Sources, 2007, 165(1): 102-107
    [47] Brunet M., Scheid E., Galicka-Fau K., et al. Characterization of ZrO2 thin films deposited by MOCVD for high-density 3D capacitors [J]. Microelectronic Engineering, 2009, 86(10): 2034-2037
    [48] Sasaki H., Otoshi S., Suzuki M., et al. Fabrication of high power density tubular type solid oxide fuel cells [J]. Solid State Ionics, 1994, 72(2): 253-258
    [49]周贤界,徐华蕊. YSZ电解质薄膜制备工艺进展材料导报[J]. 2006,20(4):58-60
    [50] Xiao Q.L., Xu C., Shao S.Y., et al. Y2O3 stabilized ZrO2 thin films deposited by electron-beam evaporation: Optical properties, structure and residual stresses [J]. Vacuum, 2009, 83(2): 366-371
    [51] Annamalai K., Masaru T., Shriram R.. Studies on structure-electrochemical conduction relationships in doped-zirconia thin films[J]. Solid State Ionics,2008, 179(21-26): 1234-1237
    [52] García-Sánchez M.F., Pena J., Ortiz A.. Nanostructured YSZ thin films for solid oxide fuel cells deposited by ultrasonic spray pyrolysis[J]. Solid State Ionics, 2008, 179(7-8): 243-249
    [53] Wang J., Su M.Y., Qi J.Q., et al. Sensitivity and complex impedance of nanometer zirconia thick film humidity sensors[J]. Sensors and Actuators B, 2009, 139(2): 418-424
    [54] Ivanova T., Harizanova A., Koutzarova T., et al. Electrochromic TiO2, ZrO2 and TiO2-ZrO2 thin films by dip-coating method[J]. Materials Science and Engineering B, 2009, 165(3): 212-216.
    [55] Mauvy F., Lenormand P., Lalanne C.. Electrochemical characterization of YSZ thick films deposited bydip-coating process[J]. Journal of Power Sources, 2007, 171(2): 783-788
    [56] Seung-Goo K., Yoon S. P., Nam S. W., et al. Fabrication and characterization of a YSZ/ YDC composite electrolyte by a sol-gel coating method[J]. Journal of Power Sources, 2002, 110(1): 222-228
    [57]鲁盛会,李素芳,向蓝翔,等.片式氧传感器电解质薄膜的制备及其性能研究[J].材料开发与应用,2008,(5):38-42
    [58] Chen K.F., Tian Y.T., LüZ., et al. Behavior of 3mol% yttria-stabilized tetragonal zirconia polycrystal film prepared by slurry spin coating[J]. Journal of Power Sources, 2009,186(1): 128-132.
    [59]王振华,孙克宁,沈哲敏,等.电泳沉积制备氧化钇稳定的二氧化错薄膜[J].材料研究学报,2009,23(2):108-112
    [60] Hosomi T., Matsuda M., Miyake M.. Electrophoretic deposition for fabrication of YSZ electrolyte film on non-conducting porous NiO–YSZ composite substrate for intermediate temperature SOFC[J]. Journal of the European Ceramic Society, 2007, 27(1): 173-178
    [61]王其艮,彭冉冉,夏长荣.甘氨酸法制备YSZ粉体及其在中温固体氧化物燃料电池中的应用[J].中国科学技术大学学报,2008,38(6):633-638
    [62]贾莉,吕吉吉,刘志国,等.重力沉降法结合共烧结法制备YSZ薄膜[J].电池,2005,35(5):351-353
    [63]杨志琴,杨飞,刘荣.温度对纳米氧化锆粉体结构的影响[J].南京师范大学学报(工程技术版),2010,10(1):49-53
    [64]刘晓光.氧化锆基固体电解质低成本制备及其性能研究[D].北京航空材料研究院,2004
    [65]向军,胥青华,鞠文明,等.交流复阻抗技术在CaTi0.85Sc0.15O3-α固体电解质中的应用[J].实验技术与管理,2006,23(10):27-29
    [66] Shon I.J., Jeong I. K., Park J.H., et al. Effect of Fe2O3 addition on consolidation and properties of 8mol% yttria-stabilized zirconia by high-frequency induction heated sintering (HFIHS)[J]. Ceramics International, 2009, 35(1): 363-368
    [67] Molin S., Gazda M., Jasinski P. Interaction of yttria stabilized zirconia electrolyte with Fe2O3 and Cr2O3[J]. Journal of Power Sources, 2009, 194(1): 20-24.
    [68]彭程,张震. Bi2O3基固体电解质材料研究进展[J].材料导报,2006,20(10):29-31
    [69] Jovalekic C., Zdujic M., Poleti D., etal. Structural and electrical properties of the 2Bi2O3·3ZrO2 system[J]. Journal of Solid State Chemistry, 2008, 181(6): 1321-1329
    [70]陈宇,郑峰,肖国华,等.低成本制备SOFC电解质材料YSZ粉末的研究[J].稀有金属与硬质合金,2006,34(2):27-314
    [71] Okada K, Yasohama S.. Hayashi S, et al. Sol-gel synthesis of mullite long fibres from water solvent systens[J]. Journal of the European Ceramic Society, 1998, 18(13): 1879-1884
    [72] Nakajima H., Itoh K., Kaneko H., et al. Effects of Fe doping on crystalline and opticalproperties of yttria-stabilized zirconia[J]. Journal of Physics and Chemistry of Solids, 2007, 68(10): 1946-1950
    [73] Gao H., Liu J., Chen H., er al. The effect of Fe doping on the properties of SOFC electrolyte YSZ[J]. Solid State Ionics, 2008, 179(27-32): 1620-1624
    [74]胡玉燕,黄晓巍.液相烧结8YSZ陶瓷的性能研究[J].硅酸盐通报,2007,26 (6):1178-1183
    [75]王淑峰.溶胶一凝胶法制备连续单相多晶莫来石纤维的研究[D].青岛:山东科技大学,2005
    [76] Qiu M., Fan Y., Xu N. Preparation of supported zirconia ultrafiltration membranes with the aid of polymeric additives[J]. Journal of Membrane Science, 2010, 348(1-2): 252-259
    [77] DellAgli G, Esposito S., Mascolo G., et al. Films by slurry coating of nanometric YSZ (8 mol% Y2O3) powders synthesized by low-temperature hydrothermal treatment[J]. Journal of the European Ceramic Society, 2005, 25(12): 2017-2021
    [78] Zhang Y. W., Tang M., Jin X., et al. Polymeric adsorption behavior of nanoparticulate yttria stabilized zirconia and the deposition of as-formed suspensions on denseα-Al2O3 substrates[J]. Solid State Sciences, 2003, 5(3): 435-440
    [79] Liao C. S., Yan C. H. Thermal and morphological studies of binary and ternary composites of polyvinylalcohol with alumina andzirconia[J]. Ceramics International, 2000, 26(4): , 371-378
    [80]崔巍巍.溶胶凝胶法制备均匀无裂纹的氧化锆薄膜[D].长春:吉林大学,2005
    [81]曹凯,沈湘黔,王涛平,等.溶胶凝胶法制备纳米结构氧化铝陶瓷纤维[J].矿冶工程,2004,24(5):76-79
    [82]张艳峰,张久兴,路清梅,等.酒石酸络合溶胶一凝胶法制备Ca3Co4O9粉体的研究[J].功能材料,2004,35(增刊):1601-1603
    [83]张琳琳,邵丽,崔园园,等. PVA复合材料的研究进展[J].化工新型材料,2010,38(1):8-10
    [84]吴慧昊.乳酸及其衍生物国内外发展现状及应用研究[J].西北民族大学学报(自然科学版),2010,31(2):67-70
    [85]傅其军,丁建民,王玉军,等.乳酸和聚乳酸(PLA)应用前景展望[J].广西轻工业,2005,(1):12-16
    [86] Venkatesh R., Ramanan S. R.. Effect of organic additives on the properties of sol-gel spun alumina fibres[J]. Journal of the European Ceramic Society, 2000, 20(14-15): 2543-2549
    [87]秦玉楠.利用葡萄皮渣提取酒石酸[J].农牧产品开发,1995,(11):14-16
    [88]吴洪达.酒石酸制备研究进展[J].河池师专学报(理科),1995,15(2):64-67
    [89]王利明.溶胶一凝胶法制备连续莫来石纤维的研究[D].上海:东华大学,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700