安庆月山矿田成矿系统的结构与动力学过程计算模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成矿系统的结构和动力学过程是认识成矿系统之关键,然而对于复杂的成矿系统而言,要全面而准确地认识和表征其结构和动力学过程却决非易事。计算模拟已成为认识这种复杂成矿系统的有效手段之一。
     安徽怀宁月山矿田是长江中下游成矿带中最重要的矿田之一,这里的矿床是与月山长英质浅成岩体密切相关的矽卡岩型矿床,是一个非常复杂的成矿系统。本文选择月山矿田为研究对象,在地质背景分析和矿床地质调查的基础上,通过对矿体以及与成矿相关的地质体及地质场的三维形态模拟揭示成矿系统的空间结构和成矿定位的空间规律,通过对岩体冷却过程耦合动力学的计算模拟揭示矿体定位的动力学机制及其控制因素,取得了如下5个方面的主要成果:
     1)基于形态模拟软件(GoCAD)和模拟对象的特点,发展了一套模拟复杂地质体的建模方法,即:基于连续剖面数据,以Section-TIN法模拟延伸方向稳定的矿体;基于交叉剖面数据,以边界约束下的TIN剖分模拟法向较稳定的地层界面及断层面;基于多组交叉剖面数据,以Section-TIN法及局部约束优化的方法模拟具有分支复合形态的岩体等。这样构建的模型兼具光滑及高度吻合原始数据的特点,达到了理想的模拟效果。
     2)为解决成矿系统动力学模拟中复杂形态地质体的三维建模和网格剖分的难题,采用C++开发了由GoCAD形态模型转换成FLAC3D可计算的四面体剖分网格模型的转换程序,从而实现了形态模拟和动力学模拟的无缝对接。
     3)通过矿体及相关地质要素的三维形态模拟揭示出月山岩体成矿的基本规律为:矿体定位受接触带形态控制,岩体接触带成矿主要发生在岩体接触带形态发生急剧变化的部位。
     4)通过成矿元素空间浓集场的模拟揭示了成矿元素的空间浓集规律与主要断层、岩体接触带形态及褶皱构造有关,成矿元素具有向F1、F6断层、接触带转折部位及褶皱枢纽部位浓集的趋势,表明F1、F6断层不是单纯的错矿体的成矿后断层,对成矿元素的富集也起了重要作用。
     5)通过月山岩体同构造冷却动力学过程计算模拟实验发现:由力—热—流耦合作用而形成的汇流扩容空间是接触带矽卡岩矿体定位的主要空间,由于岩体接触带形态而造成汇流扩容空间沿接触带不均匀分布是造成接触带上矿体不均匀分布的关键原因,不同来源流体的混合反应和汇流扩容空间流体压力的降低是造成矿石在汇流扩容空间沉淀的主要机制。
The architecture and geodynamic processes are critical for understanding the matellogenic system. It is not easy to understand and illustrate the architecture and geodynamic processes of the complex matellogenic systems thoroughtly and accurately. Computational modeling has become one of the most effective means for researching such systems.
     The Yueshan orefield, located in Huaining, Anhui province, is one of the most important orefields in the lower-middle Yangtze metallogenic belt. The deposits in this orefield, mainly of skarns associated closely to the Yueshan felsic hypabyssal intrusion, are a very complicated metallogenic system. In this thesis, the Yueshan orefield is researched through computastional modeling, based on the analysis of the geological background and investigation of the deposits geology. By the3D shape simulation of the orebodies and related geological factors, the spatial architecture of the matellogenic system and the regularity of orebodies location are revealsed. By modeling the cooling process of the Yueshan intrusion, the dynamic mechanism and controlling factors for ore formation localisation are investigated. The main outcomes in this thesis include the following5aspects.
     1) On the GoCAD platform, a set of methods for simulating the complex geological bodies are developed according to the features of geological objects. By Section-TIN method and continuous profile data, model of orebodies with constant trending direction is constructed. Based on TIN constrained by curve border and data on crossed profile, surfaces with stable normal direction, such as stratum and fault, are modeled. Based on data on several different directions continuous profile, methods of Section-TIN and local constrained optimization are used to model intrusion with branches. These methods result in the ideal models that are smoothly surfaced as well as constrainted best the the original data.
     2) A programme is developed by using the C++programming to convert GoCAD solid model to tetrahedron meshed FLAC3D model for dynamic calculation. It absolutely faciliates model construction and grid discretization of complex geological bodies that are general difficult for the modeling the geodynamics of the complex metallogenic systems
     3) The3D shape modeling of the orebodies and related geological factors demonstrates that the shape of contact zone of the intrusion controls the orebodies location. It is discovered that the orebodies were generally localised in the specific sites where the shape of contact zone has sharp change.
     4) The modeling of spatial distribution of ore-related elements demonstrates that the concentration is related to the main faults, the shape of contact zone and the fold. The ore elements are concentrated toward the fault F1and F6, the turning positions of the contact zone and the fold hinge, suggesting that F1and F6can not only cut the orebodies, but also play an important role in ore enriching.
     5) Computational modeling experiments on the syn-tectonic cooling dynamics process of Yueshan intrusion are carried out, and the results are as follows. Fluid-focusing dilation spaces resulted from coupled mechano-thermo-hydrological processes are the favorable positions for the skarn orebodies locating on the contact zone. The uneven distributiong of fluid-focusing dilation spaces related to the shape of the contact zone is the main cause for the uneven distributiong of orebodies on the contact zone. The mixing reaction of fluids from different origin and the decrease of fluid pressure in the fluid-focusing dilation spaces are the main reason for ore precipitation.
引文
ANSYS, Inc. The introduction of ANSYS products[EB/OL]. http://www.ansys.com/products/default.asp,2010
    ANSYS, Inc. ANSYS Fluent[EB/OL]. http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/ANS YS+Fluent,2012
    Bloomenthal J. Poligonization of implicit surfaces[J]. Computer Aided GeoMetric Design,1988,5(4):341-355
    Blue Marble Geographics. Create better maps with Global Mapper-experience the power of professional mapping[EB/OL]. http://www.bluemarblegeo.com/global-mapper,2011
    Bowman J R, Kerrick D M, Furlong K P. Conduction model for the thermal evolution of the Cupsutic aureole, Maine [J]. American Journal Science,1990,290: 644-665
    Burt D M. Skarn deposits—historical bibliography through 1970[J]. Economic Geology,1982,77:755-763
    Candela P A, Philip M, Piccoli P M. Magmatic processes in the development of porphyry-type ore systems[J]. Economic Geology,2005,100th Anniversary volume:25-38
    Carlson E. Three-dimensional conceptual modeling of subsurface structures[C]. In: American Congress on Surveying and Mapping, eds. Asprs-Acsm Annual Convention:Non-Topographic Photogrammetry. Baltimore:ASPRS,1987. 188-200
    Cepedal A, Martin-Izarda A, Reguil6nb R, et al. Origin and evolution of the calcic and magnesian skarns hosting the EI Valle-Boinas copper-gold deposit, Asturias (Spain) [J]. Journal of Geochemical Exploration,2000,71(2):119-151
    Chen Y J, Chen H Y, Zaw K, et al. Geodynamic setting and tectonic model of skarn gold deposits in China:an overview[J]. Ore Geology Reviews,2007,31: 139-169
    Cooke D R, Hollings P, Walshe J L. Giant porphyry deposits:characteristics, distribution, and tectonic controls[J]. Economic Geology,2005,100:801-818
    Courrioux G, Nullans S, Guillen A, et al.3D volumetric modeling of Cadomian terranes (Northern Brittany, France):an automatic method using Voronoi diagrams[J]. Tectonophysics,2001,331:181-196
    Cowan E J, Beatson R K, Ross H J, et al. Practical implicit geological modeling[C]. In:Dominy S, eds.5th International Mining Geology Conference. Bendigo:The Australasian Institute of Mining And Metallurgy,2003.89-99
    Datamine Corporate Limited. Datamine -new mining horizons[EB/OL]. http://www.datamine.co.uk,2011
    Earth Decision Sciences. GOCAD 2.0 User's manual[R]. Nancy,2003
    Einaudi M T, Meinert L D, Newberry R J. Skarn deposits[J]. Economic Geology,1981, 75th Anniversary Volume:317-391
    Eldursi K, Branquet Y, Guillou-Frottier L, et al. Numerical investigation of transient hydrothermal processes around intrusions:heat-transfer and fluid-circulation controlled mineralization patterns[J]. Earth and Planetary Science Letters,2009, 288:70-83
    Fu F Q, McInnes B I.A., Evans N J, et al. Numerical modeling of magmatic-hydrothermal systems constrained by U-Th-Pb-He time-temperature histories[J]. Journal of Geochemical Exploration,2010,106:90-109
    Gemcom. Surpac:integrated geology, resource modelling, mine planning and production[EB/OL]. http://www.gemcomsoftware.com/products/surpac,2011
    Gocad research group. What is Gocad[EB/OL]. http://www.gocad.org/www/gocad/index.xhtml,2005
    Heinrich C A. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition:a thermodynamic study [J]. Mineralium Deposita,2005,39:864-889
    Homer H, Thomas S. A survey of construction and manipulation of Octree [J]. CVGIP, 1998,43:409-431
    Houlding S.3D geoscience modeling:computer techniques for geological characterizationfM]. Berlin:Springer-Verlag,1994.1-309
    Itasca Consulting Group, Inc. FLAC3D:Fast lagrangian analysis of continua in 3 dimensions, User's manual, Version 3.0[R]. Minneapolis,2005
    Joe B. GEOMPACK——A software package for the generation of meshes using geometric algorithms [J]. Advances in Engineering Software,1991,56(13): 325-331
    Johnson J W, Norton D. Theoretical prediction of hydrothermal conditions and chemical equilibria during skarn formation in porphyry copper systems[J]. Economic Geology,1985,80:1797-1823
    Journel A G, Huijbregts C J. Mining Geostatistics[M]. London:Academic Press,1978. 1-600
    Kuscu I, Kuscu G G, Meinert L D, et al. Tectonic setting and petrogenesis of the Celebi granitoid, (Kinkkale-Turkey) and comparison with world skarn granitoids[J]. Journal of Geochemical Exploration,2002,76:175-194
    Lawson C L. Generation a triangular grid with applications to contour plotting[R]. Technical Report of Jet Propulsion Laboratory, Pasadena:California Institute of Technology,1972
    Lewis B A, Robinson J S. Triangulation of planar regions with applications[J]. The Computer Journal,1978,21(4):324-332
    Li R X. Data structures and application issues in 3D geographic information systems[J]. Geomatica,1994,48(3):209-224
    Lin G, Zhang Y, Guo F, et al. Numerical modelling of lithosphere evolution in the North China Block:thermal versus tectonic thinning[J]. Journal of Geodynamics, 2005,40:92-103
    Liu L M, Yang G Y, Peng S L, et al. Numerical modeling of coupled geodynamical processes and its role in facilitating predictive ore discovery:an example from Tongling, China[J]. Resource Geology,2005,55(1):21-31
    Liu L M, Zhang Y. Numerical modeling of the coupled mechanical and hydrological processes during deformation and mineralization in the Mount Isa Block, Australia[J]. Resource Geology,2007,57(3):283-300
    Liu L M, Zhao Y L, Sun T.3D computational shape-and cooling process-modeling of magmatic intrusion and its implication for genesis and exploration of intrusion-related ore deposits:An example from the Yueshan intrusion in Anqing, China[J]. Tectonophysics,2012,526-529(10):110-123
    Liu L M, Zhao Y L, Zhao C B. Coupled geodynamics in the formation of Cu skarn deposits in the Tongling-Anqing district, China:Computational modeling and implications for exploration[J]. Journal of Geochemical Exploration,2010, 106(1-3):146-155
    Ma X, He G Precambrian crustal evolution of eastern Asia[J]. Journal of Southeast Asian Earth Sciences,1989,3(1-4):9-15
    Magri F, Bayer U, Clausnitzer V, et al. Deep reaching fluid flow close to convective instability in the NE German basin—results from water chemistry and numerical modeling[J]. Tectonophysics,2005,397:5-20
    Mallet J L. Discrete smooth interpolation in geometric modeling[J]. Computer-Aided Design,1992,24(4):178-191
    Mallet J L. Discrete smooth interpolation[J]. ACM Transactions on Graphics,1989, 8(2):121-144
    Mallet J L. Geomodeling[M]. Oxford:Oxford Press,2002.1-600
    Mao J W, Wang Y T, Lehmann B, et al. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications[J]. Ore Geology Reviews,2006,29:307-324
    Marti J, Cundall P A. Mixed discretization procedure for accurate solution of plasticity problems [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1982,6(1):129-139
    McLellan J G, Oliver N H S, Ord A, et al. A numerical modelling approach to fluid flow in extensional environments:implications for genesis of large microplaty hematite ores[J]. Journal of Geochemical Exploration,2003,78-79:675-679
    Meinert L D, Hedenquist J W, Satoh H, et al. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids[J]. Economic Geology,2003,98: 147-156
    Meinert L D, Lentz D R, Newberry R J. A special issue devoted to skarn deposits: Introduction[J]. Economic Geology,2000,95:1183-1184
    Meinert L D. Application of skarn deposit zonation models to mineral exploration[J]. Explor. Mining Geol.,1997,6(2):185-208
    Meinert L D. Skarns and skarn deposits[J]. Geoscience Canada,1992,19:145-162
    Micromine. What are the features of Micromine?[EB/OL]. http://www.micromine.com/products-downloads/micromine/micromine-features, 2009
    Molenaar M. A formal data structure for three-dimensional vector maps[C]. hi: Brassel K, Kishimoto H, eds. Proceedings of the Fourth International Symposium on Spatial Data Handling. Zurich:International Geographical Union, 1990.830-843
    Molenaar M. A topology for 3D vector maps[J]. ITC Journal,1992,1:25-33
    Norton D L, Dutrow B L. Complex behavior of magma-hydrothermal proceeses:role of supercritical fluid[J]. Geochimica et Cosmochimica Acta,2001,65: 4009-4017
    Pan Y, Dong P. The The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China:intrusion-and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits[J]. Ore Geology Reviews,1999,15:177-242
    Pruess K. The TOUGH codes—a family of simulation tools for multiphase flow and transport processes in permeable media[J]. Vadose Zone Journal,2004,3: 738-746
    Rutqvist J, Wu Y S, Tsang C F, et al. A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39: 429-442
    Schon J H. Physical Properties of Rocks:Fundamentals and Principles of Petrophysics[M]. Oxford:Elsevier,1998.1-360
    Sillitoe R H. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region[J]. Australian Journal of Earth Sciences,1997,44:373-388
    Tarkian M, Hunken U, Tokmakchieva M, et al. Precious-metal distribution and fluid-inclusion petrography of the Elatsite porphyry copper deposit, Bulgaria[J]. Mineral Depos.,2003,38:261-281
    Taron J, Elsworth D, Min K B. Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable, fractured porous media[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46: 842-854
    Taron J, Elsworth D. Thermal-hydrologic-mechanical-chemical processes in the evolution of engineered geothermal reservoirs [J]. International Journal of Rock Mechanics and Mining Sciences,2009,46:855-864
    Wang H, Mo X. An outline of the tectonic evolution of China[J]. Episodes,1995, 18(1-2):6-16
    Xu T, Pruess K. Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks:1. Methodology [J]. American Journal of Science,2001,301:16-33
    Xu T, Sonnenthal E L, Spycher N, et al. Modeling multiphase non-isothermal fluid Flow and reactive geochemical transport in variably saturated fractured rocks:2. Applications to supergene copper enrichment and hydrothermal flows [J]. American Journal of Science,2001,301:34-59
    Xu T, Sonnenthal E L, Spycher N, et al. TOUGHREACT user's guide:A simulation program for non-isothermal multiphase reactive geochemical transport in variable saturated geologic media[R]. Lawrence Berkeley National Laboratory Report LBNL-55460, Berkeley,2004
    Xu T, Sonnenthal E, Spycher N, et al. TOUGHREACT—A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media:applications to geothermal injectivity and CO2 geological sequestration[J]. Computers and Geosciences,2006,32(2):145-165
    Yang J. Full 3-D numerical simulation of hydrothermal fluid flow in faulted sedimentary basins:example of the McArthur Basin, Northern Australia[J]. Journal of Geochemical Exploration,2006,89:440-444
    Zhang Y, Hobbs B E, Ord A, et al. The influence of faulting on host-rock permeability, fluid flow and ore genesis of gold deposits:a theoretical 2D numerical model[J]. Journal of Geochemical Exploration,2003,78-79:279-284
    Zhang Y, Lin G, Roberts P, et al. Numerical modelling of deformation and fluid flow in the Shuikoushan district, Hunan Province, South China[J]. Ore Geology Reviews,2007,31:261-278
    Zhang Y, Sorjonen-Ward P, Ord A. Modelling fluid transport associated with mineralization and deformation in the Outokumpu Cu-Zn-Co deposit, Finland[J]. Journal of Geochemical Exploration,2006,89:465-469
    Zhao C, Hobbs B E, Muhlhanus H B, et al. Cumputer simulations of coupled problems in goelogical and geochemical systems[J]. Computer Methods in Applied Mechanics and Engineering,2002,191:3137-3152
    Zhao C, Hobbs B E, Ord A, et al. Chemical reaction patterns due to fluids mixing and focusing around faults in fluid-saturated porous rocks [J]. Journal of Geochemical Exploration,2006,89:470-473
    Zhou T F, Yuan F, Yue S C, et al. Geochemistry and evolution of ore-forming fluids of the Yueshan Cu-Au skarn-and vein-type deposits, Anhui province, South China[J]. Ore Geology Reviews,2007,31(1-4):279-303
    安徽省地矿局.中华人民共和国区域地质调查报告(洪镇幅)[R].1975
    安徽省地矿局326地质队.安庆地区成矿条件及铜、金、铁等矿床成矿预测[R].1990
    安徽省地矿局326地质队.月山矿田大比例尺成矿预测地质报告[R].1989
    鲍征宇,唐仲华.热液成矿作用的一般动力学方程[J].地球科学,1994,19(3):313-319
    边馥苓,傅仲良,胡自锋.面向目标的栅格矢量一体化三维数据模型[J].武汉测绘科技大学学报,2000,25(4):294-298
    常印佛,刘湘培,吴言昌.长江中下游铜铁成矿带[M].北京:地质出版社,1991.1-238
    陈江峰,李学明,周泰禧,等.安徽月山岩体的40Ar/39Ar年龄及与其有关的成矿时代估计[J].现代地质,1991,5(1):91-99
    陈衍景,秦善,李欣.中国矽卡岩型金矿的成矿时间、空间、地球动力学背景和成矿模式[J].北京大学学报(自然科学版),1997,33(4):456-466
    程朋根,龚健雅.地勘工程3维空间数据模型及其数据结构设计[J].测绘学报,2001,30(1):74-81
    崔学军,夏斌,张宴华,等.地幔活动在南海扩张中的作用数值模拟与讨论[J].大地构造与成矿学,2005,29(3):334-338
    董树文,马立成,刘刚,等.论长江中下游成矿动力学[J].地质学报,2011,85(5):612-625
    董树文,邱瑞龙.安庆—月山地区构造作用与岩浆活动[M].北京:地质出版社,1993.1-111
    董树文.长江中下游地壳物质的构造动力调整作用[J].地质学报,1989,63(2):97-110
    杜建国,戴圣潜,莫宣学,等.安徽沿江地区燕山期火成岩成岩成矿地质背景[J].地学前缘,2003,10(4):551-560
    龚纪文,崔建军,席先武,等.FLAC数值模拟软件及其在地学中的应用[J].大地构造与成矿学,2002,26(3):321-325
    龚健雅,夏宗国.矢量与栅格集成的三维数据模型[J].武汉测绘科技大学学报,1997,22(1):7-15
    关文革.基于超面—四面体模型的三维地质建模研究[D].北京:中国矿业大学,2006
    郭际元,龚君芳.由离散数据生成四面体格网算法研究[J].地球科学,2002,27(3):271-273
    郭艳军,潘懋,王喆,等.基于钻孔数据和交叉折剖面约束的三维地层建模方法研究[J].地理与地理信息科学,2009,25(2):23-26
    国际科学数据服务平台.http://datamirror.csdb.cn/[DB/OL],2009
    国务院新闻办公室.《中国的矿产资源政策》白皮书[J].国土资源通讯,2004,(1): 39-44
    郝杰,刘小汉.桐柏—大别碰撞造山带大型推覆—滑脱构造及其演化[J].地质科学,1988,(1):1-10
    侯景儒,黄竞先.地质统计学的理论与方法[M].北京:地质出版社,1990.1-353
    侯景儒,尹镇南,李维明,等.实用地质统计学[M].北京:地质出版社,1998.1-200
    侯增谦,杨志明.中国大陆环境斑岩型矿床:基本地质特征、岩浆热液系统和成矿概念模型[J].地球学报,2009,83(12):1779-1817
    花卫华.多约束下复杂地质模型快速构建与定量分析[D].武汉:中国地质大学,2010
    黎彤,倪守斌.地球和地壳的化学元素丰度[M].北京:地质出版社,1990.66-76
    李德仁,李清泉.一种三维GIS混合数据结构研究[J].测绘学报,1997,26(2):128-133
    林婕.三维地质建模技术的应用研究[J].福建电脑,2007,(10):86-87
    刘亮明,吕俊武,彭省临,等.成熟勘探矿集区新一轮找矿:勘查战略创新及铜陵矿集区找矿实例[J].地质论评,2005,51(3):325-333
    刘亮明,疏志明,赵崇斌,等.矽卡岩矿床的汇流扩容空间控矿机制及其对深部找矿的意义:以铜陵—安庆地区为例[J].岩石学报,2008,24(8):1848-1856
    刘亮明,周瑞超,赵崇斌.构造应力环境对浅成岩体成矿系统的制约:从安庆月山岩体冷却过程动力学计算模拟结果分析[J].岩石学报,2010,26(9):2869-2878
    刘亮明.安庆矿田铜金成矿规律及找矿潜力分析[R].2004
    刘忠法.安徽月山地区龙门山铜多金属矿床地质地球化学特征及成因分析[D].长沙:中南大学,2009
    马润勇,席先武,彭建兵,等.青藏高原递进式隆升的力学模式[J].大地构造与成矿学,2005,29(4):451-458
    毛建仁,苏玉香,陈三元,等.长江中下游中酸性侵入岩与成矿[M].北京:地质出版社,1990.1-26
    毛景文,张建东,郭春丽.斑岩铜矿—浅成低温热液银铅锌—远接触带热液金矿矿床模型:一个新的矿床模型——以德兴地区为例[J].地球科学与环境学报,2010,32(01):1-14
    闵卫东,唐泽胜.二维任意域内点集的Delaunay三角划分的研究[J].计算机学报,1995,18(5):357-364
    邱瑞龙.安徽月山高钾闪长岩岩石学特征及岩石成因探讨[J].地质论评,1992, 38(2):98-107
    屈红刚,潘懋,明镜,等.基于交叉折剖面的高精度三维地质模型快速构建方法研究[J].北京大学学报(自然科学版),2008,3(1):84-89
    谭凯旋,谢焱石,赵志忠,等.构造—流体—成矿体系的反应—输运—力学耦合模型和动力学模拟[J].地学前缘,2001,8(4):311-321
    唐永成,吴言昌,储国正,等.安徽沿江地区铜金多金属矿床地质[M].北京:地质出版社,1998.32-37
    吴健生,王仰麟,曾新平,等.三维可视化环境下矿体空间数据插值[J].北京大学学报(自然科学版),2004,40(4):635-641
    吴立新,史文中,Christopher G.3DGIS与3DGMS中的空间构模技术[J].地理与地理信息科学,2003,19(1):5-11
    吴立新,史文中.论三维地学空间构模[J].地理与地理信息科学,2005,21(1):2-4
    武强,徐华.虚拟地质建模与可视化[M].北京:科学出版社,2011.1-32
    向缉熙,涂荫玖,朱延华.安徽省大地构造与成矿[M].武汉:中国地质大学出版社,1988.1-191
    肖新建,顾连兴,倪培.安徽铜陵狮子山铜—金矿床流体的多次沸腾及其与成矿的关系[J].中国科学(D辑),2002,32:199-206
    徐树桐,周海渊,董树文,等.安徽省主要构造要素的变形和演化[M].北京:海洋出版社,1987.1-145
    徐兆文,黄顺生,倪培,等.铜陵冬瓜山铜矿成矿流体特征和演化[J].地质论评,2005,51:36-41
    徐政语,姚根顺,林舸,等.江汉叠合盆地及邻区中生代以来盆山耦合数值模拟研究[J].大地构造与成矿学,2006,30(3):305-311
    杨光树,温汉捷,胡瑞忠,等.安徽月山岩体岩石地球化学特征及成因[J].矿物学报,2007,27(3/4):406-413
    杨钦.限定Delaunay三角网格剖分技术[M].北京:电子工业出版社,2005.1-245
    於崇文.成矿作用动力学——理论体系和方法论[J].地学前缘,1994,1(3):54-82
    於崇文.地质系统的复杂性(上册)[M].北京:地质出版社,2003.1-18
    於崇文.地质系统的复杂性——地质科学的基本问题(I)[J].地球科学,2002,27(5):509-519
    翟裕生,姚书振,林新多,等.长江中下游地区铁铜(金)成矿规律[M].北京:地质出版社,1992.1-13
    张德会,於崇文,鲍征宇,等.银山多金属矿床成矿分带的流体动力学计算模拟[J].地球科学,1998,23(3):267-271
    张乐骏,周涛发,范裕,等.安徽月山岩体的锆石SHRIMP U-Pb定年及其意义[J].岩石学报,2008,24(8):1725-1732
    章传玲,林新多,张叔贞.安徽省怀宁月山岩体侵入前缘带构造的控矿规律[J].矿床地质,1994,13(增刊):107-109
    赵一鸣,林文蔚,毕承思,等.中国矽卡岩矿床基本地质特征[J].中国地质科学院院报,1986,第14号:59~87
    赵义来,刘亮明.矿床研究中计算模拟技术的应用[C].戴塔根.湖南矿物岩石地球化学论丛.长沙:中南大学出版社,2006:176-178
    赵勇.安庆月山矿田水—岩作用研究[D].合肥:合肥工业大学,2001
    郑贵洲,申永利.地质特征三维分析及三维地质模拟现状研究[J].地球科学进展,2004,19(2):218-223
    周培德.计算机几何——算法分析与设计[M].北京:清华大学出版社,2000.1-286
    周涛发,柯韵徽,岳书仓.硅同位素在月山矿田成岩—成矿研究中的应用[J].合肥工业大学学报,1996,19(2):117-121
    周涛发,刘晓东,袁峰,等.安徽月山矿田成矿流体的迁移速率和规模[J].地质论评,2001a47(2):139-145
    周涛发,刘晓东,袁峰,等.安徽月山矿田成矿流体中铜、金的迁移形式和沉淀的物理化学条件V岩石学报,2000a,16(4):551-558
    周涛发,袁峰,岳书仓,等.安徽月山矿田夕卡岩型矿床形成的水岩作用[J].矿床地质,2002,21(1):1-9
    周涛发,袁峰,张鑫,等.安庆铜牛井热液脉型铜、钼、金矿床石英的40Ar-39Ar快中子活化年龄[J].地质论评,2003,49(2):212-216
    周涛发,岳书仓,袁峰.安徽月山矿田成岩成矿作用[M].北京:地质出版社,2005.1-64
    周涛发,岳书仓,袁峰.安徽月山矿田铜、金矿床氢氧同位素地球化学及成矿流体输运—化学反应成矿动力学[J].安徽地质,2001b,11(2):131-139
    周涛发,岳书仓.安徽月山矿田铜矿床的形成机制[J].长春地质学院学报,1997,27(3):310-316
    周涛发,赵勇,杜建国,等.安徽月山矿田侵入岩浆演化的PER分析[J].合肥工业大学学报,2000b,23(1):68-72
    朱良峰,潘信,吴信才.三维地质建模及可视化系统的设计与开发[J].岩土力学,2006,27(5):828-832

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700