氧化铋系纳米粒子对气相有机污染物光催化氧化性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Studies on the Photocatalytic Oxidation Properties of VOCs on Bi_2O_3 Nanoparticles
  • 作者:丁鹏
  • 论文级别:博士
  • 学科专业名称:环境科学
  • 学位年度:2005
  • 导师:杜尧国
  • 学科代码:083001
  • 学位授予单位:吉林大学
  • 论文提交日期:2005-06-01
  • 答辩委员会主席:朱颜明
摘要
半导体纳米粒子因其优异的光学性能、催化性能及力学、磁学等方面的特性而引起了凝聚态物理界、化学界及材料界科学家们的极大关注。采用半导体纳米粒子多相光催化法治理环境污染近年来日益受到重视。应用半导体金属氧化物或硫化物作光催化剂可以消除大气和废水中的有机污染物。常见的单一化合物光催化剂如TiO_2、ZnO、Fe_2O_3、SnO_2、SrTiO_3、Bi_2O_3、CdS、WO_3、ZnS 及PbS 等,这些半导体纳米粒子含有电子能带结构且能带是不连续的,通常情况下是由一个充满电子的低能价带( VB)和一个空的高能导带( CB)构成,它们之间由禁带分开。当用能量等于或大于半导体吸收阈值( Ebg)的光照射半导体光催化剂时,它们吸收光子使得价带上的电子( e~-)被激发,越过禁带进入导带,同时在价带上产生相应的空穴( h+ )。由于纳米粒子的量子尺寸效应,引起禁带变宽,使得电子-空穴具有更强的氧化还原电位,它们与具有适宜氧化还原潜势的吸附质发生电子转移过程,于是光催化降解过程就发生了。在适宜的条件下,用半导体作光催化剂可有效的使许多有机物转化为CO_2和H_2O。这些催化剂各自对特定的反应有突出的优点,具体研究可根据需要选用。目前研究较多的是催化活性高、稳定
Today condensed state physicists,chemists and material scientists are Paying attention to semiconductor nanoparticles because of its especial optical property 、catalytic activity,mechanical property,magnetic property and so on. In recent years, application of the semiconductor nanoparticle to environmental cleanup has been one of the most active areas in heterogeneous photocatalysis. This is inspired by the potential application of semiconductor metal oxides and sulfides photocatalysts to the complite destruction of organic compounds in polluted air and wastewaters. We can choose excellent photocatalyst based on specific requirement.Usual photocatalyst,under TiO_2, ZnO, Fe_2O_3, SnO_2、SrTiO_3、Bi_2O_3、CdS、WO_3, ZnS、PbS, etc, are semiconductors, i.e. they have a moderate energy band-gap between their valence and conduction bands. Under illumination by photons of will enegy higher than band-gap energies, the valence band electrons can be excited to the conduction band, creating highly reactive electron-hole pairs. After migration to the solid surface, these may undergo electron-transfer processes with adsorbates of suitable redox potentials. At moderate conditions (room temperature, one atmosphere pressure and with molecular oxygen as the only oxidant), the above mentioned semiconductors have proved to be effective photocatalysts for the thermodynamically favored transformations of many organics to CO_2 and H_2O. TiO_2 is the most one to attract people’s attention because if has many advantages such as nonpoisonous,high catalytic activity,high oxidation ability,good stability,low cost,and so on. However the band-gap of TiO_2 is wide(Ebg=3.2eV),and it only absorbs light wave of wave-length≤387nm.Thus,Studying and preparing new photocatalyst or improving photocatalytic efficiency is the important assignment. One of the most active fields of research in heterogeneous photocatalysis using semiconductor particles is the development of systems capable of using natural sunlight to degrade a large number of
    organic and inorganic contaminants. It has been reported that the band-gap energy of Bi2O3 semiconductor is 2.8ev and Bi2O3 semiconductor can absorb light longer wave-length.Anthony.H.has applied Bi2O3 semiconductor to photocatalytic degradate organic chlorine pollutant in water.CUI Yu-ming and WANG Jun-Zhen have tried to apply Bi2O3 semiconductor to water treatment.However, reports on studying gas-solid heterogeneous photocatalytic oxidation of air pollution on Bi2O3 semiconductor has never been found. In this paper, Bi2O3 nanoparticles were prepared by means of the ammonia precipitation,polyol mediated methods and microemulsion chemical method. The structure and properties of Bi2O3 nanoparticles were studied by means of many modern techniques such as TEM, XRD, BET, IR, XPS and UV-Vis spectrum. Bi2O3 particles prepared by means of the three methods all present quantum size. The crystallite dimension of Bi2O3 nanoparticles prepared by microemulsion chemical method is smallest than that of Bi2O3 nanoparticles prepared by other two methods. Results show that the order of surface areas of Bi2O3 is microemulsion chemical method> polyol mediated method>the ammonia precipitation method>comercial. Bi2O3 nanoparticles show quantum dimesion effect,which obviously influence the photocatalytic activity of nanoparticles. The XRD data of Bi2O3 nanoparticles has been compared with that of standard card.It is found that the structure of commercial Bi2O3 is mainly monoclinic crystal structure.However, the structure of Bi2O3 nanoparticles prepared by the about three methods we used mainly tetragonal crystal structure(Fig1.1). The difference of crystal form result in different electron combining energy of Bi2O3 nanoparticles.The valene band is same,but the conduction is different,which cause different the energy of band-gap.Defferent separating rate of electrons and holes,which result in defferent photocatalytic activity of Bi2O3 nanoparticles.With the same crystal form, the grain size of Bi2O3 particles is not different,the photocatalytic activity of Bi2O3 particles is different. Becausethe quantum dimesion effection and election combining energy effection of nanoparticles result in band-gap energy increasing.the band gap become wider and strong separating electrons from holes,which make the oxidation-reduction potential of electrons and holes stronger,thus the photocatalytic activity of Bi2O3 nanoparticles are improved. The results show that the higher the
    calcining temperature,the higher the photocatalytic activity of Bi2O3 nanoparticles.Thus,the crystal form of Bi2O3 nanoparticles act on the photocatalytic activity of Bi2O3 nanoparticles in evidence. With the live way changing, people spend more time indoor whether living or working.However the decorating material of modern building contain a great deal of chemical, containing VOCs.The toxicity,stimulatory function,carcinogenic action and special smell of VOCs are able to cause uncomfortable reaction of humanbody.Especially,aromatic compound have high toxicity and can be absorbed by body ,which can damage liver,hemopoietic organ and nervous system,at last,cause aplastic anemia or leucocythemia.Animal experiment show that benzene has embryonic toxicity.Thus,air pollution in rome has been one of the most active area in heterogeneous photocatalysis.The gas-solid heterogeneous photocatalytic oxidation can take place under usual 2θ/(°) Fig1.1 XRD patterns of Bi2O3 photocatalysts prepared at different method and calcined at 750℃Bi2O3: a.commercial; b.the ammonia precipitation method; c.the microemulsion chemical method; d.the polyol mediated method.
    atmospheric pressure and room temperature,this reaction neednot stirring, at the same time,photocatalysis of gas-solid heterogeneous photocatalytic reaction is easely recoveried and have less effect on environment.In this paper, three systems, C6H6-O2-Bi2O3, C7H8-O2-Bi2O3 and C8H10-O2-Bi2O3 were studied, respectively. The reactant, intermediates and products were analyzed quantitatively and qualitatively by means of GC and GC-MS techniques. The reaction mechanism, reaction kinetics and the deactivation and regeneration of the Bi2O3catalyst were investigated.Facts show:the photocatalytic activity of Bi2O3 0n triphenyl-contaminants is highter then that of TiO2,at the same time,Bi2O3 particles is easelier than that of TiO2 particles. For C6H6-O2-Bi2O3 system, the oxidation of benzene did not proceed in the absence of either Bi2O3 or light irradiation. However, when the gas mixture containing benzene and oxygen enter the photoreactor with Bi2O3 as the catalyst, the photocatalytic oxidation of benzene occurred.. Benzene can be completely oxidized with almost stoichiometric CO2 and H2O as the final products. The intermediates detected were quinine,phenol,polycyclic aromatic compound, 1,2-butadiene, 13-butadiene and1-allylene.The reaction rate can be expressed by the Lang muir -Hinshelwood rate equation: Where r is the reaction rate (μM/min), C is the concentration of reactant (μM), k is the rate constant (μM/min), K is the adsorption constant (μM-1), I is the light intensity (mW/cm2), αis a constant, and subscripts B, W and O2 represent Benzene, water and oxygen, respectively. From the rate equation described above, we can see that αOOOOBBwwBBrk0 (1 KKCCKC)(1 KKCC)I2222=+++
    the reaction rate of benzene increased as the initial concentration of benzene and oxygen, and the light intensity increased, but was inhibited by the increased moisture content. The photocatalytic activity of Bi2O3 can be sustained definitely, which can be attributed to the products in the system.Products may occupy the active centers of photocatalys surface to reduce photocatalyst activity. For C7H8-O2-Bi2O3 system, toluene can be completely oxidized with almost stoichiometric CO2 and H2O as the final products. The intermediates detected were benzene, oxybenzene, phenylcarbinol, phenylaldehyde,phenylformic acid and xenene compound.The reaction rate can also be expressed by the Langmuir -Hinshelwood rate equation: Where r is the reaction rate (μM/min), C is the concentration of reactant (μM), k is the rate constant (μM/min), K is the adsorption constant (μM-1), I is the light intensity (mW/cm2), αis a constant, and subscripts T, W and O2 represent Toluene, water and oxygen, respectively. From the rate equation described above, we can see that the reaction rate of toluene increased as the initial concentration of toluene and oxygen, and the light intensity increased, but was inhibited by the increased moisture content. The photocatalytic activity of Bi2O3 can be sustained definitely, which can be attributed to products in the system.Products may occupy the active centers of photocatalytic surface to reduce photocatalyst activity. Thus we can calcine photocatalyst to recover it’s photocatalytic activity. For C8H10-O2-Bi2O3 system, xylene can be completely oxidized with αOOOOTTwwTTrk0 (1 KKCCKC)(1 KKCC)I2222=+++αOOOOXXwwXXrk0 (1 KKCCKC)(1 KKCC)I2222=+++
    almost stoichiometric CO2 and H2O as the final products. The reaction rate can be expressed by the Lang muir -Hinshelwood rate equation: Where r is the reaction rate (μM/min), C is the concentration of reactant (μM), k is the rate constant (μM/min), K is the adsorption constant (μM-1), I is the light intensity (mW/cm2), αis a constant, and subscripts X, W and O2 represent Xylene, water and oxygen, respectively. From the rate equation described above, we can see that the reaction rate of xylene increased as the initial concentration of xylene,oxygen, and the light intensity increased, but was inhibited by the increased moisture content. The photocatalytic activity of Bi2O3 can be sustained indefinitely, which can attributed to the complete oxidation of xylene in the system.After photocatalytic oxidation reaction finished,the surface of photocatalysts maintain clean. Photocatalyst is key part of photocatalytic reaction.The activity of photocatalyst is a decisive factor which decide on photocatalytic reaction can be industrialized.Peoper have been striving to improving photocatalytic activity and extending excitation wavelength.In summary,extending excitation wave length of photocatalyst and reducing composite probability of election-hole pair are important methods.Peoper have studied composite semiconductor for long time.Research show that composite semiconductor exist different energy level which can seperate changes and improve photocatalytic activity.In this paper,we have prepared Ti2O3/Bi2O3 and Ni2O3/Bi2O3 nanoparticles, and have studied the structure and properties of Ti2O3/Bi2O3 and Ni2O3/Bi2O3 nanoparticles by means of many modern techniques such as TG-DTA, XRD, XPS and UV-Vis spectrum. The photocatalytic activity of composite semiconductor nanoparticles is
引文
[1]高善民,黄柏标,崔得良.Ⅲ-Ⅴ族半导体纳米粒子合成的进展.化学通报,1998,5:7-11
    [2]张喜梅,陈玲,李琳等.纳米材料制备研究现状及其发展方向.现代化工,2000,20(7):13-16
    [3]华中一,纳米科学与技术,新材料产业,2000,12:73-77
    [4]Kubo R.,Electronic Properties of Metallic Fine Partic les.I., Journal of the Physical Society of Japan, 1962, 17:975-986
    [5]严东生,纳米材料的合成和制备, 无机材料学报,1995,10(1):1-6
    [6]李泉,曾广赋,席时权,纳米粒子, 化学通报,1995,6:30-34
    [7]万海保,曹立信,丁晗明灯,TiO2 纳米溶胶的界面粒子膜的研究,膜科学与技术,1999,19(1):45-47
    [8]Kubo R.,Kawabata A.,Kobayashi S.,Electronic Properties of Small Particles,Annu.Rev.Mater.Sci.,1984,14:49-66
    [9]李新勇,李树本,纳米半导体研究的进展,化学进展,1996,8 (3):231-239
    [10]孙奉玉,吴鸣,李文钊等,二氧化钛的尺寸与光催化活性的关系,催化学报,1998,19 (3):229-233
    [11]Brus L.E., Electronic Wave Functions in Semiconductor Clust-ers:Experiment and Theory, J. Phys. Chem., 1986, 90 (12):2555-2560
    [12]刘煦,纳米材料在电池中的应用,电池,2003,33(2):119-120
    [13]储祥蔷,谢大弢,孟铁军等,对超声波作用下的化学浴沉积方法制备CdS 薄膜的研究,光谱学与光谱分析,2003,23(4):625-629
    [14]方国家,刘祖黎,姚凯伦,WO3/Si 纳米晶薄膜的脉冲准分子激光沉积及结构分析,无机材料学报,2002,17(1):139-144
    [15]董睿,姜继森,杨龙,非水介质中制备纳米氧化铁,无机材料学报,2002,17(5):967-972
    [16]王占和,郝群,祝侃,纳米晶SnO_2 透明导电膜的研制,光学技术,2001,27(1):22-23
    [17]傅正文,张胜坤,秦启宗等,磁控溅射制备Ta_2O_5/TiO_2 薄膜及其光学与电学性能的研究,化学物理学报,1999,12(2):186-190
    [18]杜仕国,施冬梅,韩其文,纳米颗粒的液相合成技术,粉末冶金技术,2000,18(1):46-50
    [19]杨南如,余归郁,溶胶凝胶法的基本原理与过程,硅酸盐通报,1992(2):56-58
    [20]余家国,赵修建,韩建军等,溶胶-凝胶法制备TiO_2纳米薄膜的晶粒长大机理研究,材料工程,2000,12:19-25
    [21]郭清萍,钟顺和,溶胶-凝胶法制备负载型TiO_2膜的研究, 化学研究与应用,1997,9(3):235-239
    [22]扬咏来,宁桂玲,吕秉玲,液相法制备纳米粉体时防团聚方法概述,材料导报,1998,12 (2):11-13
    [23]宁桂玲,吕秉玲,纳米颗粒的干燥及其研究进展,化工进展,1996,5:22-25
    [ 24 ] Shi J.L., Gao J.H., Li Z.X., et al.,Effect of Aggolmerates in ZrO2 Powder Compacts on Microstructural Development, J. Mater. Sci., 1993, 28 (2): 342-348
    [25]Maeda H., Iwasaki M., Yasumori A.,et al.,Reduction of Lead Migration during Drying of a Gel., J.Non-cryst.Solid., 1990, 121 (1): 61-65
    [26]Yamane M., Kawazoe H., Yasumori A.,et al., Preparation of Pb-Containing Glass by the Sol-Gel Process Reduction of Pb-Migration during Drying.,J.Non-cryst.Solid.,1988, 99 (1): 160-167
    [27]仇海波,高濂,冯楚德,纳米氧化锆粉体的共沸蒸馏法制备及研究,无机材料学报,1994,9(3):365-370
    [28]Phalippou J., Woignier T., Prassas M., Glasses from Aerog-els.Part Ⅰ:The Synthesis of Monolithic Silica Aerogels,J. Mater. Sci., 1990, 25 (7): 3111-3117
    [29]Sclafani A.,Palmisano L.,Schiavello M.,Influence of the Prep-aration Methods of TiO_2 on the Photocatalytic Degradation of Phenol in Aqueous Dispersion, J.Phys.Chem.,1990,94(2):829-832
    [30]包定华,王世敏,顾豪爽,黄桂玉,邝安详,ZnO 薄膜的Sol-Gel 制备与结构分析,科学通报,1995,40 (6):572-574
    [ 31 ] Sopyan I.,Murasawa S.,Highly Efficient TiO2 Film Photocatalyst Degradation of Gaseous Acetaldehyde, Chem.Lett.,1994,4:723-726
    [32]罗菊,丁星兆,程黎放,马学鸣,董远达,用溶胶-凝胶法制备的纳米TiO_2粉末的结构,材料科学进展,1993,7(1):52-56
    [33]曹亚安,陈咏梅,管自生等,TiO_2纳米粒子膜的表面态性质及其光催化活性的研究,感光科学与光化学,1999,17(2):100-103
    [34]Kim S J.,Park S N.,Jeong Y H.,Homogeneous Precipitation of TiO2 Ultrafine Powders from Aqueous TiOCl_2 Solution,Journal of the American Ceramic Society, 1999,82(4):927-932
    [35]Pelizzetti E., Minero C., Photocatalytic Activity and Sele-ctivity of Titania Colloids and Particles Prepared by the Sol-Gel Technique: Photooxidation of Phenol and Atrazine, Langmuir, 1993, 9 (11): 2995-3001
    [36]陈士夫,梁新,赵梦月,不同制备条件对TiO2/beads 光催化活性的影响,感光科学与光化学,1999,17(1):25-31
    [37]Jia G Y, Jimmy C Y, Mitch K L, et al,Effects of Acdic and Ba-sic Hydrolysis Catalysts on the Photocatalytic Activity and Microstructure of Bimodac Mesoporous Titania, J. Catal, 2003, 217:69-78
    [38]孙一军,夏冠群,张良莹等,MOCVD 源物质Ti(OC_4H_9)_4的重复性研究,半导体薛宝,1999,20(4):270-273
    [39]Kamal M K, Mohamed I Z, Preparation and Characterizati-on of Sol-Gel Derived Mesoporous Titania Spheroids,Powder Technol. 2001,120:256-263
    [40]Luan Z H.,Estelle M M.,Paul A W.,et al.,Incorporation of Titan-ium into Mesoporous Silica Molecular Sieve SBA-15,Chem. Mater.,1999,11:3680-3686
    [41]Trapalis Ch., Kozhukharov V., Samuneva B., Sol-Gel Processing of Titanium-Containing Thin Coatings. Part ⅡXPS Studies, J. Mater. Sci., 1993, 28 (5): 1276-1282 [42]回峥,徐金杰,谢腾峰等,TiO2单晶的表面光电压研究,高等学校化学学报,1999,20(9):1458-1459
    [43]Jing L Q, Sun X J, Shang J, et al,Review of Surface Photovoltage Spectro of Nano-sized Semiconductor and Its Applications in Heterogeneous Photocatalysis,Solar. Energy Materials. And Solar. cells, 2003, 79:133-151
    [44]Sengupta G.,Chatterje R N.,Maity G C.,Ansari B J.,et al.,Role of Oxygen Vacancies in Water Vapor Chemisorption and CO Oxidation on Titania ,J. Colloid. Interf. Sci.,1995,170(1):215-219
    [45]Bokhimi X.,BoldúJ.L.,Munoz E.,Novaro O.,etc., Struc-ture and Composition of the Nanocrystalline Phases in a MgO-TiO_2 System Prepared via Sol-Gel Technique, Chem.Mater.,1999,11:2716-2721
    [46]Martra G.,Coluccia S.,Marchese L.,et al.,The Role of H2O in the Photocatalytic Oxidation of Totulene in Vapour Phase on Anatase TiO_2 Catalyst AFTIR Study,Catalysis Today,1999,53:695-702
    [47]Kyeong Y J, Seung B P, Enhanced Photoactivity of Silica-embedded Titania Particles Prepared by Sol-Gel Process for the Decomposition of Trichloroethylene,Appl. Catal. B:Environ,2000,25: 249-256
    [ 48 ] Ocana M.,Fornes V.,Ramos J V G.,et al.,Factors Affecting the Infrared and Raman Spectra of Rutile Powders, J.Solid. State. Chem.,1988,75(2):364-372
    [49]余锡宾,王桂华,罗衍庆,李和兴,TiO_2超微粒子的量子尺寸效应与光催化特性,催化学报,1999,20 (6):613-618
    [50]邹炳锁,王斌,汤国庆等,岩盐型ZnO 纳米微粒的生成和光谱特性,科学通报,1994,39(6):499-501
    [51]Gao X T, Israel E W, Titania-silica as Catalysts: Molecular Structural Characteristics and PhysicoChemical Properties, Catal.Today,1999,51:233-254
    [52]Liu G M.,Wu T X.,Zhao J C.,Photoassisted Degradation of Dye Pollutants.8.Inversible Degradation of Alizarin Red under Versible Light Radiation in Air-Equilibrated Aqueous TiO2 Dispersions,Environ.Sci.Technol.,1999,33:2081-2087
    [53]Wang Y., Herron N., Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties, J. Phys. Chem., 1991, 95 (2): 525-532
    [54]Tuel A, Hubert-Pfalzgaf L G, Nanometric Monodispersed Titanium Oxide Particles on mesoporous Silica: Synthesis,Characterization, and Catalytic Activity in Oxidation Reactions in the Liquid Phase, J. Catal, 2003, 217:343-353
    [55]Beck C, Mallat T, Burgi T,et al,Nature of Active Sites in Sol-Gel TiO_2-SiO_2 Epoxidation Catalysts, J. Catal, 2001, 204:428-439
    [56]Jung S M.,Grang P.,Charaterization and Reactivity of Pure TiO_2-SO_4~(2-) SCR Catalyst:Infulence of SO_4~(2-) Content, Catalysis Today,2000,59:305-312
    [57]徐自力,郭晓静,杜尧国,金属氧化物半导体对庚烷的气-固复相光催化反应,吉林大学自然科学学报,2001,4:85-88.
    [58]Chatterjee A.,Das D.,Pradhan S K.,et al.,Synthesis of Nanoc-rystalline Nickel-Zinc Ferrite by the Sol-Gel Method,
    J.Magn.Magn.
    Mater.,1993,127(1/2):214-218
    [59]彭郁卿,王涛,周诗瑶,纳米材料Fe_2O_3微结构的正电子寿命谱学研究,物理学报,1994,43(7);1208-1212
    [60]Hagfeldt A,Gratzel M,Light-Induced Redox Reaction in Nano-crystalline Systems, Chem.Rev,1995,95(1):49-68
    [61]Linsebigler A.L,Lu G.Q,Yates J.T,Photocatalysis on TiO2 Surface: Principles,Mechanisms,and Selected Results, Chem. Rev,1995,95(3): 735-758
    [ 62 ] Gratzel M.,Heterogeneous Photochemical Electron Transfer, CRC Press,Baton Rouge,FL,1998
    [63]Schwitzgebel J.,Ekerdt J.G.,Gerischer H.,et al.,Role of the Oxygen Molecule and of Photogenerated Electron in TiO_2 Photocatalyzed Air Oxidation Reactions, J.Phys. Chem., 1995, 99 (15): 5633-5638
    [64]Fujii M., Kawai T., Kawai S., Photocatalytic Activity and the Energy Levels of Electrons in a Semiconductor Particle Under Irradiation, Chem. Phys. Lett., 1984, 106 (6): 517-522
    [65]Kamat P.V., Dimitrijevic N.M., Colloidal Semiconduc-tors as Photocatalysts for Solar Energy Conversion, Solar Energy, 1990, 44 (2): 83-98
    [66]叶锡生,焦正宽,张立德等,板钛基TiO_2 纳米晶的结构相 变和热稳定性,材料研究学报,1999,13(5):487-491
    [67]沈伟韧,赵文宽,贺飞等,TiO2光催化反应及其在废水中的应用,化学进展,1998,10(4):349-361
    [68]Salvador P.Gonzalez Garcia M.L.,Munoz F.,Catalytic Role of Lattice Defacts in the Photoassisted Oxidation of Water at(001)n-TiO_2 Rutile,J.Phys. Chem.,1992,96(25): 10349-10353
    [69]Yamashita H.,Kamada N.,He H.et al.,Reduction of CO_2 with H_2O on TiO_2 (110) Single Crystals under UV-irradiation, Chem.Lett.,1994,(5): 855-858
    [70]刘秀华,TiO_2纳米粒子薄膜对气相有机物的光催化降解研究,硕士论文,2001
    [71]井立强,ZnO 超微粒子的制备、改性、表征及其在SO_2与烃的气相光催化反应中催化作用的研究,硕士论文,1997
    [72]Linsebigler A.L.Guangquan L.,John T.Y.,etal., Photoc-atalysis on TiO_2 Surfaces:Principles,Mechanisms and Select-ed Results,Chem.Revi., 1995,95(3): 735-758
    [73]Martern S.T., Lee A.T.,Hoffmann M.R.,Chemical Mechanism of Inorganic Oxidants in the TiO2/UV Process:Increased Rates of Degradation of Chlorinated Hydrocarbons, Environ. Sci.Technol., 1995, 29(10): 2567-2573
    [74]王训,祖庸,李晓娥,纳米TiO_2表面改性,化工进展,2000(1): 67-69
    [75]Takahashi M.,Mita K.,Toyuki H.,Pt-TiO_2 Thin Films on Glass Substrates as Efficient Photocatalysts. J.Mater. Sci.,1989,24(1): 243-246
    [76]Nicole J.R., Pichat P., Effect of Deposited Pt Par-ticles on the Surface Charge of TiO_2 Aqueous Suspensions by Potentiometry, Electrophoresis and Labeled Ion Adsorption, J. Phys. Chem., 1986, 90 (12): 2733-2738
    [77]Agudao M.A., Anderson M.A., Degradation of Formic Acid over Semiconducting Membranes Supported on Glass: Effects of Structure and Electron Doping, Solar Energy Materials and Solar Cells, 1993, 28 (4): 345-361
    [78]朱永法,张利,姚文清,曹立礼,溶胶-凝胶法制备薄膜型TiO_2光催化剂,催化学报,1999,20 (3):362-364 78
    [79]Wang Ch.M., Palladium Catalysis of O_2 Reduction by Electrons Accumulated on TiO2 Particles during Photoassisted Oxidation of Organic Compounds, J. Am. Chem. Soc., 1992, 114 (13): 5230-5234
    [80]Sclafani A., Mozzanega M.N., Pichat P., Effect of Silver Deposits on the Photocatalytic Activity of Titaniu Dioxide Samples for the Dehydro-genation or Oxidation of 2-Propanol, J. Photochem. Photobiol. A: Chem., 1991, 59 (2): 181-189
    [81]Hadjiivanov K., IR Spectroscopy Study of Silver Ions Absorbed on Titanium (Anatase), Mater. Chem. Phys., 1991, 28 (4): 367-377
    [82]Lee W., Shen H.S., Dwight K., Wold A., Effect of Silver on the Photocatalytic Activity of TiO_2, J. Solid. State. Chem., 1993, 106 (2): 288-294 82
    [83]Herrmann J M.,Tahiri H.,Ait-Ichou Y.,Lassaletta G., Char-acterization and Photocatalytic Activity in Aqueous Medium of TiO_2 and Ag-TiO_2 Coatings on Quartz. Appli Catal B:Environ.,1997,13(3/4): 219-228
    [84]王传义,刘春艳,沈涛,Au/TiO_2复合纳米粒子的研究-Ⅰ制备与表征(J)科学进展,1998,43(3):268-272
    [85]Gao Y.M., Improvement of Photocatalytic Activity of Titanium (Ⅳ) Oxide by Dispersion of Au on TiO_2, Mater. Res. Bull., 1991, 26 (12): 1247-1254
    [86]Poirier G.E.,Hance B.K.,White J.M.,Tunneling Probe Manipu-lation of Individual Rhodium Nanoparticles Supported on TiO_2.J.Phys. Chem., 1993, 97(24): 6500-6503
    [87]Gratzel M.,Russell F.H.,Electron Paramagnetic Resonance(EPR) Studies of Doped TiO2 Colloids. J.Phys. Chem., 1990,94(6):2566-2572
    [ 88 ] Soria J,Conesa J.C,Augugliaro V,Palmisano L,Schiavello M,Dinitrogen Photoreduction to Ammonia over Titanium Dioxide Powders Doped with Ferric Ions. J. Phys. Chem,1991,95(1):274-282
    [89]Chio W.,Termin A.,Hoffmann M.R.,The Role of Metal Ion Dopants in Quantum-Sized TiO_2:Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J. Phys. Chem., 1994,98(51): 13669-13679
    [90]Fu X,Clark L. A,Yang Q, Anderson M. A, Enhanced Photocatalytic Performance of Titania-Based Binary Metal Oxides: TiO_2/SiO_2 and TiO_2/ZrO_2. Environ. Sci. Technol, 1996, 30(2): 647-653 [91]Spanhel L,Weller H,Henglein A,Photochemistry of Semiconductor Colloid.22.Electron Injection from Illuminated CdS into Attached TiO2 and ZnO Particles. J. Am. Chem. Soc, 1987, 109(22):6632-6635
    [92]Kwon Y.T,Song K.Y,Lee W.I,Choi G.J,Do Y.R,Photocatalytic Behavior of WO3-Loaded TiO_2 in an Oxidation Reaction. J.Catal, 2000,191(1):192-199
    [93]Spanhel L., Weller H., Henglein A., Photochemistry of Semiconductor Colloids.22.Electron Injection from illuminated CdS into Attached TiO_2 and ZnO Particles, J.Am. Chem.Sco.,1987,109(22):6632-6635
    [ 94 ] Gopidas K.R., Bohorquez M., Kamat P.V., Photophysicaland Photo- chemical Aspects of Coupled Semiconductors.ChargeTransfer
    Process
    in Colloidal CdS-TiO_2 and CdS-AgI Systems,J. Phys. Chem.,
    1990, 94 (16):6435-6440
    [95]Kohtani S., Kudo A., Sakata T., Spectral Sensitization of a TiO_2 Semiconductor Electrode by CdS Microcrystals and its Photoelectro-chemical Properties, Chem. Phys. Lett.,1993, 206 (1/4): 166-170
    [96]Vogel R.,Hoyer P.,Weller H.,Quantun-sized PbS, CdS, Ag_2S,Sb_2B_3 and Bi_2S_3 Particles as Sensitizers for Various Nano-porous Wide-band Gap Semiconductors,J.Phys.Chem.,1994,98(12):3183-3188
    [97]Serpone N., Borgarello E., Pelizzetti E., Utilization of the Semiconductor Particle as a Microphotoelectrochemical Cell, J. Electrochemical Soc., 1988, 135(11): 2760-2766
    [98]郝恩才,孙轶鹏,杨柏,沈家骢,CdS/TiO_2复合纳米微粒的原位合成及性质研究,高等学校化学学报,1998,19 (8):1190-1194
    [99]Liu D., Kamat P.V., Electrochemical Rectification in CdSe+TiO_2 Coupled Semiconductor Films, J. Electroanal Chem.,1993, 347 (1/2): 451-456
    [100]袁志好,张立德,掺锌的TiO_2纳米粉的结构相变及发光性质,高等学校化学学报,1999,20(7):1007-1011
    [101]Kutty T.R.N., Avudaithai M., Photocatalytic Activity of Tin-Substituted TiO_2 invisible Light, Chem. Phys. Lett.,1989, 163(1): 93-97
    [102]Bedja I., Kamat P.V., Capped Semiconductor Colloids Synthesis and Photoelectrochemical Behavior of TiO_2–Capped SnO2 Nanocrystallites, J. Phys. Chem., 1995,99(22): 9182-9188
    [103]施利毅,古宏晨,李春忠,房鼎业,张怡,华彬,TiO_2-SnO_2复合光催化剂的制备和性能,催化学报,1999,20(3):338-342
    [104]施利毅,李春忠、古宏晨等,SnO_2-TiO_2复合颗粒的形态结构及光催化活性,化学物理学报,2000,13(3):336-341
    [105]Do Y.R.,Lee W.,Dwight K. et al.,the Effect of WO_3 on the Photocatalytic Activity of TiO_2,J.Solid State Chem.,1994, 108(1): 198-201
    [106]Kwon Y.T., Song K.Y., Lee W.I., Choi G.J., Do Y.R., Photocatalytic Behavior of WO_3-Loaded TiO_2 in an Oxidation Reaction, J. Catal., 2000, 191(1): 192-199
    [107]李芳柏,古国榜,黎永津,WO_3/TiO_2 复合半导体的光催化性能研究, 环境科学,1999,20(4):75-78
    [ 108 ] Hasselbarth A., Eychmiiller A., Eichberger R., Giersig M., News A.,Chemistry and Photophysics of Mixed CdS/HgS Collids, J. Phys. Chem., 1993, 97(20): 5333-5340
    [109]杨晓娟,陈耐生,沈水发,刘尔生,黄金陵,Cr_2O_3-Fe_2O-3复合氧化物纳米晶的制备、表征及气敏性研究,中国科学(B),1998,28 (4):371-377
    [110]Rabani J., Sandwich Colloids of ZnO and ZnS in Aqueous Solutions,J. Phys.Chem., 1989, 93 (22): 7707-7713
    [111]赵敬哲,杨少凤,王子忱等,制备高比表面多孔Ti-Si 复合氧化物材料的新方法,高等学校化学学报,2000,21(2):292-294
    [112]Hadjiivanov K.,Reddy B.M.,KnOzinger H.,FTIR Study of Low-tem-perature Adsorption and CO Adsorption of ~(12)CO and 13CO on a TiO_2-SiO_2 Mixed Oxide,Applied Catalysis A:General,1999,188:355-360
    [113]Luan Z.H.,Estelle M.Maes,Paul A.W.,et al.,Incorporation of Titanium into Mesoporous Silica Molecular Sieve SBA-15, Chem. Mater., 1999, 11:3680-3686
    [114]符小荣,宋世庚,王学燕,纳米TiO_2/Si 薄膜的制备与光催化性能的研究,感光科学与光化学,1997,15(3):234-239
    [115]Kamat P.V., Fox M.A., Photosensitization of TiO_2 Colloids by Erythrosin B in Acetonitrile, Chem. Phys. Lett., 1983, 102(4): 379-384
    [116]Wohrle D., Schneider G., Stark J., Schulz-Ekolff G.,Photooxidation of 2-Mecaptoethanol in the Presence of Water Soluble Phthalocyanine and Perylene-3,4,9,10-tetracarboxylic acid derivatives, J. Mol. Catal.,1992,75 (2): L39-L44
    [117]王海,陈德文,徐广智,张先付,许慧君,金属酞菁在二氧化态胶体表面光诱导电子转移,科学通报,1994,39 (5):424-427
    [118]Giraudeau A., Fan F.F., Bard A.J., Semiconductor Electrodes. 30.Spectral Sensitization of the Semiconductors n-TiO_2 and n-WO_3 with MetalPhthalocyanines,J.Am. Chem. Soc.,1980, 102 (16): 5137-5142
    [ 119 ] Ross H., Bendig J., Hecht S., Sensitized Photocatalytical Oxidation of Terbutylazine, Solar Energy Materials and Solar Cells, 1994, 33 (4):475-481
    [120]沈伟韧,赵文宽,贺飞等,TiO_2光催化反应及其在废水中 的应用,化学进展,1998,10(4):349-361
    [121]Uchihara T., Matsumura M., Ono J., Tsubomura H., Effect of Ethylenediaminetetraacetic Acid on the Photocatalytic Activities and Flat-B and Potentials of Cadmium Sulfide and Cadmium Selenide, J. Phys.Chem., 1990, 94 (1): 415-418
    [ 122 ] Ding Z., Zhu H.Y., Lu G.Q., Greenfield P.E., Photocatalytic Properities of Titania Pillared Clays by different Drying Methods, J. Colloid. Interface. Sci., 1999, 209(1): 193-199
    [123]Becker W.G.,Truong M.M.,Ai C.C.,et al.,Interfacial Factors that Affect the Photoefficiency of Semiconductor Sensitized Oxidations in Nonaqueous Media,J.Phys.Chem., 1989,93 (12): 4882-4886
    [124]Yoneyama H., Haga S., Yamanaka S., Photocatalytic Activities of Microcrystalline TiO2 Incorporated in Sheet Silicates of Clay, J. Phys. Chem., 1989, 93 (12): 4833-4837
    [125]Linsebigler A.L., Lu G.Q., Yates J.T., Photocatalysis on TiO2 Surface: Principles, Mechanisms, and Selected Results, Chem. Rev., 1995, 95 (3): 735-758
    [126]Peral J., Domentech X., Ollis D.F., Heterogeneous Photo-catalysis for Purification, Decontamination and
    Deodorization of Air, J. Chem. Technol. Biotechnol., 1997,
    70 (2): 117-140
    [127]吴越著,催化化学(下册),科学出版社,2000,1329-1419
    [128]胡春,王怡中,汤鸿霄,多相光催化氧化的理论与实践发展,环境科学进展,1995,3(1):55-64
    [ 129 ] Morikawa, Tomoaki; Mayumi, Sadataka; Nakanishi, Yoshiy-uki.,Manufacture of mul-functional building materials with photocatalyst-containing paint layers ,Jpn.Kokai Tokkyo Koho JP 2000 72,570.
    [130]苏碧桃,孙丽萍等,纳米二氧化钛催化剂的制备及其光催化性能,兰州大学学报(自然科学版),2000,6:75-78
    [131]井立强,孙晓君,蔡伟民等,ZnO 纳米粒子的表面光电压谱和光催化性能,化学学报,2002,60(10):1778-1783
    [132]姜洪波,高濂,张青红,Fe_2O_3/TiO_2 和ZnO/TiO_2 纳米颗粒薄膜的亲水性能和光催化性能的研究,无机材料学报,2003,18(3):695-699
    [133]彭峰,任艳群,TiO_2-SiO_2复合纳米膜的制备及其光催化降解甲苯的活性,催化学报,2003,24(4):243-247
    [134]陈铜,李文钊,于春英等,掺杂钛酸盐对乙烷氧化脱氢催化性能的研究,高等学校化学学报,1996,17(10):1617-1621
    [135]王俊珍,付希贤,杨秋华等,Bi_2O_3对染料的光催化降解性能,应用化学,2002,19(5):483-485
    [136]王伯勇,魏丰华,刘娅琳等,TiO_2、ZnO 和CdS 的光催化甲基橙脱色的比较,工业水处理,2002,22(4):40-42
    [137]成英之,张渊明,唐渝,WO_3-TiO_2 薄膜型复合光催化剂的制备和性能,催化学报,2001,22(2):230-205
    [138]潘教青,刘俊成,崔德良等,ZnS 纳米复合材料的制备和性质,山东大学学报(自然科学版),2000,35(2):198-201
    [139]周少敏,SbS/SiO_2 介孔组装体系的光吸收特性,零陵学院学报,2002,23(2):6-10
    [ 140 ] Kobayashi,Hideki;Saeki,Yoshimitsu;Kamejima,Jun ji.Photocat-alytically oxidatively decomposable material and structure ther-efrom,Jpn.Kokai Tokkyo Koho JP 2000 15,109.
    [141]Vinodgopal K.Kamat P V.Enbanced Rales of Photocat alytic Degradation of on AID Dye Using SnO_2/TiO_2 Coupled Semiconductor Tbin Films , Environ Sci Technol, 1995, 29(3):841-845
    [142]刘守新,孙承林,光催化剂TiO_2改性的研究进展,东北林业大学学报,2003,31(1):53-56
    [143]左国民,徐敏,程振兴等,挥发性有机物的气相光解及光催化降解研究,分子催化,2001,15(6):463-466
    [144]郭泉辉,杨建军,毛立群等,Pt/TiO_2光催化降解甲苯,化学研究,2001,12(3):53-55
    [145]Rafael M R,Nelson C M,Relationship between of the Surface Species and Catalyst Deactivation during the Gas-Phase Photocatalytic Oxidition of Toluene,Catal.Today,1998,40:353-357
    [146]Alberici R M,Jardim W F.,Photocatalytic Destruction of VOCs in the Gas-Phase Using Titanium Dioxide,Appl Catal
    B:Environ,1997,
    14:55-59
    [147]Augugliaro V., Coluccia S., Loddo V., Marchese L., Martra G., Photocatalytic Oxidation of Gaseous Toluene on Anatase TiO_2 Catalyst: Mechanistic Aspects and FT-IR Investigation, Appli Catal.B: Environ., 1999, 20 (1): 15-27
    [148]Phillips L.A., Raupp G.B., Infrared Spectroscopic Investi-gation of Gas-Solid Heterogeneous Photocatalytic Oxidation of Trichlorlethylene, J. Mol. Catal., 1992, 77 (3): 297-311
    [149]Djeghri N., Formenti M., Juillet F., Techner S. J.,Photointer-action on the Surface of Titanium Dioxide between Oxygen and Alkanes, Faraday. Discuss. Chem. Soc., 1974, 58: 185-193
    [150]Herrmann J. M., Disdier J., Mozzanega M. N., Pichat P., Heterogeneous Photocatalysis: In Situ Photoconductivity Study of TiO_2 During Oxidation of Isobutane into Actone, J. Catal., 1979,60(3): 369-377
    [ 151 ] Djeghri N., Teichner S. J., Heterogeneous Photocatalysis: The Photooxidation of 2-Methybutane, J. Catal., 1980, 62(1): 99-106
    [152]Gratzel M., Thampi K. R., Kiwi J., Methane Oxidation at room temperature and Atmospheric Pressure Activated by Light Via Polytungstate Dispersed on Titania, J. Phys. Chem., 1989, 93(10): 4128-4132
    [ 153 ] Bickley R. I., Munuera G., Stone F. S., Photoadsorption and Photocatalysis at Rutile Surface ⅡPhotocatalytic Oxidation of Isopropanol, J. Catal., 1973, 31(3): 398-407
    [154]Walker A., Formenti M., Meriaudeau P., Teichner S. Heterogeneous Photocatalysis: Photo-Oxidation of Methylbutanols, J. Catal., 1977, 50(2): 237-243
    [155]Cunningham J., Hodnett B. K., Kinetic Studies of Secondary Alcohol Photo-Oxidation on ZnO and TiO_2 at 348K Studied by Gas-Chromatographic Analysis, J. Chem. Soc. Faraday. Trans. Ⅰ., 1981, 77(11): 2777-2801
    [156]Pichat P., Mozzanega M. N., Courbon H., Investigation of the Mechanism of Photocatalytic Alcohol Dehydrogenation over Pt/TiO_2 Using Poisons and Labelled Ethanol, J. Chem. Soc. Faraday. Trans. Ⅰ., 1987, 83(3): 697-704
    [157]Blake N. R., Griffin G. L., Selectivity Control during the Photoassisted Oxidation of 1-Butanol on Titanium Dioxide, J. Phys. Chem., 1988, 92(20): 5697-5701
    [158]Peral J., Ollis D. F., Heterogeneous Photocatalytic Oxidation of Gas-Phase Organics for Air Purification:Acetone,1-Butanol,Buty- raldehyde, Formaldehyde, and m-Xylene Oxidation, J.
    Catal.,1992,136
    (2):554-565
    [159]Raupp G. B., Junio C. T., Photocatalytic Oxidation of Oxygenated Air Toxics, +Appl. Surf. Sci., 1993, 72(4): 321-327
    [160]Sauer M. L., Ollis D. F., Acetone Oxidation in a Photocatalytic Monolith Reactor, J. catal., 1994, 149(1): 81-91
    [ 161 ] Ibusuki T., Takeuchi K., Toluene Oxidation on U.V.-Irradiated Titanium Dioxide with and without O_2, NO_2 or H_2O at Ambient Temperature, Atmos. Environ., 1986,20(9): 1711-1715
    [162]Sauer M. L., Hale M. A., Ollis D. F., Heterogeneous Photocatalytic Oxidation of Dilute Toluene-Chlorocarbon Mixtures in Air, J. Photochem.Photobiol A: Chem., 1995, 88(2-3): 169-178
    [163]Avila P., Bahamonde A., Blanco J., Sanchez B., Cardona A. I., Romero M., Gas-Phase Photo-Assisted Mineralization of Volatile Organic Compounds by Monoli-thic Titania Catalysts, Appl. Catal.B:Environ., 1998, 17(1-2): 75-88
    [164]Dibble L. A., Raupp G. B., Kinetics of the Gas-Solid Heterogeneous Photocatalytic Oxidation of Trichloroethylene by Near UV Illuminated Titanium Dioxide, Catal. Lett., 1990, 4: 345-354
    [ 165 ] Dibble L. A., Raupp G. B., Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contamianted Airstreams, Environ. Sci. Technol., 1992, 26(3): 492-495
    [166]Nimlos M. R., Jacoby W. A., Blake D. M., Milne T. A., Direct Mass Spectrometric Studies of the Destruction of Hazardous Wastes. 2. Gas-Phase Photocatalytic Oxidation of Trichloroethylene over TiO_2: Products and Mechanisms, Environ. Sci. Technol., 1993, 27(4): 732-740
    [167]Yamazake-Nishida S., Nagano K. J., Phillips L. A., Cervera-March S., Anderson M. A., Photocatalytic Degradation of Trichloroethylene in the Gas Phase using Titanium Dioxide Pellets, J. photochem. Photobiol. A: Chem., 1993, 70(1): 95-99
    [168]Jacoby W. A., Nimlos M. R., Blake D. M., Products, Intermediates, Mass Balances, and Reaction Pathways for the Oxidation of Trichloroethylene in Air Via Heterogeneous Photocatalysis, Environ. Sci. Technol., 1994, 28(9): 1661-1668
    [169]Wang L. H., Tsai H. h., Hsieh Y. H., The Kinetics of Photocatalytic Degradation of Tricholroethylene in Gas
    Phase over TiO2 Supported on Glass Bead, Appl. Catal. B:
    Environ., 1998, 17(4): 313-320
    [170]Mozzanega H., Herrmann J. M., Pichat P., NH3 Oxidation over UV-Irradiated TiO2 at Room Temperature, J. Phys. Chem., 1979, 83 (17): 2251-2255
    [171]Ibusuki T., Takauchi K., Removal of Low Concentration Nitrogen Oxides Through Photoassisted Heterogeneous Catalysis, J. Mol. Catal., 1994, 88(1): 93-102
    [172]吴海宝,太阳能-TiO_2 光催化氧化有机物在水处理上的应用,太阳能学报,1996,17(3):288-292
    [173]戴智铭,陈爱平,古政荣等,三氯乙烯在TiO_2上光降解反应动力学,中国环境科学,2000,20(4):301-304
    [174]Turchi C. S., Ollis D. F., Photocatalytic Degradation of Organic Water Contaminants: Mechanisms Involving Hydroxyl Radical Attack, J. Catal., 1990, 122(1): 178-192
    [ 175 ] Pelizzetti E., Minero C., Mechanism of the Photo-Oxidation Degradation of Organic Pollutants over TiO2 Particles, Electrochimica Acta., 1993, 38(1): 47-55
    [176]刘鸿,成少安,王琪全,张鉴清,蒋伟川,无水条件下气相三氯乙烯光催化降解机理,环境科学,1998,19(2):62-65
    [177]Minero C., Aliberti C., Pelizzetti E., Terzian R., Serpone N., Kinetic Studies in Heterogeneous Photocatalysis. 6. AM1 Simulated Sunlight Photo-degradation over Titania in Aqueous Media: A First Case of Fluorinated Aromatics and Identification of Intermediates, Langmuir, 1991, 7(5):
    928-936
    [178]Fujishima A.,Honda K.,Electrochemical Photolysis of Water at a Semiconductor Electrode,Nature,1972,238(5358):37-38
    [179]沈伟韧,赵文宽,贺飞等,TiO_2 光催化反应及其在废水中的应用,化学进展,1998,10(4):349-361
    [180]杜尧国,韩淑云等,人造金刚石的提纯(II)-氧化铋催化氧化法清除石墨杂质的研究,吉林大学自然科学学报,1979,3:92-93
    [181]杜尧国,崔湘浩等,Bi_2O_3/r-Al_2O_3 系助燃剂的性能研究,高等学校化学学报,1991,3:394-395
    [182]Kenneth L H, Allen J,et al,Photoelectrochemical behavior of several polycrystalline metal oxide ectrodes in aqueous solution,J. Electrochem.Soc.:Electrochem Sci and Techno,1977,124(2):215-224.
    [183]Anthony H,John M,Thomas,et al. A new family of photo-catalysts based on Bi_2O_3. Journal of Solid State Chemstry ,1988, 72:126-130.
    [184]崔玉民,徐立杰,朱亦仁,用光催化剂Bi_2O_3处理含亚硝酸盐废水的研究,工业水处理,2000,20(8):17-19
    [185]田森林,宁平,有机废气治理技术及其新进展,环境科学动态,2000,1:23-28
    [186]陶有胜,“三苯”废气治理技术,环境保护,1999,8 : 20-24
    [187]廖青,孙海涛,喷漆废气净化处理新工艺,电机电器技术,1998,2:34-35
    [ 188 ] Vinlenzo A,Salvatore C,Vitotriol et al.,Photocatalytic Oxi-dation , Applied Catalysis B:Environmental,1999,20:15
    [ 189 ] Augugliaro V,Coluccia S,Loddo V,Martra G.,Photocatalytic-oxidation of Gaseous Toluene on Anatase TiO2 Catalyst:Mechsnistic Aspects and FT-IR Investigation,Appli Catal.B:Environ, 1999,20(1): 15-27
    [190]谭建军,石学军等,铁锰轻稀土复合氧化物催化剂对苯的完全氧化作用,环境导报,1998,4:20-22
    [191]王相田,胡黎明,顾达等,超细颗粒分散过程分析,化学通报,1995,5:13-17
    [192]徐华蕊,李凤生,陈舒林等, 沉淀法制备纳米级粒子的研究,化工进展, 1996(5):29-31
    [193]李德良,黄念冬,许中坚,超细高纯氧化铋的制备研究,无机盐工业,2001,33(1):15-17
    [194]田地, 张彭义, 余刚,挥发性有机物光催化降解研究进展,上海环境科学,2000,19(4):162-165
    [195]徐自力,郭晓静,杜尧国, 金属氧化物半导体对庚烷的气固复相光催化反应,吉林大学自然科学学报,2001,39(4):85-88.
    [196]段学臣,涂石桥,超细氧化铋的制备与结构特性,中南工业大学学报,1997,28(2):164-166
    [197]尚静,徐自力,杜尧国,李静敏.,TiO_2纳米粒子制备方法对其光催化活性的影响,分子催化,2001,15(4):281-283
    [198]Atou T,Faqir H,Kikuchi M,et al,A New High-Pressure Phase of Bismuth Oxide,Materials Research Bulletin, 1998, 33 (2):289-292
    [199]Ogawa H, Abe A, Preparation of Ti Oxide Films from Ultrafine Particles, J. Electrochem. Soc., 1981, 128 (3): 685-689
    [200]万海保,TiO_2 纳米粉的热处理过程研究,化学物理学报,1999,12 (4): 469-472
    [201]曹亚安,陈咏梅,杜世睿,TiO_2 纳米颗粒薄膜光催化降解苯酚的研究,科学通报,1998,43 (9): 1004-1005
    [202]Bullock E L, Pattheyly S, Clean and Hydroxylated Rutile TiO_2 (110)Surfaces Studied by X-Ray Photoelectron Spectroscopy, Surface Sci, 1996,352-354:504-510
    [203]Wong W K,Malati M A,Doped TiO2 for Solar Energy Application,Solar Energy,1986,36(2):163-168
    [204]冷文华,成少安,刘鸿等,负载型TiO_2光催化降解苯胺, 环境科学学报,2000,20(4):449-503
    [205]李浩春主编,分析化学手册,第五分册,气相色谱分析,化学工业出版社,1999,254-259
    [ 206 ] Olgad H,Pierre P,David F O,Benzene and Toluene Gas-Phase Photocatalytic Degradation over H_2O and HCl Pretreated TiO_2:By-products and Mechanisms,J.Photochem and Photobiol A:Chemistry,1998,118:197-204
    [207]Wang K H,Hsieh Y H,Heterogeneous Photocatalytic Degradation of Trichloroethylene in Vapor Phase by Titanium Dioxide,Environment International,1998,24(3):267-274
    [208]Sang B K,Sung C H,Kinetic Study of Photocatalytic Degradation of Volatile Organic Compounds in Air Using Thin Film TiO_2 Photocatalst,Applied Catalysis B: Environment,2002,25:305-315
    [209]唐玉朝,胡春,王怡中,TiO_2 光催化反应机理及动力学研究进展,化学进展,2002,14(3):192-199
    [210]罗道成,易平贵,陈安国,建筑和装饰材料的室内污染对人体危害及预防措施,中国安全科学学包,2003,13(3):66-68
    [211 ] Blount M C,John L F.Characterization of Adsorbed Species on TiO_2 after photocatalylic Oxidition of Toluene.Journal of Catalysis.,2001, 200:21-23
    [212]Philip N A, Ronald A H. System to measure relative rate constants of semivolatile organic compounds with

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700