氧化物多孔纳米块体及复合发光材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在本文中,我们首次利用溶剂热压方法,以不同种类的纳米颗粒和溶剂为原料制备了ZnO、TiO_2、ZrO_2和AlOOH多孔纳米块体。在此基础上,我们又发展了压差交换方法,成功地将若丹明B和桑色素组装进入多孔纳米块体的孔道中,从而得到了ZrO_2/若丹明B、ZrO_2/桑色素和AlOOH/若丹明B复合发光材料,并对材料的性能进行了较为系统的表征。
     考虑到ZnO纳米材料在力、热、光、电、磁以及敏感特性等方面具有一系列特殊的性能,而ZnO多孔纳米块体的研究却一直未见报道,因此,我们用溶剂热压方法成功地制备了ZnO多孔纳米块体,并对其性能进行了分析。结果表明,利用溶剂热压方法可以制备出具有均匀孔径的ZnO多孔纳米块体,而且通过改变溶剂的种类、热压温度和压力,可以在一定范围内调变ZnO多孔纳米块体的孔径分布、孔容、比表面积以及孔隙率。其中,溶剂的种类对ZnO多孔纳米块体的孔径、孔容、比表面积以及孔隙率的影响最大:以水作溶剂制备的多孔块体主孔径较小,而用乙醇、异丙醇和DMF作溶剂时样品的主孔径较大,而且用DMF作溶剂制备的ZnO多孔纳米块体的孔容和孔隙率最大,分别为0.20cm~3/g和52%。再有,X-射线衍射和电子显微镜测试结果证实,在溶剂热压过程中,ZnO纳米颗粒既没有发生结构变化也没有经历明显的长大过程,而且溶剂基本上已经全部从样品中逸出。此外,得到的ZnO多孔纳米块体具有较高的热稳定性。
     为了进一步改进多孔纳米块体的孔径、孔容、比表面积和孔隙率,同时为研究多孔纳米块体的催化性能做准备,我们义以TiO_2纳米粉为原料制备了具有均匀孔径和大孔容的TiO_2多孔纳米块体。实验中我们发现:与制备ZnO多孔纳米块体的情况类似,通过改变溶剂的种类、热压温度以及恒温时间可以在一定范围内调变TiO_2多孔纳米块体的孔径、孔容、比表面积和孔隙率。同样地,溶剂的种类也是影响TiO_2多孔纳米块体的孔径、孔容、比表面积和孔隙率的关键因素。与水相比,用乙醇、异丙醇和氨水作溶剂时制备的TiO_2多孔纳米块体的孔径、孔容和孔隙率较大,其中,用异丙醇作溶剂制备的样品的孔容和孔隙率最大,分别为0.28cm~3/g和49%。再有,利用单一溶剂时,TiO_2多孔纳米块体的孔径分布范围较窄,而多种溶剂混合使用则会使孔径的分布范围明显变宽。与制备ZnO多孔纳米
In this thesis, ZnO, TiO_2, ZrO_2 and AlOOH bulk porous nanosolids have been prepared by a unique solvothermal hot-press method, using several kinds of nanoparticles and solvents as the starting materials. Furthermore, some novel composite fluorescent materials ZrO_2/RhB, ZrO_2/morin and AlOOH/RhB composites have also been synthesized by assembling RhB and morin molecules into the channels of the above porous nanosolids through a pressure-driving assembling process, and the properties of these composites are systematically investigated.ZnO nanomaterials have excellent mechanical, thermal, optical, electrical and sensing properties, so many papers on the preparation of ZnO nanomaterials have been published. However, to our best knowledge, there has been no report on bulk ZnO porous nanosolids up to now. Here we have prepared ZnO porous nanosolids by a unique solvothermal hot-press method, and their properties are preliminarily characterized. The results show that, ZnO porous nanosolids with uniform pore diameters can be obtained by this method, and the pore diameter, pore volume, specific surface area and porosity of the porous nanosolids can be adjusted by changing either the hot-press temperature, pressure or the kinds of solvents. Among these factors, the kind of solvents is an important one that dominating the above properties. For example, the primary pore diameter is larger when anhydrous ethanol, isopropyl alcohol or N, N-Dimethyl formamide is used as the solvent, compared with that of the sample prepared by using deionized water as the solvent. Besides, the pore volume and porosity of the porous nanosolids reach the maximum values when N, N-Dimethyl formamide is used as the solvent, namely, 0.20 cm~3/g and 52%, respectively. In addition, during the process of solvothermal hot-press treatment, ZnO nanoparticles have not undergone any phase transformation or changing in particle size, and nearly all the solvents have escaped from the samples. Besides, the results of thermal analysis of the samples also show that their thermal stability is very high.In order to further increase the pore diameter, porosity and specific surface area, and investigate the catalytic properties of the porous nanosolids, TiO_2 porous nanosolids with uniform pore diameter and large pore volume are prepared using TiO_2
    nanoparticles as the starting materials. It is found that the pore diameter, pore volume, specific surface area and porosity of the porous nanosolids can be adjusted by changing either the kind of solvent, hot-press temperature or the hot-pressing time. Similar to the above, the kind of solvents is also a key factor that dominating the above properties of the porous nanosolids. Compared with that of the sample prepared by using deionized water as the solvent, the pore diameter, pore volume and porosity of TiO2 porous nanosolids prepared by using anhydrous ethanol, isopropyl alcohol or ammonia as the solvent are comparatively larger. Among these samples, the TiO2 porous nanosolids prepared by using isopropyl alcohol as the solvent has the largest specific surface area and porosity, i.e. 0.28 cm3/g and 49%, respectively. On the other hand, the uniformity of the pore diameters of TiCh porous nanosolids prepared by using single solvent is much better than that of samples obtained by using multiple solvents. Similar to that of ZnO porous nanosolids, no phase transformation and changing in particle size have been observed during the process of solvothermal hot-press treatment. This phenomenon is beneficial to preserving the catalytic activity of TiC>2 nanoparticles. The thermal analysis results also show that the TiC>2 porous nanosolids is rather stable under high temperature conditions.On the basis of successfully preparing TiO2 porous nanosolids, TiO2/RhB composites have been synthesized by assembling RhB into the channels, and the catalytic effect of T1O2 porous nanosolids on the degradation of RhB is also investigated. From the experiments we find that RhB can be degraded under the catalytic effect of TiO2 porous nanosolids, and the catalytic efficiency is affected by both the temperature and time of assembling process. When the temperature is increased, the catalytic efficiency of TiO2 porous nanosolids on the degradation of RhB is improved, and it becomes degenerated if the time of assembling process is extended.On the other hand, the results indicate that, the photoluminescence of TiO2/RhB composites is very poor, even though it has been prepared under optimized conditions. In order to further improve the photoluminescence efficiency of composites, ZrO2 porous nanosolids with the highest porosity of 45% are prepared by the same solvothermal hot-press method. The key factors that affecting the pore diameter, porosity and specific surface area of ZrO2 porous nanosolids have been studied. Similar
    to the situation of TiC>2 porous nanosolids, TxOj nanoparticles have undergone neither phase transformation nor changing in particle size during the process of solvothermal hot-press treatment. The results also show that the thermal stability of ZrO2 porous nanosolids is very high.On the basis of above experimental results, ZrC>2 porous nanosolids/RhB fluorescent composites are synthesized by assembling RhB into the channels of Z1O2 porous nanosolids. It is found that the photoluminescence efficiency of this composite is rather high. Besides, the results also indicate that the light absorption of the composites mainly come from the RhB molecules assembled into the channels, and the corresponding photoluminescence of the composites also comes from these RhB molecules. In the assembling experiments, we find that the concentrations of RhB and the time of assembling process have much effect on the photoluminescence of the composites. When the concerntration of RhB is increased, the photoluminescence intensity of composites increases at first and followed by a decrease. At the same time, the peak position shows a red shift (from 600nm to 614nm). On the other hand, the photoluminescence intensity of the composites shows a similar trend with the extending of assembling time, but the peak position remains unchanged.From the above analysis we know that, the photoluminescence of both TiO2/RhB and Z1O2 porous nanosolids/RhB composites mainly come from RhB molecules, and the role of the porous nanosolids is restricted to preventing the aggregation of RhB molecules. In order to synthesize real composite fluorescent materials, Z1O2 porous nanosolids/morin composites have been synthesized by assembling morin molecules into the channels of ZrO2 porous nanosolids. The results reveal that the photoluminescence efficiency of Z1O2 porous nanosolids/morin composites is very high, contrasting to the poor photoluminescence efficiency of both morin and ZrO2 porous nanosolids. The FTIR spectra of the composites reveal that chemical bonds have formed between morin molecules and the atoms on the surface of pores in Z1O2 porous nanosolids, which is beneficial to improving the photoluminescence efficiency of the composites. In addition, the photoluminescence intensity of the composites increases dramatically at first and then decreases gradually with the increasing of morin concentrations and the extending of assembling time, and the peak position shows a red
    shift. This phenomenon shows that porous nanosolids may find many applications in the fabrication of novel and high fluorescent efficiency composites.For investigating the effects of porous nanosolids, A100H porous nanosolids and the corresponding composite materials have been prepared. It is found that the largest specific surface area of this porous nanosolid was 119m2/g, and the pore volume and porosity reach to 0.36cm3/g and 51%, respectively. On the other hand, the pore diameter, pore volume, specific surface area and porosity of A100H porous nanosolids can be adjusted by changing either the hot-press temperature or the kinds of solvents. At the same time, both the hot-press temperature and kinds of solvents have great effects on the phase of A100H porous nanosolids. Thermal stability testing of the sample indicates that A100H porous nanosolids could be transformed into AI2O3 by heating at 520°C for4h.By using A100H porous nanosolids prepared above, A100H porous nanosolids /RhB composites are synthesized by assembling RhB into the channels of A100H porous nanosolids. The results reveal that, similar to the situation of Z1O2 porous nanosolids/RhB composites, the light absorption of the A100H porous nanosolids/RhB composites also mainly come from RhB molecules assembled into the channels. Correspondingly, the photoluminescence of these composites also come from these RhB molecules. Similarly, the photoluminescence intensity of composites also increases at first and then decreases with the increasing of RhB concentrations and extending of assembling time. Correspondingly, the peak position shows a red shift (from 588nm to 592nm) with the increasing of RhB concentrations, but it remains unchanged with the extending of assembling time.
引文
1.龚建华.《走进纳米世界——21世纪一场震撼全球的技术革命》,广东经济出版社,2001,4:13-14.
    2.张立德,牟季美.《纳米材料和纳米结构》,科学出版社,2001,P2-6.
    3. W.Y. Wang, Y. P. Xu, D. F. Zhang, X. L. Chen. Synthesis and dielectric properties of cubic GaN nanoparticles, Mater. Res. Bull., 2001, 36:2155-2162.
    4. Y.C. Lan, X.L. Chen, Y. P. Xu, Y. G. Cao, F. Huang. Syntheses and structure of nanocrystalline gallium nitride obtained from ammonothermal method using lithium metal as mineralizator, Mater. Res. Bull., 2000, 35: 2325-2330.
    5. W.S. Shi, Y. F. Zheng, N. Wang, C.S. Lee, S.T. Lee. Oxide-assisted growth and optical characterization of gallium-arsenide nanowires, Appl. Phys. Lett., 2001, 78: 3304-3306.
    6. C.C. Tang, S. S. Fan, M. L. Chapelle, H. Y. Dang, P. Li. Synthesis of gallium phosphide nanorods, Adv. Mater., 2000, 12: 1346-1348.
    7. S. Iijima. Helical microtubules of graphitic carbon, Nature, 1991,354: 56-58.
    8.李戈扬,张流强,辛挺辉,乌亮,李鹏兴.W/SiC纳米多层膜的制备及表征,真空科学与技术,1999,19(4):25-28.
    9. M. Schurr, J. Hassmann, R. KUgler, Ch. Tomaschko, H. Voit. Ultrathin layers of rare earth oxides from Langmuir-Blodgett films, Thin Solid Films, 1997, 307: 260-265.
    10.王兴华,郑厚植,余涛等.GaAs/AlGaAs单量子阱中界面粗糙度散射,半导体学报,1994,15(5):229-332.
    11.张立德.《纳米材料》,北京:化学工业出版社,2000,P6-41.
    12. W.P. Halperin. Quantum size effects in metal particles, Rev. of Modern Phys., 1986, 58: 533-606.
    13. H. Tabagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, T. Nakagiri. Quantum size effects on photoluminescence in ultrafine Si particles. Appl. Phys. Lett. 1990, 56(24): 2379-2380.
    14. M. Vehara, B. Barbara, B. Dieny, P.C.E. Stamp. Staircase behaviour in the nagnetization reversal of a chemically disordered magnet at low temperature. Phys. Lett. A, 1986, 114(1): 23-26.
    15. P. Ball, L.Garwin, Science at the atomic scale. Nature, 1992, 355: 761-766.
    16. D.L. Feldhein, C.D. Keating. Self-assembly of single electron transistors and related devices, Chem. Soc. Rev., 1998, 27(1): 1-13.
    17.李江,潘裕柏,宁金威,黄莉萍,郭景坤.纳米晶添加氧化铝粉体的低温烧结研究,无机材料学报,2003,18(6):1192-1198.
    18.张立德,牟季美.《纳米材料学》,辽宁科学技术出版社,P32-35.
    19.都有为.超微颗粒磁性,物理学进展,1993,13(1):255-265.
    20.李泉,曾广赋,席时权.纳米粒子,化学通报,1995,6:29-34.
    21.邹炳锁,陈文驹,汤国庆等.Fe_2O_3纳米微粒的电子结构特征及对其光学特性的影响,物理学报,1993,42(7):1127-1133.
    22.蔡树芝,牟季美,张立德等.纳米非晶氮化硅键态结构的X-射线径向分布函数研究,物理学报,1992,41(10):1620-1626.
    23.巩雄,郭永,杨宏秀等.纳米材料及其光学特性,化学通报,1998,3:19-21.
    24.张志煜,崔作林.《纳米技术与纳米材料》,国防工业出版社,2000,P175-182.
    25. D.D. Beck, R. W. Siegel. The dissociation absorption of hydrogen sulfide over nanophase titanium dioxide, J. Mater, Res., 1992, 7(10): 2840-2845.
    26. P.S. Awati, S. V. Awate, P. P. Shah, V. Ramaswamy. Photocatalytic decomposition of methylene blue using nanocrystalline anatase titania prepared by ultrasonic technique, Catal. Comm., 2003, 4: 393-400.
    27. J. M. Coronado, S. Kataoka, I. Tejedor-Tejedor, M. A. Anderson. Dynamic phenomena during photocatalytic oxidation of ethanol and acetone over nanocrystalline TiO_2: simultaneous FTIR analysis of gas and surface species, J. Catal., 2003, 219: 219-230.
    28.刘继进,陈宗璋,何莉萍.纳米氧化钛的制备、表征及应用研究,功能材料,2002,33(6):658-660.
    29. A. Molinari, R. Amadelli, L. Antolini, A. Maldotti, P. Battioni, D. Mansuy. Photoredox and photocatalytic processes on Fe Ⅲ-porphyrin surface modified nanocrystalline TiO_2, J. Molecular Catal. A: Chemical, 2000, 158, 521-531.
    30. J. Chen, D. F. Ollis, W. H. Rulkens, H. Bruning. Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO_2 and metallized TiO_2 suspensions. Part (Ⅰ): photocatalytic activity and pH influence, Wat. Res., 1999, 33 (3): 661-668.
    31. K. T. Ranjit, I. Willner, S. Bossmann, A. Braun. Iron (Ⅲ) phthalocyanine-modified titanium dioxide: a novel photocatalyst for the enhanced photodegradation of organic pollutants, J. Phys. Chem. B, 1998, 102(47): 9397-9403.
    32. M. R. Hoffman, S. T. Martin, W. Choi, D. W. Bahnemannt. Environmental applications of semiconductor photocatalysis, Chem. Rev., 1995, 95: 69-96.
    33.孙静,高濂,张青红.制备具有光催化活性的金红石相纳米氧化钛粉体,化学学报,2003,61 (1):74-77.
    34.王广厚,韩民,纳米微晶材料的结构和性质,物理学进展,1990,10 (3):248-289.
    35. H. Hahn, R. S. Averback. Low-temperature creep of nanocrystalline titanium (Ⅳ) oxide, J. Am. Ceram. Soc., 1991, 74(11): 2918-2921.
    36. Birringer R. Karch, H. Gieiter. Ceramics ductile at low temperature. Nature, 1987, 330(6148): 556-557.
    37. S. Basu, A. Dutta. Room-temperature hydrogen sensors based on ZnO, Mater. Chem. Phys., 1997, 47: 93-96.
    38.惠春,陈寿田,徐爱兰等.半导体SnO_2纳米晶态粉体显微结构对气敏传感器性能的影响,功能材料,2000,31(2):180-182.
    39. N.C. Greenham, X.G. Peng, A.P. Alivisatos. CdSe nanocrystal rods/ poly (3-hexylthiophene) composite photovoltaic devices, Adv. Mater., 1999, 11(11): 923-927.
    40. S.K. Shukla, G.K. Parashar, A. P. Mishra, et al. Nano-like magnesium oxide films and its significance in optical fiber humidity sensor, Sens. Actuator. B, 2004, 98: 5-11.
    41. F.J. Arrequi, Y. Liu, I. R. Matias, R.O. Claus, Optical fiber humidity sensor using a nano Fabry-Perot cavity formed by the ionic self-assembly method, Sens. Actuator. B, 1999, 59(1): 54-59.
    42.冯丽娟,赵宇靖,陈诵英.超细粒子催化剂,石油化工,1991,2(9):633-639.
    43.芮延年,刘文杰,王明娣,张农.高浓有机废水的纳米催化超声裂解处理,中国给水排水,2003,19:64-66.
    44.王传义,刘春艳,沈涛.半导体光催化剂的表面修饰,高等学校化学学报,1998,19(12):2013-2019.
    45. Meiyan Yu, Xiaopeng Hao, Deliang Cui, et al. Synthesis of aluminium nitride nanocrystals and their catalytic effect on the polymerization of benzene, Nanotechnology, 2003, 14: 29-32.
    46. C. Hui, S. Chen, A. Xu ,et al. A study of thick - film gas sensors based on nanopowders prepared by hydrothermal synthesis technique, Technical Digest of the Seventh International Meeting on Chemical Sensors, International Academic Publishers, 1998,75-77.
    47. D, Briand, M. Labeau, J. F. Currie, et al. Pd-doped SnO_2 thin films deposited by assisted ultrasonic spraying CVD for gas sensing: selectivity and effect of annealing, Sensors and Actuators B, 1998, 48: 395-402.
    48.徐甲强,刘艳丽,牛新书.纳米ZnS的合成及其气敏性能研究,功能材料,2002,33(4):425-427.
    49. H. Lin, Shah-jye Tzeng, Peng-jan Hsiau, et al. Electrode effects on gas sensing properties of nanocrystalline zinc oxide, Nanostruct. Mater., 1998, 10(3): 465-477
    50. K.H. An, S. Y. Jeong, H. R. Hwang, Y. H. Lee. Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites, Adv. Mater., 2004, 16(12): 1005- 1009.
    51.王育德.纳米微晶巨磁阻抗元器件—21世纪的传感器,汽车电器,2000,2:22.
    52.缪煜清.纳米技术在生物传感器中的应用,传感器技术,2002,21(11):61-64.
    53.许改霞,王平,李蓉等.纳米传感器技术及其在生物医学中的应用(国外医学生物工程分册),2002,25(2):49.
    54. S. Bhaduri, S.B. Bhaduri. Enhanced low temperature toughness of Al_2O_3-ZrO_2 nano/nano composites Nanostruct. Mater., 1997, 8(6): 755-763
    55.王文中,李良荣,刘兴龙.纳米材料的性能、制备和开发应用,材料导报,1994,6:8-10.
    56.张巨先,高陇桥,李发.无团聚、纳米ZrO_2增韧Al_2O_3基陶瓷材料,真空电子技术,1998,5:40-43
    57.李云凯,钟家湘,朱鹤孙,刘云飞.碳化硅、氧化锆增韧氧化铝复相陶瓷的研究,北京理工大学学报,1996,16(5):561-565.
    58.张喜梅.《超声溶胶-凝胶法制备氧化锆纳米粉体的研究》,华南理工大学博士论文,2003,P10.
    59. M. Nogami, S. Suzuki, K. Nagasaka. Sol-gel processing of small sized CdSe crystal-doped silica glasses, J. Noncryst. Solid, 1991, 135(2-3): 182-188.
    60.邹炳锁,王斌.岩盐型ZnO纳米微粒的生成和光谱特性,科学通报,1994,39(6):499-501.
    61. K. J. Widder, A.E. Senyel, G.D. Scarpelli. Magnetic microspheres: A model system for site specific drug delivery in vivo. Proceedings of the Society for Experimental Biology and Medicine, 1978, 158: 141-146.
    62.高善民,孙树声,刘兆明.纳米材料的应用前景展望,化学世界,2000,11:613-616.
    63. N. Yamasaki, T. Kai, M. Nishioka, et al. Porous hydroxyapatite ceramics prepared by hydrothermal. Hot-prossing, J. Mater. Sci. Lett, 1990, 9: 1150-1151.
    64.崔福斋.医用植入物的离子束增强沉积羟基磷灰石镀层的制备方法,发明专利申请号97120353.
    65.刘秀琳,徐红燕,孟宪平等.利用溶剂热压方法制备羟基磷灰石多孔纳米固体,物理化学学报,2004,20(6):608-611.
    66.王丽萍,宏广言.无机.有机纳米复合材料,功能材料,1998,29(4):343-347.
    67.吕孟凯.《固态化学》,山东大学出版社,P313.
    68.刘振刚.《Ⅲ-Ⅴ族半导体纳米材料新制备路线探索和性质表征》,山东大学博士论文,2003,P18-19.
    69. W. Zhao, J. Chen, B. Zhang, et al. Interaction of squarylium cyanine with nanoparticle TiO_2 for photoelectric conversion, 1998, 39(4): 281-290.
    70. G. Redmond, A. . Keeffe, C. Burgess, C. Machale, D. Fitzmaurice. Spectroscopic determination of the flatband potential of transparent nanocrystalline zinc oxide films, J. Phys. Chem., 1993, 97(42): 11081-11086.
    71. J. K. Leland, A. J. Bard. Electrochemical investigation of the electron-transfer kinetics and energetics of illuminated tungsten oxide colloids, J. Phys. Chera, 1987, 91(19): 5083-5087.
    72. C. Nasr, S. Hotchandani, P.V. Kamat. Electrochemical and photoelectrochemical properties of monoaza-15-crown ether linked cyanine dyes: photosensitization of nanocrystalline SnO_2 films, Langmuir, 1995, 11(5): 1777-1783.
    73. M.H. Huang, S. Mao, H. Feick, et al. Room-temperature ultraviolet nanowire nanolasers, Science, 2001, 292: 1897-1899.
    74. Y. Zhang, H. Jia, X. Luo, et al. Synthesis, microstructure and growth mechanism of dendrite ZnO nanowires, J. Phys. Chem. B, 2003, 107: 8289-8293.
    75. S. Li, C.Y. Lee, T.Y. Tseng. Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process, J. Cryst. Grow., 2003, 247: 357-362.
    76. J. Zhang, W. Yu, L. Zhang. Fabrication of semiconducting ZnO nanobelts using a halide, Phys. Lett. A, 2002, 299: 276-281.
    77. Z.W. Pan, Z.R. Dai, Z.L. Wang. Nanobelts of semiconducting oxides, Science, 2001,291: 1947-1949.
    78. X. Wang, Y. Ding, C.J. Summers, et al. Large-scale synthesis of six-nanometer-wide ZnO nanobelts, J. Phys. Chem. B, 2004, 108(26): 8773-8777.
    79. B. Liu, H.C. Zeng. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50nm, J. Am. Chem. Soc, 2003, 125: 4430-4431.
    80. J.Y. Lao, J.G. Wen, Z.F. Ren. Hierarchical ZnO nanostructures, Nano. Lett. , 2002, 2(11): 1287-1291.
    81. C.C. Tang, S.S. Fan, M.L. Chapelle, P. Li. Silica-assisted catalytic growth of oxide and nitride nanowires, Chem. Phys. Lett., 2001, 333: 12-15.
    82. H. Yan, R. He, J. Pham, P. Yang. Morphogendsis of one-dimensional ZnO nano- and microcrystals, Adv. Mater., 2003, 15(5): 402-405.
    83. Z. Wang. Zinc oxide nanostructures: growth, properties and applications, J. Phys:
     Condens. Matter, 2004, 16: R829-858.
    84. William L. Hughes, Zhong L. Wang. Formation of piezoelectric single-crystal nanorings and nanobows, J. Am. Chem. Soc., 2004, 126: 6703-6709.
    85. X. Wang, Y. Ding, C.J. Summers, Z. L. Wang. Large-scale synthesis of six-nanometer-wide ZnO nanobelts, J. Phys. Chem. B, 2004, 108: 8773-8777.
    86. C. Jin, W. Zhu, D. Fang. Preparation of nanocrystalline ZnO particle, Fine Chem., 1999, 16(2): 26-28.
    87. Y.H. Lin, Z. L. Tang, Z.I. Zhang. Preparation of nanometer zinc oxide powders by plasma pyrolysis technology and their application, J. Am. Ceram. Soc., 2000, 83(11): 2869-2871.
    88. T.Q. Lin, O. Sakurai, N. Mizutani, M. Kato. Preparation of spherical fine zinc oxide particles by the spray pyrolysis method using ultrasonic atomication techniques, J. Mater. Sci., 1986, 21: 3698-3672.
    89. S.B. Park, Y. C. Kang. Photocatalytic activity of nanometer size ZnO particles prepared by spray pyrolysis, J. Aerosol Sci., 1997, 28: s473-s474.
    90. I. Trindade, J. D. Pedrosa de Jesus, P. O'Brien. Preparation of zinc oxide and zinc sulfide powders by controlled precipitation from aqueous solution, J. Mater. Chem., 1994, 4:1611-1617.
    91. M. Andres-Verges, M. Martinez-Gallego. Spherical and rod-like zinc oxide miccrocrystals: morphological characterizatio n and microstructural evolution with temperture, J. Mater. Sci., 1992, 27: 3756-3762.
    92. N. Audebrand, J.-P. Auffre'dic, D. Louer. X-ray diffraction study of the early stages of the growth of nanoscale zinc oxide crystallites obtained from thermal decomposition of four precursors. General concepts on precursor-dependent microstructural properties, Chem. Mater., 1998, 10:2450-2461.
    93. D. Chen, X. Jiao, G. Cheng. Hydrothermal synthesis of zinc oxide powders with different morphologies, Solid Stat. Commun., 2000, 113:363-366.
    94.李汶军,施尔畏,田明原等.水热法制备氧化锌纤维及纳米粉体,中国科学(E),1998,28(3):212-219.
    95. S. Mahamuni, K. Borgohain, B. S. Bendre, J. L. Valene. H. R. Subhash. Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots, J. Appl. Phys., 1999, 85: 2861-2865.
    96. X.R. Ye, D.Z. Jia, J. J. Qi, X. Q. Xin, Z. Xue. One-step solid-state reactions at ambient temperatures—a novel approach to nanocrystal synthesis, Adv. Mater., 1999, 11 : 941-942.
    97.王疆瑛,贾殿赠,陶明德.固相配位化学反应法合成ZnO纳米粉体,功能材料,1998,29 (6):598-603.
    98. Y. Inubushi, R. Takami, M. Iwasaki, H. Tada, S. Ito. Mechanism of formation of nanocrystalline ZnO particles through the reaction of [Zn(acac)_2] with NaOH in EtOH, J. Colloid. Interface Sci., 1998, 200: 220-227.
    99. G. Rodry' guez-Gattorno, P. Santiago-Jacinto, L. Rendon-Va'zquez, Jo'zsef Ne'meth, Imre De'ka'ny, D. Dy'az. Novel synthesis pathway of ZnO nanoparticles from the spontaneous hydrolysis of zinc carboxylate salts, J. Phys. Chem. B, 2003, 107: 12579-12604.
    100. R. Wu, C. Xie, H. Xia, J. Hu, A. Wang. The thermal physical formation of ZnO nanoparticles and their morphology, J. Cryst. Grow., 2000, 217: 274-280.
    101.周铭.纳米二氧化钛的研究进展,涂料工业,1996,4:36-39.
    102. Z. Ding, X. Hu, Q. Gao, et al. Novel silica gel supported TiO_2 photocatalyst synthesized by CVD method, Langmuir, 2000, 16:6216-6222.
    103. Z. D. Dohcevic, M. J. Scepanovic, I. I. Hinic, G. M. Stanisic. Laser induced synthesis of ultrafine anatase TiO_2 powders, Mater. Sci. Forum, 2004, 453-454: 237-242.
    104. C. Su, B.-Y. Hong, C.-M. Tseng. Sol-gel preparation and photocatalysis of titanium dioxide, Catal. Today, 2004, 96(3): 119-126.
    105. A. J. Maira, K. L. Young, C. Y. Lee, et al. Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO_2 catalyst, J. Catal., 2000, 192: 185-196.
    106. L.J. Alemany, M.A. Bafiares, E. Pardo, F. Martin-Jimenez, J. M. Blasco. Morphological and structural characterization of a titanium dioxide system, Mater. Characterization, 2000, 44(3): 271-275.
    107. S. D. Park, Y.H. Cho, W.W. Kim, S.J. Kim. Understanding of homogeneous spontaneous precipitation for monodispersed TiO_2 ultrafine powders with rutile phase around room temperature, J. Solid. Stat. Chem., 1999, 146: 230-238.
    108.高濂,陈锦元,黄军华,严东生.醇盐水解法制备二氧化钛纳米粉体,无机材料学报,1995,10(4):423-428.
    109.林元华,张中太,黄淑兰等.纳米金红石型TiO_2粉体的制备及其特征,无机材料学报,1999,14:853-856.
    110.赵旭,王子忱,赵敬哲等.球形二氧化钛的制备,功能材料,2000,31(3):303-305.
    111.施利毅,胡莹玉,张剑平等.微乳液反应法合成二氧化钛超细粒子,功能材料,1999,30(5):495-497.
    112. D. M. Antonelli, J.Y. Ying. Synthesis of hexagonally packed mesoporous TiO_2 by a modified sol-gel method, Angew. Chem. Int. Ed. Engl., 1995, 34(18): 2014-2017.
    113. P. D. Yang, D.Y. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline frameworks, Chem. Mater., 1999, 11(10): 2813-2826.
    114.乐英红,马臻,华伟明,高滋.二氧化钛介孔分子筛的合成和表征,化学学报,2000,58(7):777-780.
    115.郑金玉,邱坤元,危岩.有机小分子模板法合成二氧化钛中孔材料,高等学校化学学报,2000,21(4):647-649.
    116. B. Zhang, B. Chen, K. Shi, S. He, X. Liu, Z. Du, K. Yang. Preparation and characterization of nanocrystal grain TiO_2 porous microspheres, Appl. Catal. B: Environmental, 2003, 40, 253-258.
    117. P. Hoyer. Formation of a titanium dioxide nanotube array, Langrnuir, 1996, 12: 1411-1413.
    118. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara. Formation of titanium oxide nanotube, Langmuir, 1998, 14:3160-3163.
    119. S. Kobayashi, K. Hanabusa, N. Hamasaki, M. Kimura, H. Shirai, Chem. Mater., 2000, 12: 1523-1525.
    120. Y. Lei, L.D. Zhang. W, Chen, G.W. Meng, GH. Li, X.Y. Zhang, C.H. Liang, W. Chen, S. X. Wang. Preparation and photoluminescence of highly ordered TiO_2 nanowire arrays, Appl. Phys. Lett., 2001,78(8): 1125-1127.
    121. Y. X. Zhang, L.D. Zhang, W. Chen, G.W. Meng, M. J. Zheng, L.X. Zhao. Electrochemical fabrication of highly ordered semiconductor and metallic nanowire arrays, Chem. Mater., 2001, 13:2511-2515.
    122. Y. X. Zhang, G. H. Li, Y. X. Jin, Y. Zhang, J. Zhang, L.D. Zhang. Hydrothermal synthesis and photoluminescence of TiO_2 nanowires, Chem. Phys. Lett., 2002, 365: 300-304.
    123. P. D. Cozzoli, A. Kornowski, H. Weller. Low-temperature synthesis of soluble and processable organic-capped anatase TiO_2 nanorods, J. Am. Chem. Soc., 2003, 125: 14539-14548.
    124. J.J. Wu, C. C. Yu. Aligned TiO_2 nanorods and nanowalls, J. Phys. Chem. B, 2004, 108: 3377-3379.
    125. N. G. Petrik, D.R Taylor, T.M. Orlando. Laser-stimulated luminescence of yttria-stabilized cubic zirconia crystals, J. Appl. Phys., 1999, 85: 6770-6776.
    126. C. Morteera, G. Cerrato, L. Ferroni. Surface characterization of yttria-stabilized tetragonal ZrO_2 Part 1. Structural, morphological, and surface hydration features, Mater. Chem. Phys., 1994, 37: 243-257.
    127. Z. Y. Can, H. Narita, J. Mizusaki, H. Tagawa. Detection of carbon monoxide by using zirconia oxygen sensor, Solid Stat. Ionics, 1995, 79: 344-348.
    128. A. Corma. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions, Chem. Rev., 1995, 95: 559-614.
    129. B. Zhu, C.R. Xia,X. G. Luo. Transparent two-phase composite oxide thin films with high conductivity, Thin Solid Films, 2001, 385: 209-214.
    130. S. Benfer, E. Knozinger, Structure, morphology and surface properties of nanostructured ZrO_2 particles, J. Mater. Sci., 1999, 9:1203-1209.
    131.孙亚光,余丽秀.二氧化锆制备及发展趋势,化工新型材料,2000,28(4):28-30.
    132. P. Afanasiev, C. Geantet, M. Breysse, et al. Preparation of high surface area Mo/ZrO2 catalysis by a molten salt method: application to hydrodesulfurization, J. Catal., 1995, 153: 17-24.
    133. P. Afanasiev, C. Geantet, M. Lacroix, et al. Synthesis of ZrO_2 in molten mixtures: control of the evolved gas and the oxide texture, J. Catal., 1996, 162: 143-146.
    134. J. Ding, T. Tsuzuki, P.G. McCormick. Mechanochemical synthsis of ultrafine ZrO_2 powder nanostructured materials, 1997, 8(1): 75-81.
    135.张中太,唐子龙,黄传勇.超强碱法低温合成二氧化锆超细粉工艺,CN1232787.
    136. G. K. Chuah. An investigation into the preparation of high surface area zirconia, Catal. Today, 1999, 49: 131-139.
    137.李春花,娄彦良,郭文华.溶胶共沉淀法制备ZrO_2超细粉末的工艺研究,功能材料,1997,28(2):303-306.
    138. G. K. Chuah, S. Jaenjcke, B.K. Pong. The preparation of high surface area zirconia Ⅱ: influence of precipitating agent and digestion on the morphology and microstructure of hydrous zirconia, J. Catal., 1998, 175: 80-92.
    139. A. Clearfield. Crystalline hydrous zirconia, Inorg. Chem., 1964, 31(1): 146-148.
    140. M. Z-C. Hu, M.T. Harris, C. Byers. Nucleation and growth for synthesis of nanometric zirconia particles by forced hydrolysis, J. Colloid. Interface Sci, 1998, 198: 87-89.
    141.苗鸿雁,罗宏杰,王秀峰等.低压条件下纳米氧化锆的水热结晶合成,陶瓷工程,1998,32(5):1-4.
    142. M. Inoue, H. Kpminami, T. Inui. Novel synthesis method for thermal stable monoclinic zirconia-hydrolysis of zirconiaum alkoxides at high temperatures with a limited amount on water dissolved in inert organic solvent from the gas phase, Appl. Catal. A, 1995, 121: L1-L5.
    143. J. Fang, J. Wang, S-C Ng et al. Ultrafine zirconia powders via microemulsion processing route, Nanostructure Mater., 1997, 8(4): 499-505.
    144. C. N. R. Rao, B. C. Satishkumar, A. Govindaraj. Zirconia nanotubes, Chem. Commun., 1997, 16:1581-1582.
    145. J. Bao, C. Tie, Z. Xu, Q. Ma, J. Hong, H. Sang, D. Sheng. An Array of concentric composite nanostructures of zirconia nanotubules/vobalt nanowires: preparation and magnetic properties, Adv. Mater., 2002, 14(1): 44-47.
    146. H. Shin, D.-K. Jeong, J. Lee, M. M. Sung, J. Kim. Formation of TiO_2 and ZrO_2 nanotubes using Atomic layer deposition with ultraprecise control of the wall thickness, Adv. Mater., 2004, 16: 1197-1200.
    147. H. Xu, D.H. Qin, Z. Yang, H.L. Li. Fabrication and characterization of highly ordered zirconia nanowire arrays by sol-gol template method, Mater. Chem. Phys., 2003, 80: 524-528.
    148. K. Tanabe, T. Yamaguchi. Acid-based functional catalysis by ZrO_2 and its mixed oxides, Catal. Today, 1994, 20: 185-197.
    149. M. J. Hudson, J. A. Knowles. Preparation and characterization of mesoporous, high-surface-area zirconium (IV) oxide, 1996, 6: 89-95.
    150. G. Pacheco, E. Zhao, A. Garcia, A. Sklyarov, J. J. Fripiat. Syntheses of mesoporous zirconia with anionic surfactants, J. Mater. Chem., 1998, 8 (1): 219-226.
    151. G. Larsen, E. Lotero, M. Nabity, et al. Surfactant-assisted synthesis of mesoporous zirconia powders with high surface areas, J.Catal., 1996, 164: 246-248.
    152. Neeraj, C.N.R. Rao. Phase transformations of mesoporous zirconia, J. Mater. Chem., 1998, 8 (7): 1631-1634.
    153. A. Kim, P. Bruinsma, Y. Chen, L.Q. Wang, J. Liu. Amphoteric surfactant templating route for mesoporous zirconia, Chem. Commun., 1997, 2: 161-162.
    154. U. Ciesla, M. Froba, G. Stucky, F. Schuth. Highly ordered porous zirconias from surfactant-controlled syntheses: zirconium oxide-sulfate and zirconium oxo-phosphate, Chem. Mater., 1999, 11: 227-234.
    155. IUPAC, manual of symbols and terminology. Pure Appl. Chem., 1972, 31: 578-638.
    156. A. Sayari. Catalysis by crystalline mesoporous molecular sieves, Chem. Mater. 1996, 8: 1840-1852.
    157. M.S. Wong, J.Y. Ying. Amphiphilic templating of mesostructured zirconium oxide, Chem. Mater., 1998, 10: 2067-2077.
    158.陈航榕,施剑林,张文华,严东升.高比表面积有序多孔氧化锆合成与表征,无机材料学报,2000,15:1123-1126.
    159. N. O. Engin, A. C. Tas. Preparation of porous Ca_(10)(PO_4)_6(OH)_2 and β-Ca_3(PO_4)_2 bioceramics, J Am. Ceram. Soc., 2000, 83: 1581-1584.
    160.刘秀琳,徐红燕,李梅,孟宪平,王琪珑,蒋民华,崔得良.二氧化锆多孔纳米固体的制备与性质表征,功能材料(增刊),2004,35:3119-3122.
    161.孟宪平.微孔型无机粉末的水热热压固化及固化体性能研究,吉林大学博士论文,P13.
    162. N. Yamasaki, K. Yanagisawa, M. Nishioka, S. Kanahara. A hydrothermal hot-pressing method: apparatus and application, J. Mater. Sci. Lett., 1986, 5: 355-356.
    163. K. Yanagisawa, M. Nishioka, N. Yamasaki. Immoilization of radioactive wastes by hydrothermal hot-pressing, Am. Ceram. Soc. Bull., 1985, 54(12): 1563-1567.
    164. N. Yamasaki, K. Yanagisawa, S. Kanahara, M. Nishiokka, N. Natsuoka, J. Yamazaki. Immobilization of radioactive wastes powder, J. Nucl. Sci. Technol., 1984, 21(1): 71-73.
    165. K. Yanagisawa, M. Nishioka, N. Yamasaki, Immobilization of ratioactive wastes in hydrothermal synthetic rock, properties of waste form containing simulated high-level radioactive waste., J. Nucl. Sci. Technol., 1986, 23 (6): 550-558.
    166. K. Yanagisawa, M. Nishioka, N. Yamasaki. Immobilization of low-level radioactive waste containing sodium sulfate by hydrothermal hot-pressing, J. Nucl. Sci. Technol., 1989, 26(3): 395-397.
    167. M. Nishioka, S. Hirai, K. Yanagisawa, N. Yamasaki. Solidification of glass powder with simulated high-level radioactive waste during hydrothermal hot-pressing, J. Am. Ceram. Soc., 1990, 73(2): 317-322.
    168. M. Nishioka, K. Yanagisawa, N. Yamasaki. Solidification of sludge ash by hydrothermal hot-pressing, J. Water Pollution Control Federation, 1990, 62(7): 926-932.
    169. K. Hosoi, S. Kawai, K. Yanagisawa, N. Yamasaki, Densification process for spherical glass powders with the same particle size by hydrothermal hot-pressing. J. Mater. Sci., 1991, 26: 6448-6452.
    170. N. Yamasaki, T. Kai, M. Nishioka, K. Yanagisawa, K. Ioku. Porous hydroxy-apatite ceramics prepared by hydrothermal hot-pressing, J. Mater. Sci. Lett, 1990, 9: 1150-1152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700