热氢处理对钛合金组织演变及高温变形行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金加工成形比较困难,使得加工过程的制造成本过高,在一定程度上限制了其应用。钛合金热氢处理技术,它通过氢的可逆合金化作用,将氢作为临时性元素加入到钛合金中,可以达到改善钛合金工艺性能的目的。热氢处理技术的应用,能够解决钛合金高温下的氧化和难成形问题,从而可以大大降低钛合金的加工成本,在一定程度上将促进钛合金,尤其是高温钛合金的扩大应用。本文介绍了前人在热氢处理理论方面的研究成果,重点综述了近年来有关热氢处理对钛合金微观组织和力学性能影响方面的理论和试验研究进展。在此基础上,本文以Ti6Al4V和Ti600合金为研究对象,系统研究了钛合金热氢处理后的组织演变及高温变形行为,分析了钛氢化物生成的热力学过程,建立了钛合金动态再结晶过程的元胞自动机模型,取得的研究成果如下:
     (1)研究了热氢处理对Ti6Al4V合金组织结构、微观缺陷及显微硬度的影响。通过显微组织观察及物相分析等手段,研究了Ti6Al4V合金热氢处理后的组织演变规律,用正电子湮没方法分析了氢含量对微观缺陷数量及类型变化的影响,通过显微硬度测试研究了置氢对显微硬度的影响,利用电子探针研究了置氢对合金元素扩散的影响。研究结果表明:Ti6Al4V合金置氢后,当氢含量达到0.3%时,发现了面心立方结构的δ氢化物。在α相和β相中均能析出δ,当氢化物在β相析出时,δ与β具有以下取向关系:[011]_δ//[012]_β,(02(?))_δ//(200)_β。Ti6Al4V合金置氢后,Al、V等合金元素在合金中获得了重新分布。随着氢含量的增加,Ti6Al4V合金的缺陷类型由“空位+位错”逐渐过渡为位错;Ti6Al4V合金内部的缺陷数量,置氢0.1%后显著降低,之后,随着氢含量的增加又逐渐增加。Ti6Al4V合金置氢后,Al、V等合金元素在合金中获得了重新分布。α相和β相的硬度均随着氢含量的增加而升高,在相同氢含量条件下,β相的硬度高于δ相的硬度。置氢Ti6Al4V合金经真空除氢处理后,原始α晶界消失,β相变得细小、破碎,原轧制态组织获得了细化。细化组织的获得是相变和再结晶两种机制共同作用的结果。
     (2)研究了热氢处理对Ti600合金组织演变及宏观硬度的影响。通过显微组织观察及物相分析等手段,研究了Ti600合金置氢后的组织演变规律,分析了氢含量对硅化物析出规律的影响,通过宏观硬度测试研究了置氢对Ti600合金宏观硬度的影响。研究结果表明:Ti600合金置氢后,在氢含量为0.35%和0.5%的试样中均发现有面心立方结构的δ氢化物析出,并且,随着氢含量的增加,氢化物趋于细化。热氢处理后,在基体中析出具有四方结构的硅化物粒子S_3(0.35%H)和六方结构的硅化物粒子S_1(0.5%H)。热氢处理能显著提高Ti600合金的硬度,随着氢含量的增加,其硬度值升高。氢化物、硅化物粒子、晶格缺陷以及马氏体α′的存在是导致硬度升高的主要因素。
     (3)计算了钛氢化物生成的热力学函数。采用修正的Miedema生成热模型,计算了钛氢化物TiH_x(1≤x≤2)的标准焓变;采用统计热力学的方法,计算了TiH_2生成的标准熵变,分析了TiH_2生成的热力学过程。计算结果表明:TiH_x的标准焓变值随着x的增加呈线性关系减小。T=298K时,计算得到的TiH_2生成的标准焓变、熵变及Gibbs自由能分别为-137.46kJ·mol~(-1)、-143.0J·mol~(-1)·K~(-1)和-94.85kJ·mol~(-1)。当温度低于925K时,反应Ti(s)+H_2(g)→TiH_2(s)倾向于自发进行,而温度高于925K时,反应将朝相反方向进行。随着温度的升高,TiH_2的平衡氢压逐渐升高,其稳定性逐渐降低。
     (4)通过热模拟试验研究了Ti600合金热氢处理后的高温变形行为,通过显微组织观察研究了高温变形后的组织演变规律,分析了氢致Ti600合金的高温改性机理。结果表明:氢含量小于0.3%时,Ti600合金高温变形时的流变应力、应变硬化率及应变能密度均随着氢含量的增加而减小。从流变应力角度考虑,0.3%的氢可以降低Ti600合会热压缩温度至少80℃,或提高应变速率约2个数量级。氢含量一定时,Ti600合金的变形激活能随着应变的增加而逐渐降低。真应变为0.6时,Ti600合金未置氢及置氢0.1%、0.3%和0.5%后的变形激活能分别为648.4、459.0、324.3和420.0kJ·mol~(-1)。氢含量处于0~0.3%范围内时,氢含量越低,变形激活能越小。
     (5)建立了置氢Ti600合金高温变形的本构关系。为消除多重共线性对回归模型的影响,通过共线性诊断、变量筛选等过程合理地选取了影响Ti600合金流变应力的“最优”自变量子集。然后,采用偏最小二乘法分别建立了氢含量为0、0.3%和0.5%时Ti600合金高温变形时的本构关系。
     (6)应用元胞自动机方法模拟了Ti6Al4V合金在β单相区的动态再结晶过程,并分析了组织演变过程的动力学特征。模拟结果表明:在应变速率一定的情况下,动态再结晶分数随着应变的增加而显著增加。当应变量足够时,应变速率越大,得到的动态再结晶晶粒尺寸越细小,动态再结晶越不充分。动态再结晶过程的动力学分析表明:动态再结晶过程中同时存在恒定速率形核和位置过饱和形核两种形核方式。Avrami指数介于2.4~2.9之间,且Avrami指数随着应变速率的增加而升高。
The manufacturing cost of titanium alloys is high for its poor workability,limiting the application in this way.Thermo hydrogen treatment(THT) of titanium alloys,or the use of hydrogen as a temporary alloying element due to the reversible reaction of hydrogen with titanium,can improve the processing properties of titanium alloys.THT for titanium alloys can solve the oxidative problem at high temperature and improve the hot workability of the alloys,consequently,lowering the manufacturing cost.The use of THT will give an impulse to the application of titanium alloys,especially high-temperature titanium alloys to some extent.The research findings on THT theory put forward by former researchers are introduced in this paper,especially,the theoretical and experimental development in aspect of influence of THT on microstructures and mechanical properties of titanium alloys.On this basis, Ti6Al4V and Ti600 alloys are employed in this paper to study the microstructural evolution and high temperature deformation behavior of them after THT,systematically,including analysis of thermodynamic process of formation of titanium hydride and simulation of dynamic recrystallization(DRX) process of titanium alloy using a cellular automaton approach.The main conclusions to be drawn are as follows:
     (1) Influence of THT on microstructure,microdefect and microhardness of Ti6Al4V alloy is researched.The microstructural evolution of Ti6Al4V alloy after THT is investigated by microstructure observation and phase analysis.The influence of hydrogen content on the amount and type of microdefect is analyzed by positron annihilation technique(PAT).The influence of hydrogenation on alloying diffusion and microhardness is studied by electron probe microanalysis(EPMA) and microhardness testing,respectively.The results indicate that titaniumδhydride(fcc structure) can precipitate from both a andβphases,and the orientation relationship betweenβandδfollows[011]_δ//[012]_β,(02(?))_δ//(200)_βwhenδprecipitates fromβphase.As the hydrogen content increases,the type of microdefect is at first "vacancy+dislocation" and then it is mainly dislocation.The amount of microdefect shows a dramatic decrease after 0.1%H is charged,and then increases with increasing of hydrogen.After hydrogenation,the alloying elements Al and V redistribute in Ti6Al4V alloy. The hardness values ofαandβphases of Ti6Al4V alloy increase synchronously with increasing of hydrogen,and the hardness ofβis higher than that of a at the same hydrogen content.After vacuum dehydrogenation,αgrain boundary of hydrogenated Ti6Al4V alloy disappears,andβphase is broken up into very fine microstructure.The rolled microstructure of hydrogenated Ti6Al4V alloy is refined after dehydrogenation,which is a result of a combined action of two operating mechanisms of phase transformation and recrystallization.
     (2) Influence of THT on microstructural evolution and macrohardness of Ti600 alloy is researched.The microstructure of hydrogenated Ti600 alloy is investigated by microstructure observation and phase analysis,and the influence of hydrogen content on precipitation of silicide is analyzed.The influence of hydrogenation on macrohardness of Ti600 is studied by macrohardness testing.The results show thatδhydrides(fcc structure) exist in the specimens with 0.35%and 0.5%hydrogen,andδtends to be refined with increasing of hydrogen.There are two types of silicide precipitate in the Ti600 alloy after THT,one is S_3(0.35%H),and the other is S_1(0.5%H).The hardness of Ti600 alloy increases with increasing of hydrogen,and it is considered that hydride,silicide,lattice defects and martensiteα' are the major factors.
     (3) Thermodynamic calculation of formation of titanium hydride is operated.A modified Miedema model is employed to calculate the standard enthalpy of formation of titanium hydride TiH_x(1≤x≤2).The standard entropy of formation of titanium hydride TiH_2 is calculated by statistic thermodynamics method,and the thermodynamic process of formation of TiH_2 is analyzed.The calculated results show that the values of standard enthalpy of formation of TiH_x decrease linearly with increasing of x.The calculated results of standard enthalpy,entropy and Gibbs free energy of formation of TiH_2 at 298K are -137.46kJ·mol~(-1), -143.0J·mol~(-1)·K~(-1) and -94.85kJ·mol~(-1),respectively.The reaction of Ti(s)+H_2(g)→TiH_2(s) inclines to occur spontaneously when temperature is lower than 925K,and the reaction tends to take place in the opposite direction when temperature is higher than 925K.As temperature increases,the equilibrium hydrogen pressure of formation of TiH_2 increases,and the stability of TiH_2 falls,accordingly.
     (4) High temperature deformation behavior of Ti600 alloy after THT by hot simulation experiments is researched,and the microstructural evolution after deformation is investigated by microstructure observation,also,the hydrogen modified high temperature deformation mechanism is analyzed.The results reveal that the flow stress,strain-hardening rate and strain energy density decrease synchronously with increasing of hydrogen when hydrogen content is less than 0.3%.The addition of 0.3%hydrogen in Ti600 alloy can decrease the hot deformation temperature by 80℃or increase the deformation strain rate by two orders of magnitude in flow stress terms.The activation energy of deformation of Ti600 alloy decreases with increasing of strain at a given hydrogen content level.At true strain 0.6,the calculated values of activation energy of deformation of Ti600 alloy without and with 0.1%,0.3%and 0.5%hydrogen are 648.4,459.0,324.3 and 420.0KJ/mol,respectively,and the value of activation energy of deformation decreases gradually with increasing of hydrogen contents from 0 to 0.3%.
     (5) The constitutive relationship of hydrogenated Ti600 alloy during high temperature deformation is established.For eliminating the influence of multi-correlation,the "optimum" independent variable subsets influencing the flow stress of Ti600 alloy are determined by diagnosis of colinearity and selection of variables.Then,constitutive relationship is obtained using partial least squares regression method for high temperature deformation of Ti600 alloy with 0,0.3%and 0.5%hydrogen contents,respectively.
     (6) A cellular automaton(CA) model is employed to simulate the dynamic recrystallization(DRX) inβphase field of Ti6Al4V alloy,and the kinetics during DRX process has been analyzed.The simulation results show that the DRX volume fraction increases remarkably with increasing of strain at a given strain rate.If an adequate strain is given,the DRX grain size of Ti6Al4V alloy decreases with increasing of strain rate,and also the inadequate microstructure is induced.The results of kinetics analysis of DRX reveal that constant nucleation rate nucleation as well as site saturated nucleation behavior occurs during DRX.The Avrami exponent obtained in the present work is a variable ranging from 2.4 to 2.9, which increases with increasing of strain rate.
引文
1.劳金海.高纯度钛的物理和机械性能[J],钛合金信息,1997,2:16-17.
    2.张琦.盛世钛繁荣[J],钛工业进展,2005,22(6):1-4.
    3.Boyer R R.An overview on the use of titanium in aerospace industry[J],Materials Science and Engineering,1996,213A:103-114.
    4.Yu K O.Developments of titanium processing technologies in the USA[A],In:Mituso Niinomi ed.Ti-2007 science and technology,11~(th) world conference on titanium[C],New Osaka:Metallurgy Industry Press,2007,1-4.
    5.Froes F H.Developments in titanium applications[J],Light Metal Age,1995,10:6-8.
    6.钱九红.航空航天用新型钛合金的研究发展及应用[J],稀有金属,2005,24(3):218-222.
    7.张朋省,毛小南,赵永庆,曾卫东,洪权,李辉.世界钛及钛合金产业现状及发展趋势[J],稀有金属快报,2007,26(10):1-6.
    8.訾群.钛合金研究新进展及应用现状[J],钛工业进展,2008,25(2):24-27.
    9.Zhou L.Review of titanium and titanium industry in China[A],In:Mituso Niinomi editor.Ti-2007science and technology,11~(th) world conference on titanium[C],New Osaka:Metallurgy Industry Press,2007,13-15.
    10.Martin R,Evans D.Reducing cost in aircraft[J],Journal of Metals,2000,52:24-29.
    11.付艳艳,宋月清,惠松骁,米绪军.航空用钛合金的研究与应用进展[J],稀有金属,2006,30(6):850-856.
    12.朱知寿,王新南,童路,曹春晓.中国航空结构用新型钛合金研究[J],钛工业进展,2007,24(6):28-32.
    13.王向东,逯福生,贾(宏羽),郝斌,马云风.中国钛工业的进步、机遇和挑战[J],稀有金属材料与工程(增刊3),2008:37:1-6.
    14.周佳宇,哈军.钛合金材料在舰船管系上的应用[J],材料开发与应用,2006,21(3):40-42.
    15.吴怡芳.家庭轿车用钛目前趋势[J],钛工业进展,2001,19(4):26-27.
    16.于思荣.生物医学钛合金的研究现状及发展趋势[J],新材料产业,2001,2:23-25.
    17.张喜燕,赵永庆,白晨光.钛合金及应用[M],北京:化学工业出版社,2005,296-302.
    18.C.莱茵斯,M.皮特尔斯 编,陈振华 译.钛与钛合金[M],北京:化学工业出版社,2005,343-428.
    19.Senkov O N,Jonas J J.Effect of phase composition and hydrogen level on the deformation behavior of titanium-hydrogen alloys[J],Metallurgical and Materials Transactions A,1996,27(7):1869-1876.
    20.Yang K,Edmonds D V.Effect of hydrogen as a temporary alloying element on the microstructure of Ti_3Al intermetallic[J],Scripta Metallurgica et Materialia,1993,28(1):71-77.
    21.Senkov O N,Froes F H.Thermohydrogen processing of titanium alloys[J],International Journal of Hydrogen Energy,1999,24(6):565-576.
    22.Zhou C H,Yang K,Li D F,Lu Y X.Hydrogen effect on deformation behavior of titanium alloy at high temperature[J],Acta Metallurgica Sinica(English Letters),1998,11(3):190-196.
    23.Elias R J,Corso H L,Gervasoni J L.Fundamental aspects of the Ti-H system theoretical and experimental behavior[J],International Journal of Hydrogen Energy,2002,27:91-97.
    24.Lenning G A,Berger L W,Jaffee R I.Effect of Hydrogen on the Mechanical Properties of Titanium and Titanium Alloys[R],ADA9523374,Watertown Arsenal Labs.,MA.,U.S.,1955.
    25.Burte H M.Hydrogen Contamination in Titanium and Titanium Alloys.Part Ⅲ.Strain Aging Hydrogen Embrittlement in alpha-beta Titanium Alloys[R],AD1104397,U.S.,1956.
    26.Zwiecker U.Beitrag zur entwicklung warmfester titanlegierungen[J],Journal of the Less Common Metals,1959,1(3):165-184.
    27.Schleicher H W,Jung-K(o|¨)nig W.Die beeinflussung der warmverformbarkeit von Ti—Al-legierungen durch wasserstoffzus(a|¨)tze[J],Journal of the Less-Common Metals,1959,1(5):348-355.
    28.韩明臣.钛合金的热氢处理[J],宇航材料工艺,1999,1:23-27.
    29.Ilyin A A,Polkin I S,Moamonov A M,Nosov V K.Thermohydrogen treatment-the base of hydrogen technology of titanium alloys[A],Titanium'95:Science and Technology[C],UK,Cambridge:The University Press,1996,2462-2469.
    30.张勇.钛合金及Ti_3Al基合金的氢处理研究[D],北京:北京航空材料研究院,1996.
    31.Kolachev B A,Malkov A V,Vorobyov I A.The effect of hydrogen alloying on workability of titanium alloys[A],Titanium'92:Science and Technology[C],Minerals Metals and Materials Society Warrendale PA,1993,861-869.
    32.Kerr W R.Hydrogen as an alloying element in titanium(hydrovac)[A],Titanium'80:Science and Technology[C],Kyoto,Japan,1980,2477-2486.
    33.Ilyin A A,Mamonov A M.Temperature-concentration diagrams of phase composition of hydrogen-bearing multicomponent titanium alloys[J],Russian Metallurgy,1994,5:52-57.
    34.Ilyin A A,Kollerov M Yu,Golovin I S.Hydrogen influence on plastic deformation mechanism of β-titanium alloys of Ti-Nb system[J],Journal of Alloys and Compounds,1997,253/254:144-147.
    35.Kolachev B A,Kondrasheva N N,Skol'tsov V N.Effect of hydrogen on anisotropy of mechanical properties of VT6Ch titanium alloy at cryogenic temperatures[J],Russian Metallurgy,1994,5:101-105.
    36.Murzinova M A,Salishchev G A,Afonichev D D.The effect of hydrogen on dynamic recrystallization in α-titanium alloys[J],Materials Science Forum,2004,467-470:1223-1228.
    37.Senkov O N,Jonas J J.Effect of strain rate and temperature on the flow stress of β-phase titanium hydrogen alloys[J],Metallurgical and Materials Transactions A,1996,27(5):1303-1312.
    38.Froes F H,Senkov O N,Qazi J I.Hydrogen as a temporary alloying element in titanium alloys:thermohydrogen processing[J],International Materials Reviews,2004,49(3-4):227-245.
    39.Kerr W R.The effect of hydrogen as a temporary alloying element on the microstructure and tensile properties of Ti-6Al-4V[J],Metallurgical Transactions A,1981,16A:1077-1087.
    40.Lederich R J,Sastry S M L,Pao P S.The effect of internal hydrogen on the stress corrosion cracking of Ti-6Al-6V-2Sn in 3.5%NaCl solution[J],Materials Science and Engineering,1980,45(1):49-54.
    41.Yoshimura H,Kimura K,Hayashi M,Ishii M,Takamura J.Ultra-fine equiaxed grain refinement by hydrogenation in titanium alloys[J],Journal of the Japan Institute of Metals,1990,54(11):1295-1296.
    42.Yoshimura H,Kimura K,Hayashi M,Ishii M,Hanamura T,Takamura J.Ultra-fine equiaxed grain refinement and mechanical properties in α+β type titanium alloys resultant from processing of hydrogenation,hot working,heat treatments,and dehydrogenation[J],Journal of the Japan Institute of Metals,1992,56(11):1352-1359.
    43.Zhang S Q,Zhao L R.Effect of hydrogen on the superplasticity and microstructure of Ti-6Al-4V alloy [J],Journal of Alloys and Compounds,1995,218:233-236.
    44.赵永庆,曹兴民,奚正平.热氢处理对两相钛合金及β钛合金加工态组织的影响[J],稀有金属与工程,2007,36(7):1145-1148.
    45.李淼泉,陈胜晖,李晓丽.钛合金高温变形时的微观组织模型[J],稀有金属材料与工程,2006,35(2):172-175.
    46.Li M Q,Zhang W F.Effect of hydrogen on processing maps in isothermal compression of Ti-6Al-4V alloy[J],Materials Science and Engineering A,2009,502(1-2):32-37.
    47.孙东立,韩潇,王清,吴涛,李中华.氢处理对钛合金组织性能的影响及其机理[J],宇航材料工艺,2005,3:11-16.
    48.丁桦.Ti-Al系金属间化合物的超塑性研究[D],沈阳:东北大学,2000.
    49.Martin S,Manchester F D.The H-Ti(Hydrogen-Titanium) System[J],Bulletin of Alloy Phase Diagrams,1987,8(1):30-42.
    50.Senkov O N,Jonas J J,Froes F H.Recent advances in the thermohydrogen processing of titanium alloys[J],Overview JOM,1996,48(7):42-47.
    51.张少卿.氢在钛合金热加工中的作用[J],材料工程,1992,2:24-29.
    52.侯红亮,李志强,王亚军,关桥.钛合金热氢处理技术及其应用前景[J],中国有色金属学报,2003,13(3):533-549.
    53.Senkov O N,Dubois M,Jonas J J.Elastic moduli of titanium-hydrogen alloys in the temperature Range 20℃ to 1100℃[J],Metallurgical and Materials Transactions A,1996,27(12):3963-3970.
    54.Senkov O N,Bashkin I O,Khasanov S S,Ponyatovsky Y G.Structure of VT19 titanium alloy after hydrogen treatment and deformation at moderate temperatures[J],Physics of Metals and Metallography,1993,76(1):89-99.
    55.林天辉.钛合金中的氢及其对力学性能的影响[D],北京:北京科技大学,1990.
    56.朱景环,程国安,张生山.氢化法制钛粉的工艺研究[J],江西冶金,1998,18(1):26-27.
    57.冯颖芳.提高钛粉粉末冶金制品力学性能的途径[J],钛工业进展,2002(2):22-23.
    58.Levin L,Vogt R G,Eylon D,Froes F H.Method for refining microstructures of prealloyed titanium powder compacted articles[P],U.S.Patent No.4655855,1987.
    59.Ilyin A A.Some aspects of interaction of hydrogen with Metallic Materials[J],Izvestiya AN SSSR:Metally,1994,5:65-70.
    60.Ilyin A A,Kollerov M Yu,Mamonov A M,Krastilevsky A A,Makarenkov D Yu.Hydrogen influence on martensitic transformation and shape memory Effect in titanium alloys[J],Journal de Physique Ⅳ,1995,5(C8):1145-1150.
    61.Kolachev B A,Livanov L A,Nosov V K.Influence of hydrogen on hot deformability of titanium alloys with different phase compositions[A],Titanium and Titanium Alloys:Scientific and Technological Aspects(Proceedings of the 3rd International Conference on Titanium)[C],New York:Plenum Press,1982,1833-1842.
    62.Dardi L E,Smickley R J.Microstructural refinement of cast titanium[P],U.S.Patent No.4505746,1985.
    63.Eylon D,Yolton C F,Froes F H.Method for developing ultrafine microstructures in titanium alloy castings[P],U.S.Patent No.4820360,1989.
    64.Kao W H,Orsborn L M.Consolidation characteristics of rotating electrode and hydride titanium powders[A],Powder Metall of Titanium Alloys,Proc.ofa Symp.at the 109th AIME Annu.Meet.[C],Metall.Soc.of AIME,Warrendale,Pa,1980,163-174.
    65.Yolton C F,Froes F H.Method for producing powder metallurgy articles[P],U.S.Patent No.4219357,August 26,1980.
    66.Niinomi M,Kobayashi T.Fracture characteristics analysis related to the microstructures in titanium alloys[J],Materials Science and Engineering A,1996,213(1-2):16-24.
    67.Senkov O N,Bashkin I O.Improved workability,microstructure and final properties of a titanium alloy due to temporary hydrogenation[A],Metallurgical Processes for the Year 2000 and Beyond[C],Warrendale,OH:TMS,1994,271-280.
    68.Senkov O N,Bashkin I O,Ponyatovsky E G.The combined effect of temporary hydrogen alloying and deformation on microstructure and properties of a high-strength titanium alloy[A],In:Ankem S,Hall J A,editors.Microstructure / properties relationships of titanium alloys[C],Warrendale,OH:TMS,1994,191-218.
    69.Senkov O N,Konopleva E V,Ponyatovsky E G.Transformation-induced plasticity of a hydrogen alloyed titanium alloy[A],In:Ankem S,Hall J A,editors.Microstructure / properties relationships of titanium alloys[C],Warrendale,OH:TMS,1994,207-214.
    70.Senkov O N,Konopleva E V,Ponyatovsky E G.The effect of initial phase composition and microstructure on the plasticity of a hydrogenated titanium alloy[J],Physics of Metals and Metallography,1994,77(3):318-327.
    71.Kolachev B A,Ilyin A A,Nosov V K.Hydrogen technology as new perspective type of titanium alloy processing[A],Advances in the Science and Technology of Titanium Alloy Processing.Proceedings of an International Symposium held at 125th TMS Annual Meeting[C],Warrendale,PA:TMS,1996,331-338.
    72.大角泰章 著,吴永宽,苗艳秋 译.金属氢化物的性质与应用[M],北京:化学工业出版社,1990.
    73.黄刚,曹小华,龙兴贵.钛—氢体系的物理化学性质[J],材料导报,2006,20(10):128-131.
    74.Shen C C,Perng T P.Pressure-composition isotherms and reversible hydrogen-induced phase transformations in Ti-6Al-4V[J],Acta Materialia,2007,55:1053-1058.
    75.Ronald S V,Kanji O.Hydrogen solubility in alpha titanium[J],Metallurgical Transactions,1971,2:608-609.
    76.Patton N E,Buck O.Effect of hydrogen on behavior of materials[M],Eds.Thompson A W,Bomstein I M.AIME,1976:242.
    77.Fidelle T P.Effect of hydrogen on behavior of materials[M],Eds.Thompson A W,Bomstein I M.AIME,1976:100.
    78.Hall I W.Hydride phases in Ti-5Al-2.5Sn[J],Scandinavian Journal of Metallurgy,1978,7(4):187-190.
    79.Hall I W.Hydride precipitation in Ti-6Al-4V[J],Scandinavian Journal of Metallurgy,1978,7(6):277-281.
    80.Cho S W,Yoo J H,Shim G,Park C N,Choi J.Effects of B addition on the hydrogen absorption-desorption property of Ti_(0.32_Cr_(0.43_V_(0.25_ alloy[J],International Journal of Hydrogen Energy,2008,33:1700-1705.
    81.Uno M,Takahashi K,Maruyama T,Muta H,Yamanaka S.Hydrogen solubility of BCC titanium alloys [J],Journal of Alloys and Compounds,2004,366:213-216.
    82.Kojima Y,Kawai Y,Towata S,Matsunaga T,Shinozawa T,Kimbara M.Development of metal hydride with high dissociation pressure[J],Journal of Alloys and Compounds,2006,419:256-261.
    83.法斯特J D著,刁伟涛,梁新邦 译.金属中的气体[M],北京:冶金工业出版社,1983:121-127.
    84.Wasilewski R J,Kehl G L.Diffusion of hydrogen in titanium[J],Metallurgia,1954,50:225-230.
    85 Papazoglou T P,Hepworth M T.Diffusion of hydrogen in α-Titanium[J],Transactions AIME,1968,242:682-687.
    86.Hirooka Y,Miyake M,Sano T.A study of hydrogen absorption and desorption by titanium[J],Journal of Nuclear Materials,1981,96(3):227-232.
    87.Keller T,Rettenmayr M.Hydrogen diffusion in Ti-Nb45 at high hydrogen contents[J],Journal of Alloys and compounds,2007,437:180-185.
    88.Wipf H,Kappesser B,Werner R.Hydrogen diffusion in titanium and zirconium hydrides[J],Journal of Alloys and Compounds,2000,310:190-195.
    89.Kaess U,Majer G,Stoll M,Peterson D T,Barnes R G.Hydrogen and deuterium diffusion in titanium dihydrides/dideuterides[J],Journal of Alloys and Compounds,1997,259:74-82.
    90.Ishiyama S,Fukaya K,Eto M,Miya N.Metal-hydride characterization and mechanical properties of Ti-6Al-4V alloy[J],Journal of Nuclear Science and Technology,2000,37(2):144-152.
    91.Qazi J I,Senkov O N,Rahim J,Genc A,Froes F H.Phase transformations in Ti-6Al-4V-xH alloys[J],Metallurgical and Materials Transactions A,2001,32:2453-2463.
    92.伍怀龙,赵国庆,周筑颖,杨福家,龙兴贵,翟国良,杨时礼,赵鹏翼.氘在钛中的扩散行为[J],核技术,1996,19(6):326-331.
    93.Schur D V,Zaginaichenko S Yu,Adejev V M,Voltovich V B,Lyashenko A A,Trefilov V I.Phase transformations in titanium hydrides[J],International Journal of Hydrogen Energy,1996,21(11/12):1121-1124.
    94.Boyer R R,Spurr W F.Effect of composition,microstructure,and texture on stress-corrosion cracking in Ti-6Al-4V sheet[J],Metallurgical Transactions A,1978,9(10):1443-1448.
    95.Millenbach P,Givon M.The electrochemical formation of titanium hydride[J],Journal of Less-Common Metals,1982,87:179-184.
    96.Schur D V,Lavrenko V A,Adejev V M,Kirjakova I E.Studies of the hydride formation mechanism in metals[J],International Journal of Hydrogen Energy,1994,19(3):265-268.
    97.Numakura H,Koiwa M.Hydride precipitation in titanium[J],Acta Metallurgica,1984,32(10):1799-1807.
    98.施金美,陈业新,万晓景.钛合金中氢化物析出惯习面的研究[J],上海大学学报(自然科学版),2003,9(5):405-409.99.康强.纯α-Ti氢可逆合金化及其对微结构的作用[D],沈阳:东北大学,1994.
    100.Xiao H Z.Study on the mechanism of hydride formation in α-Ti alloys[J],Scripta Metallurgica,1992,27:571-576.
    101.Luo L S,Su Y Q,Guo J J,Fu H Z.Formation of titanium hydride in Ti-6Al-4V alloy[J],Journal of Alloys and Compounds,2006,425:140-144.
    102.Mahajan Y,Nadiv S,Kerr W R.Studies of hydrogenation in Ti-6Al-4V alloy[J],Scripta Metallurgica,1979,13(8):695-699.
    103.Eliezer D,Eliaz N,Senkov O N,Froes F H.Positive effects of hydrogen in metals[J],Materials Science and Engineering A,2000,280(1):220-224.
    104.宫波,赖祖涵.用化学处理改善(α+β)形态合金的组织和力学性能[J],中国有色金属学报,1994,4(3):87-89.
    105.Ilyin A A,Mamonov A M.Thermo-hydrotreatment of cast titanium alloys[J],Journal of Materials Engineering,1992,1:14-16.
    106.杜忠权,王高潮,陈玉秀,张志方.渗氢处理细化Ti-10V-2Fe-3Al合金组织及改善其超塑性性能的效果[J],航空学报,1994,15(7):882-886.
    107.Murzinova M A,Salishchev G A,Afonichev D D.Formation of nanocrystalline structure in two-phase titanium alloy by combination of thermohydrogen processing with hot working[J],International Journal of Hydrogen Energy,2002,27(7/8):775-782.
    108.Yoshimura H.Mezzoscopic grain refinement and improved mechanical properties of titanium materials by hydrogen treatments[J],International Journal of Hydrogen Energy,1997,22(2/3):145-150.
    109.Yoshimura H,Nakahigashi J.Ultra-fine grain refinement and superplasticity of titanium alloys obtained through protium treatment[J],International Journal of Hydrogen Energy,2002,27(7/8):769-774.
    110.廖际常.含氢热加工技术在耐热钛合金中的应用前景[J],钛工业进展,2002,1:25-27.
    111.Kerr W R,Gurney F J,Martorell I A.Pilot plant forging of hydrogenated Ti-6Al-4V[R],AFWAL-TR-80-4026,Air Force Wright Aeronautical Labs.,Wright-Patterson AFB,OH.1980.
    112.Birla N C,DePierre V.Dehydriding of Ti-6Al-2Sn-4Zr-6Mo hydride powder[J],Powder Metallurgy,1975,18:15-31.
    113.Kolachov B A,Livanov L A,Nosov V K.Influence of hydrogen on hot deformability of titanium alloys with different phase compositions[A],Titanium and Titanium Alloys:Scientific and Technological Aspects(Proceedings of the 3rd International Conference on Titanium)[C],New York:Plenum Press,1982:1833-1842.
    114.Zhang Y,Zhang S Q.Hydrogen effects on high temperature deformation characteristics of a cast Ti-14Al-19Nb-3V-2Mo alloy[J],Scripta Materialia,1997,37(9):1315-1321.
    115.Zong Y Y,Shan D B,L(u|¨) Y,Guo B.Effect of 0.3wt%H addition on the high temperature deformation behaviors of Ti-6Al-4V alloy[J],International Journal of Hydrogen Energy,2007,32(16):3936-3940.
    116.Senkov O N,Jonas J J.Dynamic strain aging and hydrogen-induced softening in alpha titanium[J],Metallurgical and Materials Transactions A,1996,27(7):1877-1887.
    117.林天辉.钛合金中的氢及其对力学性能的影响[D],北京:北京科技大学,1990.
    118.高文,张少卿.氢对TC11钛合金超塑性性能的影响[J],稀有金属,1992,16(3):227-230.
    119.Williams D P,Nelson H G.Gaseous hydrogen-induced cracking of Ti-5Al-2.5Sn[J],Metallurgical Transactions,1972,3(8):2107.
    120.Demusant X,Mendez J.Influence of environment on low cycle fatigue damage in Ti-6Al-4V and Ti6246 titanium alloys[J],Materials Science and Engineering A,1996,219:202-211.
    121.Malkov A V,Kolachev B A,Mishianova M G.An effect of hydrogen on the fatigue of the(titanium)alloy VT6[J],Problemy Prochnosti,1984,3:73-76.
    122.Kolachev B A,Sadkov V V,Bylov B B.Effect of hydrogen on the fatigue strength of VT6Ch titanium alloy[J],Fiziko-Khimichna Mekhanika Materialiv,2000,36(4):68-72.
    123.Datta P K,Strafford K N,Dowson A L.Environment/mechanical interaction processes and hydrogen embrittlement of titanium[A],Light Metals:Science and Technology,Proceedings of an International Symposium[C],Varanasi,India,1985:203-216.
    124.Sommer A W,Froes F H,Eylon D.Fatigue crack growth rate acceleration of alpha+beta Ti alloys[A],Proceedings of the 1987 TMS-RIME Annual Symposium[C],Warrendale,PA,Metallurgical Society,Inc.,1987,55-64.
    125.Nishimura T,Satoh H.A titanium alloy for marine propeller shafts[J],Titanium Zirconium(Jpn.),1985,33(2):73-81.
    126.Chist H J,Alvarez A M,Birnbaum H K.The influence of hydrogen on the fatigue behavior of the beta-titanium alloy Ti-3Al-8V-6Cr-4Mo-4Zr[A],Fatigue and Fracture of Engineering Materials and Structures[C],UK,1996,19(12):1421-1434.
    127.Senemmar A,Teteruk R,Christ H J.The influence of hydrogen on the monotonic and cyclic deformation behaviour of near-beta titanium alloy Ti-10V-2Fe-3Al(Ti 10-2-3)[A],EDEM 99:Environmental Degradation of Engineering Materials[C],Gdansk Scientific Society,Poland,1999,1:218-224.
    128.潘峰,张少卿,薛志庠.氢处理对铸造钛合金低周疲劳寿命及断裂韧性的影响[J],金属科学与工艺,1988,7(4):60-65.
    129.Kohn D H,Ducheyne P.Titanium alloy treatment process and resulting article[P],U.S.Patent No.4923513,1990.
    130.张云琨.氢、氮化和热氧化对钛合金性能影响的研究[D],长春:中国科学院长春光学精密机械与物理研究所,2005.
    131.张浩,许嘉龙,林天辉,翁文达,毛彭令,王世洪.氢对β钛合金超塑性变形的影响[J],上海钢研,1990,6:24-30.
    132.Kim T K,Baek J H,Choi B S,Jeong Y H,Lee D J,Chang M H.Characteristics of hydriding and hydrogen embrittlement of the Ti-Al-Zr alloy[J],Annals of Nuclear Energy,2002,29:2041-2053.
    133.Jatavallabhula K,Gerberich W W.Fatigue thresholds and ductile-brittle transitions in Ti-30Mo[J],Fatigue of Engineering Materials and Structures,1981,4(2):173-178.
    134.褚武扬.氢损伤和滞后断裂[M],北京:冶金工业出版社,1988.
    1.Kerr W R.Hydrogen as an alloying element in titanium(hydrovac)[A],Titanium'80:Science and Technology[C],1980,2477-2486.
    2.张振祺,罗国珍,洪权,杨冠军.Ti600合金的性能与显微组织的研究[J],航空材料学报,1999,19(4):6-10.
    3.戚运莲.Ti600高温钛合金的热变形行为及加工图研究[D],两安:西北工业大学,2007.
    4.洪权,戚运莲,刘向,赵永庆.Ti600合金板材的轧制工艺与电子束焊接性能研究[J],航空材料学报,2006,26(5):31-34.
    5.张振祺,洪权,杨冠军,罗国珍.Ti600高温钛合金蠕变前后的组织变化[J],材料工程,2000,10.18-21.
    6.Weinem D,Kumpfert J,Peters M,Kaysser W A.Processing window of the near-α-titanium alloy TIMETAL-1100 to produce a fine-grained β-structure[J],Materials Science and Engineering A,1996,206(1):55-62.
    7.黄刚,曹小华,龙兴贵.钛一氢体系的物理化学性质[J],材料导报,2006,20(10):128-131.
    8.张廷杰.钛合金相变的电子显微镜研究(Ⅲ)一钛合金中的马氏体相变[J],稀有金属材料与工程,1989,4:71-78.
    9.Krishnan R V,Brown L C.Deformation-induced martensite in Ag-41 at.%Zn alloys[J],Scripta Metallurgica,1972,6(9):883-885.
    10.Schur D V,Zaginaichenko S Yu,Adejev V M,Voltovich V B,Lyashenko A A,Trefilov V I.Phase transformations in titanium hydrides[J],International Journal of Hydrogen Energy,1996,21(11/12):1121-1124.
    11.苏彦庆,骆良顺,郭景杰,贾均,傅恒志.Ti6Al4V合金渗氢氢化组织及氢脆机制的研究[J],稀有金属材料与工程,2005,34(4):526-530.
    12.吴奕初,张晓红.正电子湮没技术在金属和合金研究中的应用进展[J],物理,2000,29(7):401-405.
    13.黄宇阳.Ni基合金中微观缺陷和3d电子行为的正电子潭没谱研究[D],南宁:广西大学,2005.
    14.苏本法.用符合多普勒展宽谱研究离子辐照对GaSb材料中缺陷的影响[D],武汉:武汉大学,2005.
    15.豪托贾维 P主编,何元金 郁伟中 译.正电子湮没技术[M],北京:科学出版社,1983.
    16.熊良钺编.正电子湮没技术[M],沈阳:中国科学院金属研究所,1986.
    17.Nancheva N M,Saarinen K,Popov G S.Positron annihilation in shock loaded titanium and titanium alloy BT14[J],Physica Status Solidi A,1986,95(2):531-536.
    18.Yli-Kauppila J,Moser P,Kunzi H,Hautojarvi P.Positron lifetime measurements on electron irradiation damage in amorphous Pd80Si20 and Cu50Ti50 alloys[J],Applied Physics A(Solids and Surfaces),1982,A27(1):31-33.
    19.崔昆.钢铁材料及有色金属[M],北京:机械工业出版社,1981.
    20.Oriani R A,Joseoguc P H.Equilibrium aspects of hydrogen-induced cracking of steels[J],Acta Mettallurgica,1974,22:1065-1074.
    21.Friedel J著,王煜 译.位错[M],北京:科学出版社,1984.
    22.张少卿.氢在钛合金热加工中的作用[J],材料工程,1992,2:24-29.
    23.辛社伟,赵永庆.关于钛合金热处理和析出相的讨论[J],金属热处理,2006,31(9):39-42.
    24.潘峰,张少卿,薛志痒.铸造钛合金的氢处理细化晶粒的研究[J],航空学报,1987,8(1):A77-A82.
    25.Kohn D H,Ducheyne P.Tensile and fatigue strength of hydrogen-treated Ti-6Al-4V alloy[J],Journal of Materials Science,1991,26(2):328-334.
    26.Ramachandra C,Singh A K,Sarma G M K.Microstructural characterisation of near-α titanium alloy Ti-6Al-4Sn-4Zr-0.70Nb-0.50Mo-0.40Si[J],Metallurgical Transactions A,1993,24A:1273-1280.
    27.Singh A K,Ramachandra C.Characterization of silicides in high-temperature titanium alloys[J],Journal of Materials Science,1997,32(1):229-234.
    28.Ramachandra C,Vakil Singh.Effect of silicide precipitation on tensile properties and fracture of alloy Ti-6Al-5Zr-0.5Mo-0.25Si[J],Metallurgical Transactions A,16A:227-231.
    29.Sridhar G,Kutumbarao V V,Sarma D S.The influence of heat treatment on the structure and properties of a near-α titanium alloy[J],Metallurgical Transactions A,1987,18A:877-891.
    30.Madsen A,Ghonem H.Effects of aging on the tensile and fatigue behavior of the near-α Ti-1100 at room temperature and 593℃[J],Material Science and Engineering A,1994,177:63-73.
    31.崔文芳,罗国珍.热暴露对IMI834近α钛合金组织和拉伸性能的影响[J],航空材料学报,1997,4:15-20.
    32.马勤,阎秉钧,康沫狂,杨延清.金属硅化物的应用与发展[J],稀有金属材料与工程,1999,28:11-13.
    33.鲍利索娃 EA 著,陈石卿 译.钛合金金相学[M],北京:国防工业出版社,1980.
    34.朱纪磊译.锆含量对Ti-1100合金显微结构和力学性能的影响[J],2005,稀有金属快报,24:39-40.
    35.颜莹,韩东,曹名洲.快凝钛合金中硅化物的析出及长大规律[J],材料研究学报,1996,6:587-591.
    36.陈卫峰,石玉峰.Ti6242S合金中硅化物出现的条件[J],稀有金属材料与工程,1999,5:323-325.
    37.洪权,戚运莲,郭萍,曾立英,赵永庆.Ti600合金中硅化物与蠕变性能关系的研究[J],稀有金属快报,2007,26(9):19-22.
    1.Mahajan Y,Nadiv S,Kerr W R.Studies of hydrogenation in Ti-6Al-4V alloy[J],Scripta Metallurgica,1979,13(8):695-699.
    2.Ilyin A A,Mamonov A M.Thermo-hydrotreatment of cast titanium alloys[J],Journal of Materials Engineering,1992,1:14-16.
    3.Senkov O N,Froes F H.Thermohydrogen processing of titanium alloys[J],International Journal of Hydrogen Energy,1999,24(6):565-576.
    4.Eliezer D,Eliaz N,Senkov O N,Froes F H.Positive effects of hydrogen in metals[J],Materials Science and Engineering A,2000,280(1):220-224.
    5.Murzinova M A,Salishchev G A,Afonichev D D.Formation of nanocrystalline structure in two-phase titanium alloy by combination of thermohydrogen processing with hot working[J],International Journal of Hydrogen Energy,2002,27(7/8):775-782.
    6.Mueller W M,Blackledge J P,Libowitz G G.Metal Hydrides[M],New York:Academic Press,1968.
    7.Kubaschewski O.Thermochemical properties[of titanium,its compounds and allys][J],Atomic Energy Review,Special Issue,1983,9:3-71.
    8.McQuillan A D.An experimental and thermodynamic investigation of the hydrogen-titanium system[J],Proc.Roy.Soc.London A,1950,204:309-322.
    9.Arita M,Someno M.Standard free energy,enthalpy,and entropy of formation of titanium hydride[J],Journal of Chemical and Engineering Data,1979,24:277-279.
    10.Arita M,Shimizu K,Ichinose Y.Thermodynamics of the Ti-H system[J],Metallurgical Transactions A,1982,13:1329-1336.
    11.Wei-E Wang.Thermodynamic evaluation of the titanium-hydrogen system[J],Journal of Alloys and Compounds,1996,238:6-12.
    12.Felicia V,Marius Z,Anisia B,Claudia P,Nicolae B.Experimental study about hydrogen isotopes storage on titanium bed[J],Fusion Engineering and Design,2003,69:87-90.
    13.施立群,周筑颖,赵国庆.钛薄膜氢化及热释放特性研究[J],原子能科学技术,2000,34(4):328-333.
    14.Shoesmith D W,Noel J J,Hardie D,Lkeda B M.Hydrogen absorption and the lifetime performance of titanium nuclear waste containers[J],Corrosion Reviews,2000,18:331-359.
    15.黄刚,曹小华,龙兴贵.钛-氢体系的物理化学性质[J],材料导报,2006,20(10):128-131.
    16.Maeland A J,Libowitz G G,Lynch J F.Hydride formation rates of titanium-biased BCC solid solution alloys[J],Journal of the Less-Common Metals,1984,104(2):361-364.
    17.K(o|¨)nigsberger E,Eriksson G,Oates W A.Optimisation of the thermodynamic properties of the Ti-H and Zr-H systems[J],Journal of Alloys and Compounds,2000,299:148-152.
    18.朱正和,张莉,罗顺忠,杨本福,龙兴贵.电子振动近似理论和氢同位素在金属钛中的溶解度(三)[J],原子与分子物理学报,2006,23(5):843-849.
    19.叶大伦.冶金热力学[M],长沙:中南工业大学出版社,1987.
    20.斯莫尔曼 R E 著,张人佶 译.现代物理冶金学[M],北京:冶金工业出版社,1980.
    21.乌帕达耶 G S,杜布 P K 著,金宝忠,阎庆甲 译.冶金热力学与动力学的应用计算[M],北京:冶金工业出版社,1981.
    22.Bieber A,Gautier F,Treglia G,Ducastelle F.Electronic structure,pairwise interaction and ordering energies in binary FCC transition metal alloys[J],Solid State Communications,1981,39:149-153.
    23.Hohenberg P,Kohn W.The inhomogeneous electron gas[R],NTIS,No.AD602040,1964.
    24.Hafner J.Structure and thermodynamics of liquid metals and alloys[J],Physical Review A.1977,16(1):351-364.
    25.欧阳义芳,金展鹏.贵金属一Al二元合金形成焓的EAM计算[J],金属学报,1999,35(5):541-543.
    26.Miedema A R,De Boer F R,Boom R.Predicting heat effects in alloys[J],Physica B&C,1981,103:67-81.
    27.Miedema A R.The heat of solution and interaction effects for noble gas atoms in metals[J],Solid State Communications.1981,39:1337-1340.
    28.Miedema A R,Niessen A K.Volume effects upon alloying of two transition metals[J],Physica B&C,1982,114:367-374.
    29.Gokcen N A.Statistical thermodynamics of alloys[M],New York:Plenum press,1987.
    30.Miedema A R.The electronegativity parameter for transition metals:heat of formation and charge transfer in alloys[J],Journal of the Less-Common Metals,1973,32:117-136.
    31.Bouten P C P,Miedema A R.On the heats of formation of the binary hydrides of transition metals[J],Journal of the Less-Common Metals,1980,71:147-160.
    32.Stull D R,Prophet H.JANAF Thermochemical Tables[M],NSRDS-NBS 37,2nd edn.Washington,DC:US Government Printing Office,1971.
    33.高执棣,郭国霖.统计热力学导论[M],北京:北京大学出版社,2004.
    34.张翊凤.统计热力学概要·例题·习题[M],北京:高等教育出版社,1993.
    35.陈金富.固体物理学[M],北京:高等教育出版社,1986.
    36.陈长安,孙颖,王红艳,薛卫东,朱正和.TiH(D、T)分子性质的量子力学计算[J],原子与分子物理学报,2001,18(4):377-383.
    37.张莉,朱正和,杨本福,龙兴贵,罗顺忠.氢同位素化合物TiH_2,TiD_2和TiT_2的电子振动近似理论方法[J],物理学报,2006,55(10):5418-5423.
    38.叶大伦,胡建华.实用无机物热力学数据手册(第2版)[M],北京:冶金工业出版社,2002.
    39.Dantzer P,Kleppa O J,Melnichak M E.High-temperature thermodynamics of the Ti-H_2 and Ti-D_2systems[J],Journal of Chemical Physics,1976,64:139-147.
    40.San-Martin A,Manchester F D.The H-Ti(hydrogen-titanium)[J],Bull.Alloy Phase Diagrams,1987,8(1):30-42.
    41.Bououdina M,Soubeyroux J L,Juen P,Mouget C,Argoud R,Fruchart D.Apparatus for gravimetric analysis:Its application to metal-hydrogen systems[J],Journal of Alloys and Compounds,1995,231:422-426.
    42.Chen C Q,Li S X,Lu K.Dislocation interaction with hydrides in titanium containing a low hydrogen concentration[J],Philosophical Magazine,2004,84:29-43.
    43.胡子龙.贮氢材料[M],北京:化学工业出版社,2002.
    1.Weinem D,Kumpfert J,Peters M,Kaysser W A.Processing window of the near-α-titanium alloy TIMETAL-1100 to produce a fine-grained β-structure[J],Materials Science and Engineering A,1996,206(1):55-62.
    2.Evans R W,Hull R J,Wilshire B.The effects of alpha-case formation on the creep fracture properties of the high-temperature titanium alloy IMI834[J],Journal of Materials Processing Technology,1996,56(1-4):492-501.
    3.Tetyukhin V,Levin I,Ilyenko V.Heat-resistant titanium alloys with enhanced,heat resistance,thermal stability[A],Titanium'95:Science and Technology[C],UK,Cambridge:The University Press,1996,2430-2437.
    4.Senkov O N,Jonas J J.Effect of phase composition and hydrogen level on the deformation behavior of titanium-hydrogen alloys[J],Metallurgical and Materials Transactions A,1996,27A:1869-1876.
    5.Medina S F,Hernandez C A.General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels[J],Acta Materialia,1996,44(1):137-148.
    6.Rao K P,Hawbolt E B.Development of constitutive relationships using compression testing of a medium carbon steel[J],Journal of Engineering Materials and Technology,Transactions of the ASME,1992,114(1):116-125.
    7.Pu Z J,Wu K H,Shi J,Zou D.Development of constitutive relationships for the hot deformation of boron microalloying TiAl-Cr-V alloys[J],Materials Science and Engineering A,1995,(192-193):780-787.
    8.Bendersky L,Rosen A,Mukherjee A K.Stress and microstructure dependence of the creep resistance of Mo-5%W alloy[A],Strength of Metals and Alloys(ICSMA6)[C],1983,2:595-600.
    9.Radovic N,Drobnjak D.Effect of interpass time and cooling rate on apparent activation energy for hot working and critical recrystallization temperature of Nb-microalloyed steel[J],ISIJ International,1999,39(6):575-582.
    10.Drobnjak D,Radovic N,Andjeli M.Effect of test variables on apparent activation energy for hot working and critical recrystallisation temperatures of V-microalloyed steel[J],Steel Research,1997,68(7):306-312.
    11.Liu Y,Baker T N.Comparison of experimental and computer-simulated isothermal upset forging of IMI685 titanium alloy[J],Materials Science & Engineering A,1996,A205(1-2):117-126.
    12.曾卫东,胡鲜红,周义刚.Ti-17合金的高温变形机理研究[J],材料工程,1996,9:27-30.
    13.Birnbaum H K,Sofronis P.Hydrogen-enhanced localized plasticity-a mechanism for hydrogen-related fracture[J],Materials Science and Engineering A,1994,176(1-2):191-202.
    14.Senkov O N,Dubois M,Jonas J J.Elastic moduli of titanium hydrogen alloys in the temperature range 20℃ to 1100℃[J],Metallurgica & Materials Transaction A,1996,27(12):3963-3970.
    15.Liu C T,Wu T I,Wu J K.Formation of nanocrystalline structure of Ti-6Al-4V alloy by cyclic hydrogenation-dehydrogenation treatment[J],Materials Chemistry & Physics,2008,110(2-3):440-444.
    1.Donahue E G,Odette G R,Lucas G E.A physically based constitutive model for a V±4Cr±4Ti alloy[J],Journal of Nuclear Materials,2000,283-287:637-641.
    2.Chaboche J L.Thermodynamic formulation of constitutive equations and application to the viscoplasticity and viscoelasticity of metals and polymers[J],International Journal of Solids and Structures,1997,34(18):2239-2254.
    3.Cheng J,Nemat-Nasser S,Guo W.A unified constitutive model for strain-rate and temperature dependent behavior of molybdenum[J],Mechanics of Materials,2001,33(11):603-616.
    4.Beaudoin A,Acharya A,Chert S,Korzekwa D,Stout M.Consideration of grain size effect and kinetics in the plastic of metal polycrystals[J],Acta Materialia,2000,48(13):3409-3423.
    5.Zener C,Hollomon J H.Effect of strain-rate upon the plastic flow steel[J],Journal of Applied Physics,1944,15:22-27.
    6.Sellars C M,Mctegart W J.On the mechanism of hot deformation[J],Acta Metallurgica,1966,14(9):1136-1138.
    7.Combres Y,Levaillant Ch.Modeling of the flow behavior of a Ti-6%Al-4%V alloy at isothermal superplastic conditions[J],Scripta Metallurgica,1990,24:185-190.
    8.Pu Z J,Wu K H,Shi J,Zou D.Development of constitutive relationships for the hot deformation of boron microalloying TiAl-Cr-V alloys[J],Materials Science and Engineering A,1995,192/193:780-787.
    9.Macdougall D A S,Harding J.A constitutive relation and failure criterion for Ti6Al4V alloy at impact rates of strain[J],Journal of Mechanics and Physics of Solids,1999,47:1157-1185.
    10.Seshacharyulu T,Medeiros S C,Frazier W G.Hot working of Commercial Ti-6Al-4V with an equiaxed-microstructure:materials modeling considerations[J],Materials Science and Engineering A.2000,284:184-194.
    11.Giuliano G.Constitutive equation for superplastic Ti-6Al-4V alloy[J],Materials & Design,2008,29(7) 1330-1333.
    12.Luo J,Li M Q,Hu Y Q,Fu M W.Modeling of constitutive relationships and microstructural variables of Ti-6.62Al-5.14Sn-1.82Zr alloy during high temperature deformation[J],Materials Characterization,2008,59(10):1386-1394.
    13.Zeng Z P,Jonsson S,Zhang Y S.Constitutive equations for pure titanium at elevated temperatures[J],Materials Science and Engineering A,2009,505:116-119.
    14.高惠璇.处理多元线性回归中自变量共线性的几种方法[J],数理统计与管理,2000,20(5):49-55.
    15.王惠文.偏最小二乘回归法及其应用[M],北京:国防工业出版社,1999.
    16.王松桂,史建红,尹素菊,吴密霞.线性模型引论[M],北京:科学出版社,2004.
    17.何晓群,刘文卿.应用回归分析[M],北京:中国人民大学出版社,2007.
    18.杨维汉,林鸿洲.多元统计分析[M],北京:高等教育出版社,1989.
    19.洪南,侯军.统计分析系统教程[M],北京:电子工业出版社,2001.
    1.Karhausen K,Kopp R.Model for integrated process and microstructure simulation in hot forming[J],Steel Research,1992,63(6):247-256.
    2.Yanagimoto J,Liu J S.Incremental formulation for the prediction of microstructural change in multi-pass hot forming[J],ISIJ International,1999,39(2):171-175.
    3.Rollett A D,Luton M J,Srolovitz D J.Microstructural simulation of dynamic recrystallization[J],Acta metallurgica et materialia,1992,40:43-55.
    4.Peczak P.Monte Carlo study of influence of deformation temperature on dynamic recrystallization[J],Acta metallurgica et materialia,1995,43:1279-1291.
    5.张林,王元明,张彩碚.Ni基耐热合金凝固过程的元胞自动机方法模拟[J],金属学报,2001,37(8):882-888.
    6.Davies C H J.Growth of nuclei in a cellular automaton simulation of recrystallisation[J],Scripta Materialia,1997,36(1):35-40.
    7.Kundu S,Dutta M,Ganguly S,Chandra S.Prediction of phase transformation and microstructure in steel using cellular automaton technique[J],Scripta Materialia,2004,50:891-895.
    8.Goetz R L,Seetharaman V.Modeling dynamic recrystallization using cellular automata[J],Scripta Materialia,1998,38(3):405-413.
    9.Ding R,Guo Z X.Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization[J],Acta Materialia,2001,49:3163-3175.
    10.肖宏,柳本润.采用Cellular automaton法模拟动态再结晶过程的研究[J],机械工程材料,2005,41(2):148-152.
    11.肖宏,徐玉辰,闫艳红.考虑晶粒变形动态再结晶过程模拟的元胞自动机法[J],中国机械工程,2005,16(24):2245-2248.
    12.何燕,张立文,牛静,斐继斌.元胞自动机方法对动态再结晶过程的模拟[J],材料热处理学报,2005,26(4):120-124.
    13.邓小虎,张立文,何燕,斐继斌,卢愈.应变速率对金属动态再结晶影响的数值模拟[J],塑性工程学报,2007,14(2):24-29.
    14.Zhang K.Wear of cobalt-based alloys sliding in molten zinc[J],Wear,2003,255(1-6):545-555.
    15.陈明和,谢兰生,朱知寿,左敦稳,王珉.计算机模拟与预测方法在材料科学研究中的应用[J],机械工程材料,2005,29(6):1-3.
    16.Numann J V.Theory of Self-Reproducing Automaton[M],Champaign:University of Illinois Press,1966.
    17.Willson S J.Cellular automata can generate fractals[J],Discrete Applied Mathematics,1984,8(1):
    91-99.
    18. Packard N. Theory and applications of cellular automata [M], Singapore: World Scientific, 1986.
    19. Brown S G R, Spittle J A. Rule-based lattice computer models for simulating dendritic growth [J], Scripta metallurgica et materialia, 1992,27(11): 1599-1603.
    20. Rappaz M, Gandin Ch A. Probabilistic modeling of microstructure formation in solidification processes [J], Acta Metallurgica et Materialia, 1993, 41(2): 345-360.
    21. Spittle A, Brown S G R. A 3D cellular automaton model of coupled growth in two component systems [J], Acta Metallurgica et Materialia, 1994,42(6): 1811-1815.
    22. Hesselbarth H W, Gobel I R. Simulation of recrystallization by cellular automata [J], Acta Metallurgica et Materialia, 1991, 39(8): 2135-2143.
    23. Goetz R L, Seetharaman V. Static recrystallization kinetics with homogeneous and heterogeneous nucleation using a cellular automata model [J], Metallurgical and Materials Transactions A, 1998, 29A: 2307-2321.
    24. Ding R, Guo Z X. Microstructural modeling of dynamic recrystallization using an extended Cellular Automaton approach [J], Computational Materials, 2002, 23: 209-218.
    25. Qian M, Guo Z X. Cellular automata simulation of microstructural evolution during dynamic recrystallization of an HY-100 steel [J], Materials Science & Engineering A, 2004, 365: 180-185.
    26. Yong M J, Davies C H J. Cellular automaton modelling of precipitate coarsening [J], Scripta Materialia, 1999, 7(41): 697-710.
    27. Kumar M, Sasikumar R, Kesavan Nair P. Competition between nucleation and early growth of ferrite from austenite studies using cellular automata [J], Acta Materialia, 1998, 46(17): 6291-6303.
    28. Cortie M B, Jackson E M L. Simulation of the precipitation of sigma phase in duplex stainless steels [J], Metallurgical and Materials Transactions A, 1997, 28: 2477-2484.
    29. Roberts W, Ahlblom B. A nucleation criterion for dynamic recrystallization during hot working [J], Acta Metallurgica, 1978, 26: 801-813.
    30. Peczak P, Luton M J. A Monte Carlo study of the influence of dynamic recovery on dynamic recrystallization [J], Acta Metallurgica et Materialia, 1993, 41(1): 59-71.
    31. Sakai T, Akben M G, Jonas J J. Dynamic recrystallization during the transient deformation of a vanadium microalloyed steel [J], Acta Metallurgica, 1983, 31(4): 631-641.
    32. Derby B. The dependence of grain size on stress during dynamic recrystallization [J], Acta Metallurgica et Materialia, 1991, 39(5): 955-962.
    33. Johnson W A, Mehl R F. Reaction kinetics in processes of nucleation and growth [J], American Institute of Mining and Metallurgical Engineers-Transactions, 1939, 135: 416-442.
    34. Avrami M. Kinetics of phase change. I. General theory [J], Journal of Chemical Physics, 1939, 7:
    -127- 1103-1112.
    35.Avrami M.Kinetics of phase change.Ⅱ.Transformation-time relation for random distribution of nuclei[J],Journal of Chemical Physics,1940,8:212-224.
    36.Avrami M.Kinetics of phase change.Ⅲ.Granulation,phase change and microstructure[J],Journal of Chemical Physics,1941,9:177-184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700