一氧化钛基金属陶瓷仿金材料的开发及相关机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿金材料代替稀贵的黄金用于装饰,具有巨大的市场需求和广阔的应用前景。本文研制出的一氧化钛基金属陶瓷仿金新材料综合性能优良,克服了仿金Cu易变色、硬度低和TiN基金属陶瓷仿金材料制备难度大、价格昂贵的缺点。
     采用XRD和EDS,详细研究了Ti、TiO_2固-固反应合成TiO_x的工艺,从理论上深入分析了固-固反应动力学机制及各因素对反应速度的影响。首次采用“机械活化-低温合成”工艺,并以TiH_2代替Ti为还原剂,极大促进了固-固合成反应,在较低温度下得到了O分布十分均匀的金黄色一氧化钛。不仅避免了Ti的高温挥发,保证了体系Ti、O量比的稳定,而且降低了TiO_x的合成成本。
     运用量子化学、晶体场及化学成键理论,深入分析了中间化合物及一氧化钛的相对稳定性。Ti的外层电子结构、电离势、轨道分裂特性和YiO、Ti_2O_3歧化反应自由能计算结果,证明一氧化钛具有较高的稳定性。
     利用XRD辅以EDS,比较准确地确定出非化学计量TiO_x的氧指数范围:x=0.828±0.002~1.185±0.004。设计、制造了固体表面颜色测量装置,首次利用分光光度法详细研究了TiO_x的颜色及其随氧指数的变化规律。通过不同氧指数TiO_x、24KAu波长-反射率曲线及TiO_x与24KAu间色度差的测定,确定出颜色最接近24KAu的TiO_x氧指数范围为1.14~1.16,该范围内TiO_x与24KAu间的色度差为仿金Cu或TiN的60%左右。量子化学理论分析表明,一氧化钛发生电荷跃迁的能量大于可见光光子能量,且不存在n→n或л→л跃迁机制,而其电子的d-d跃迁是自旋允许的,一氧化钛的金黄色是Ti~(2+)外层电子发生d-d跃迁的结果。随TiO_x氧指数增大,O~(2-)场强度增加,造成分裂后的Ti~(2+)的3d轨道间能量差增加,引起TiO_x金黄色逐渐向偏红方向转变。
     一氧化钛在大气、家庭气氛、泥土、人工汗液、K金腐蚀剂、NaCl溶液、浓氨水中的抗变色、耐腐蚀实验结果表明,其抗变色、耐腐蚀性能远优于仿金Cu、TiN基金属陶瓷仿金材料。一氧化钛在稀HCl和稀H_2SO_4中腐蚀十分缓慢,不变色。一氧化钛的颜色、抗变色等性能研究,充分肯定了其用作高档仿金材料的可行性,为开发一氧化钛的应用新领域提供了实验和理论依据。
     首次采用高温座滴法详细研究了Fe、Co、Ni、Cu、Al、Si、Mn、FeCr、Fe-C在TiO_(1.0)、TiO_(1.14)上的润湿性,借助XRD和EDS对润湿界面和润湿机理进行了深入分析,为一氧化钛陶瓷粘结相的开发和金属/陶瓷涧湿性研究提供了原始资料和理论依据。Fe、Co、Ni、Al、Mn与TiO_x中的“Ti”(而不单是O)的亲和力和相互作用,对它们在YiO_x上
    
    中南大学博士学位论文
    中文摘要
    的润湿性和界面结合强度产生了很大影响;Al/TIO、间化学亲和力强,且存在界面反应,
    但其润湿性却很差;C讨TIOx、51/TIOx润湿虽然都存在相间溶解,但C口TIOx润湿性较S订TIOx
    却相差甚远。这些现象在金属/陶瓷润湿性研究中应引起重视。
     FeCr合金耐蚀性好,但与TIO、润湿性不良、界面结合强度差。本研究通过添加合
    金元素使其接触角降至30“以下,并得到了坚固的界面结合,开发出在TIO、上润湿性
    好、界面结合强度高、耐蚀性强、热膨胀系数匹配的FeCr困i)si合金粘结相。借助XRD、
    SEM、EDS等分析方法,通过界面相成分分析、对界面处元素的面扫描、线扫描,深入
    研究了合金元素的分布及其改善润湿、形成坚固界面结合的作用机理。从热力学、动力
    学和量子化学角度分析了元素Si与TIO、的界面作用。
     运用DTA和XRD,分析了Ti01.14一FeCr困i)Si在烧结过程中粘结相的合金化及其润
    湿过程,确定了体系液相的出现和形成温度。通过对烧结体强度、密度的测量,确定了
    不同成分的金属陶瓷粘结相中最低Si含量要求。研究了原始粉末粒度、烧结工艺、粘结
    相含量对金属陶瓷组织与性能的影响。随着粘结相含量增加,金属陶瓷组织细化,强、
    韧性提高,但其金黄色饱和度降低(粘结相含量12%以下,其颜色优于仿金Cu和TIN)。
    利用SEM对金属陶瓷的断口进行了研究,发现粘结相的加入对一氧化钦陶瓷起到了明
    显的增韧作用,其断裂为脆性解理断裂和塑性相韧性断裂并存。粘结相中si、Cr的存在
    使金属陶瓷的高温抗氧化性能有所提高。详细研究了TIOI.,4一FeCr(Ni)si金属陶瓷的性能,
    探讨了其晶粒长大和塑性相增韧机理。最后在自行设计的装置上测定了
    Tiol.14一FeCr(N 1)51导电率,证明了其采用电火花线切割加工的可能性。
     研制出的TIOI.14--8%FeCr(Ni)Si仿金材料,横向抗弯强度达到600MPa左右,具有较
    高的硬度(Hvgoo左右)和韧性(可达9.3MNm一3与,较低的密度,颜色优于仿金cu和
    TIN,抗变色性能较仿金Cu、TIN基金属陶瓷仿金材料高几十至几百倍。是一种高档次
    的仿金材料。
Imitated gold used for decorative purpose instead of rare and costly gold possesses of large market demand and widest application foreground. TiO-based cermet imitated gold with excellent integrative properties, developed in this research, avoided discoloration, low hardness of Cu-based imitated gold and difficulty in production, costliness of high quality cermet imitated gold based on TiN.
    The technology of TiOx synthesis by reaction between solid Ti and TiOi was studied in detail with the aid of XRD and EDS. Penetrating theory analyses on mechanisms of the reaction kinetics and influence of every factor on the reaction speed were made. The synthesis reaction between solid phases was greatly improved and golden TiO with very well-proportioned O distribution was obtained in lower temperature for the first time by using "mechanical activation-lower temperature synthesis" technology, Titk used as reducer instead of Ti. Not only the volatilization of Ti was avoided, the fixedness of Ti/O get guarantee but also the cost was reduced.
    The relative stabilities of intermediate compounds and titanium monoxide were examined deeply with quantum chemistry, crystal field and chemical bond theory. Outer layer electron structure, ionization potentials and track division of Ti and AG?of the dismutation reactions of TiO and Ti2O3 proved that titanium monoxide was stable.
    The range of oxygen index of nonstoichiometric titanium monoxide was determined accurately, TiO o.828?.002-TiO 1.185.?.004, by means of XRD assisted of EDS. A device for solid surface color measuring was designed. It was the first time that the color characteristics of TiOx with different "x" value and its changing law along with the oxygen index were studied in detail with spectrophoto-method. The range of the oxygen index, with which TiOx had the closest color with 24KAu was determined, ranged from 1.14 to 1.16, by determinations of wavelength-reflection rate curves of TiOx and 24KAu, chromatisms between TiOx and 24KAu. The chromatisms of TiOx when x was within this range was about 60% of the ones of Cu-based imitated gold or TiN. Theoretical examination with quantum chemistry views indicated that the energy needed by taking charge transition of titanium monoxide was more than that of the photons of visible light, there was no n-n* or - * transition in titanium monoxide. The golden color of titanium mo
    noxide was created because of the d-d transitions of outer layer electrons of Ti2+. Its color turned to golden with slightly red along with increasing of the energy difference among 3d tracks of Ti2+ because of strengthening of O2- field caused by TiOx's oxygen index increase.
    Anti-discoloration and anti-corrosion experiment results of titanium monoxide in air, family atmosphere, mud, artificial sweat, etch used for KAu, NaCl solution, thick ammonia indicated that it was far superior to Cu-based imitated gold and TiN-based cermet imitated gold in anti-discoloration
    
    
    
    and anti-corrosion properties. It was etched very slowly in thin HC1 and H2.SO4 solution and its color did not change. Studies of the color and anti-discoloration etc. of titanium monoxide confirmed the possibility to be used as high-grade imitated gold, and offered experiment and theoretical basis for developing new application fields of titanium monoxide.
    The wettabilities of Fe, Co, Ni, Cu, Al, Si, Mn, FeCr and Fe-C on TiOi.o and TiOi.w were studied in detail for the first time using high-temperature sessile drop method. Their wetting interfaces and wetting mechanisms were deeply examined with aid of XRD and EDS. Source materials and theoretical basis were offered for development of the binding alloy of titanium monoxide and wettibility study of metal/ceramic. The affinity and action between Ti(not only O) in TiOx and Fe, Co, Ni, Al or Mn remarkably influenced their wettabilities on TiOx and the interface binding strength. The chemical affinity between Al and TiOx was strong and the interface reactions existed, but wettability of Al on TiOx was very poor. Dissolution between phases existed
引文
1.中华人民共和国国土资源部编.中国宝石.《中国宝石》编辑部.2000,No,1-2
    2.陆红阳,装饰色彩入门.广西美术出版社,1996
    3.荆其诚,焦书兰,喻柏林等.色度学.科学出版社,1979
    4.任引哲,王玉湘.物质的颜色与结构.北京师范大学出版社.1990
    5.薛新民,黎作坚,林珊.金属颜色测定及二元铜合金的颜色变化规律.铜加工 1994,55(3),133~136
    6. Houstoun R A. Physical Optics. Glasgow: Blackie and Son Limited. 1957
    7. Lott. D, Raub. C. Gold Bull. 1985, 8(3), 93~109
    8. SU Pat. 467128
    9. SU Pat. 3655367
    10. DE Pat. 3235833
    11. DE Pat. 3235832
    12. SU Pat. 4436790
    13. CN Pat. 87102903
    14.马雅琳,王云燕,秦毅红.仿金电镀工艺的现状及发展前景.电镀与精饰.1999,21(20),16~19
    15.董玉祥,张金龙,赵根妹等.仿金材料防腐蚀和抗变色钝化工艺.上海工业大学报.1991,12(6).557~559
    16.马光.提高仿金饰品材料性能的几个途径.稀有金属材料与工程,1989,5,74~76
    17.夏连富,周自强,葛建生等.抗变色仿金合金的研究.金属科学与工艺,1991,10(1),77~82
    18.许贤超,雷广孝.铜基稀土仿金材料的研究及应用.四川有色金属,1992,3,22~25
    19.唐多光,周自强,葛建生等.抗变色仿金合金的研究.金属科学与工艺,1991,10(1),77~82
    20.王碧文,王世民,王涛.仿金铜基合金的研制与应用.材料科学与工艺,1998,6(3),69~72
    21.刘光伟.稀散金属In对Cu-Al合金的组织和和抗失泽能力的影响研究.广州有色院硕士论文,1990
    22. Arai Z. et al., Synthesis of Titanium Nitride from Titanium Powder and Nitrogen or Ammonia. Nagoya Kogyo Gijutsu Skikensho Hokoku. 1962, 11(6), 119~125
    23. Saeki Y. et al., Reaction Process of Titanium Tetrachloride with ammonia in Vapor Phase and Properties of the Titanium Nitride Formed Bull Chem. Sci. Jpn. 1982,50(2), 3193~3196
    24.朱连喜,邹思伟.高频等离子法制取超细氮化钛反应动力学研究,金属学报,1990,26(1),1355~1360
    25. Hu Junqing, Lu QingYi, Tang Kaibin et al., Low-temperature synthesis of nanocrystalline titanium nitride via a benzene-thermal route Journal oftbe American Ceramic Society, 200,2,83
    26. Brezinsky. K., Brehm J.A., Law C.K, et al., Supercritical combustion synthesis of titanium nitride, Symposium on Combustion, 1996,2,1875~1881
    27. Aelkseev N.V., Balikhin L.L., Kurkin E.N. et al. Synthesis of titanium nitride and carbonitride ultra-fine powders from titanium hydride in nitrogen arc discharge plasma jet. Fizikai Khimiya Obrabotki Materialov. 1995, 1, 31-39.
    
    
    28. Li Wenyu, Riley F..L Production of titanium nitride by the carbothermal nitridation of titanium dioxide powder. Journal of the European Ceramic Society 1991, 8(6),345-354
    29. Singh Rishi, Doherty Roger D. Pal, Synthesis of titanium nitride powders under glow discharge plasma. Materials Letters. 1990, 9n(2-3), 87-89
    30. Shibuya M., Despres J.F., Odawara O. Characteristic sample temperature and pressure during processing of titanium nitride combustion synthesis with liquid nitrogen. Journal of Materials Science. 1998, 33(10), 2573-2576
    31.日本专利.JE 64-76906
    32.小田原修et.al.新合成法-SHS.J of the JSTP,1987,28(3),312
    33.小田原修et.al.液体窒素源用TiN燃烧合成.The Chemical Society of Japan,1991,10,1461
    34. Holt. J. B. Exothermic Process Yields Refractory Nitride Materials. Industrial Research & Development, 1983,4,88
    35. US. Patent 4,459,363
    36. US. Patent 4,446,242
    37. JP Patent昭64-76905
    38.罗锡山.氢化钛直接反应合成氮化钛的研究.粉末冶金工业,1997,7(3)P28~30
    39.周芝骏,宁崇德.钛的性质及其应用.高等教育出版社.北京,1993
    40.宋明怡等.TiN的自蔓延合成条件及其特性.第六届全国金属粉末论文摘要集.1994年9月《新技术新工艺》增刊,P24~26
    41.吴钱兴.低压氮气燃烧合成氮化钛.稀有金属材料科学与工程,1993,22167:P74
    42.康新婷,蒋纪麟,刘素英.氮化钛粉的自燃烧合成技术.稀有金属材料科学与工程,1995 24(1)P7~14
    43.林立,薛群基,刘惠文.亚微米氮化钛陶瓷粉末的燃烧合成实验研究.甘肃工业大学学报,1995,21(4),41~46
    44.林立,薛群基,刘惠文.亚微米氮化钛陶瓷粉末的燃烧合成实验研究.甘肃工业大学学报,1995,21(3),24~30
    45.陈吉书,吕真国,徐其亨.戊二酸钛(Ⅲ)与氮化钛的制备.应用化学,1995,12(5),117-118
    46.林立.燃烧合成还原化合法制备氮化钛粉末(Ⅰ).理论分析.材料开发与应用,2000,15(5),1-5
    47.林立.燃烧合成还原化合法制备氮化钛粉末(Ⅱ).试验研究.材料开发与应用,2000,15(5),6-11
    48.周细应,万润根,陈凯旋.多弧离子镀TiN技术.机械工程材料,1994,18(6),61~62(3),133~136
    49. MIKIO FUKUHARA, TETSUYA MITSUDA, YUJL KATSUMURA et al., Sinterability and properties of Ti(N_(1-x),O_x)_y-(V, Ta)C-Ni sintered alloys having a golden color. Journal of materials science, 1985,20710~717
    50. 李书杰,李玉萍,J.H.MAAS, J.BOEIJSMA et al., Interdiffusion at the TiN/Ni interface in the cermet composed of TiN and Ni, Journal of materials science, 1998,33,4089~4093
    51. Jong-Ku Park, Seung-Tae Park, Densification of TiN-Ni cermets by improving wettability of
    
    liquid nickel on TiN grain surface with addition of Mo_2C International Journal of Refractory Metal & Hard Materials, 1999,17,295~298
    52.有贺敦,腾田一,川村和郎.TiN基烧结体色调及添加物效果.粉体粉末冶金,1997,44(12),1095~1099
    53. EP. 0520,465,1992
    54. US. Patent. 4,589,197,198
    55. Roquiny Ph., Bodart F., Terwagne G. Color control of titanium nitride coatings produced by reactive magnetron sputtering at temperature less than 100℃. Surface and Coatings Technology. 1999, 116 (18), 278-283.
    56.谭平,袁泽喜.TiCl_4与NH_3气的气相反应过程及其产物氮化钛的特性.国外金属热处理.98,2,22
    57.萧世槐.氮化钛粉末生产工艺及其应用新进展.矿冶,1997,6(2),59~62
    58.肖国珍,黄春良,焦文强等.离子镀氮化钛深层工艺研究.稀有金属材料与工程,1997,26(3),40~44
    59.王福贞,唐希源,周友苏等.用多弧离子镀膜机镀氮化钛.金属热处理,1994,5,17~21
    60.J.R.J格尔波夫.W.B.克兰道尔著,施今译.金属陶瓷.上海科学技术出版社,1964,11
    61.张金咏,傅正义,王为民.陶瓷-金属复合材料制备与研究.武汉王业大学学报,1999,21(2),10~13
    62.李荣久.陶瓷-金属复合材料.冶金工业出版社,1995
    63. Mikio Fukuhara, Hiroyasu Mitani. The Phase Relationship and Densification during the Sintering Process of TiN-Ni Mixed Powder Compacts. Mater. Tans. JIM. 1980,21,211~218
    64.王零森,黄培云.特种陶瓷.中南工业大学出版社,1994
    65. Gilman I.J. Direct measurement of the surface energies of erystals. J.Appl. Phys. 1960,31,N2,2208~2218
    66. A.G.Evans. J.Am.Ceram. Soc. 1990,73(2),187~260
    67. M.F. Ashby et al., Acta Metall. 1989, 37(7),847
    68. Takaki Masaici. J. Amev. ceram. SDC, 1969,186(8),638
    69. Song G.M., Zhou Y, Sun Y, et al. Ceram Inter, 1998,24(7),521~525
    70. Song G.M., Zhou Y, Sun Y, et al..Ceram Inter, 1998,24(6),455~460
    71. E Than, H Podlesak, G Leonhardt. On the relations between atomic interface parameters and the wettability and stability in metal-ceramic systems, Vacuum, 1990,41(7-9), 1750~1752
    72.万传庚,Kritsalis P,Eustathopulos N.高温钎料PdCu-Ti在氧化铝陶瓷上的润湿性及界面反应.焊接学报,1994,15(4),209~213
    73. Eustathopoulos N. Mortensen A. Fundamentals of Metal-Matrix Composites. 1992,42~58
    74. Li S. Arsenanlt R.J., Jena P. J. App. Phys. 1988,64(11),6246
    75. P. Hichter, D. Chatain, A. Pasture, et al., J. Chim. Phys. 1988,85,941
    76. J.C. Phillips, Rev. Mod. Phys. 1970,42,317
    77. R. Warren, J. Mater. Sci. 1980,15,2489
    78. D. Chatain, L. Coudurier, N.Eustathopooulos. Revue phys. Appl. 1988,23,1055
    79. L. Coudurier, N. Eustathopoulos, P. Pesre. Acta Metall. 1978,26,465
    
    
    80.王效东,吴建新,吴人洁.陶瓷/液态金属相互作用研究.材料科学与工程,1996,14(2),1~5
    81.陈康华,包崇玺,刘红卫.金属/陶瓷润湿性(上).材料科学与工程,1997,15(3),6~10
    82.陈康华,包崇玺,刘红卫.金属/陶瓷润湿性(下).材料科学与工程,1997,15(4),27~34
    83.朱定一,金志浩,王永兰等.反应型液固界面润湿性的数学表征.西安交通大学学报,1997,31(10),94~98
    84.李继光,孙旭东,李荣久.Ti对Al_2O_3/Ni复合材料相界面润湿及力学性能的影响,东北大学学报,1996,17(3),274~277
    85.陈建,潘复生.合金元素影响铝/陶瓷界面润湿性的研究现状.兵器材料科学与工程,1999,22(4),53~41
    86.马晓春,吴锦波.Al-SiC系润湿性与界面现象的研究.材料科学与工程1994,12(1),37~41
    87.熊华平,万传庚,周振丰.Cu-Ni-Ti合金钎料对Si_3N_4陶瓷的润湿与连接.金属学报,1999,35(5),527~530
    88.陆善平,董秀中,吴庆等.Co-Ti,Ti-Zr-Cu高温钎料在Si_3N_4陶瓷上润湿性与界面连接.材料研究学报,1998,12(3),295~298
    89. Hideo Nakae, Hidetoshi Fujii, Kenji Sato. Reactive Wetting of Ceramics by Liquid Metals. Materials Transactions. 1992,33(4)400~406
    90. N. Eustathopoulos, D. Chatain, L. Coudurier. Wetting and Interfacial Chemistry in Liquid Metal-Ceramic Systems. Materials science and Engineering, 1991, Al 35,83~88
    91. J. G. Li, H. Hausner. Wetting and Adhesion in Liquid Silicon/Ceramic Systems. Materials letters, 1992,14,329~332
    92.黄祖洽,丁鄂江.表面浸润和浸润相变,上海科学技术出版社,1994
    93. Wada, Yasunori, Yamaguchi, Takashi. Evaluation of Immersional Wetting Behavior of Multiphase Materials. Journal of the Ceramic Society of Japan. 1989, 97(11),1386~1391
    94. Li Jianguo, Hausner, Hans. Reactive wetting in the liquid-silicon/solid-carbon system. J. Of the American ceramic Society, 1996,79(4),873~880
    95. Kritsalis. P. Drevet B.Valignat N. et al., Wetting transitions in reactive metal/oxide system. Soripta Metallurgica et Materialia, 1994,30(9), 1127~1132
    96. Eustathopoulos. N. Drevet B. Determination of the nature of metal-oxide interfacial interactions from sessile drop data. Materials Science & Engineering A: Structural Materials, 1998 Elsevier Science, 30(1-2), 176~183
    97. Rado C. Kalogeropoulos S. Eustathopoulos N. Bonding and Wetting in no-reactive metal/Sic systems: Weak or strong interfaces Materials Science & Engineering A: Structural Materials, 2000 Elseviev Science, 1,195~202
    98. Eustathopoulos N. Drevet B.Ricci E. Temperature Coefficient of surface tension for pure Liquid metal, J. Of Crystal Growth. 1998,191(1-2), 268~274
    99. Chatiuon C. Coudurier L. Eustathopoulos N. Stability of oxide films on liquid metals under vacuum: influence on wetting of metals on ceramic surfaces. Materials Science Forum. 1997,20~24,701~708
    100. Espie L. Drevet B. Eustathopoulos N. Experimental study of the influence of interfacial energies and reactivity on wetting in metal/oxide system. Metallurgical and Materials Transaction A. 1994, 25(3), 599~605
    
    
    101. Landry. K. Rado C. Eustathopoulos N. Influence of interfacial reaction rates on the wetting driving fouce in metal/ceramic system. Metallurgical and Materials Transaction A. 1996,27A(10),3181~3186
    102. Tournier C. Lorrain B. Le Guyadec et al. Influence of non-stoichiometry of oxides on their wettability by liquid metals. Materials Science Letters. 1996,15(6),485~489
    103.李卫,黎茂梁.高温座滴法实验技术及装置的应用和发展.稀有金属与硬质合金.1996,1,44~46
    104.黎茂梁,王容华,李洪桂.高温座滴法实验技术及装置研究报告.内部资料.1988
    105. Skinner, Titanium and its compounds. 1953
    106.莫畏,邓国珠,罗方承.钛冶金.冶金工业出版社.1998
    107. HERMANF MARK et al. Encyclopedia of Chemical Technology. Vol.23 John Wiley & Sons. New York, 1984
    108.南京化工学院,清华大学,华南工学院合编.陶瓷材料研究方法.中国建筑工业出版社,1979
    109.刘智恩.材料科学基础.西北工业大学出版社,2000
    110. Matthew J. Donachie, Ohio. Titanium and titanium alloys. 1982
    111.江元生.结构化学.高等教育出版社.1997
    112.株洲硬质合金厂著.硬质合金的生产.冶金工业出版社.1974
    113. Vershina A.K., Agtev V.A., Pleskachevskii I. Yu. Structure and decorative properties of TiO coatings deposited from separated low temperature plasma fuxes. Fiz. Khim. Obrab. Mater. 1996,5,45~50
    114. Berkova Daniela, Sedlar Miroslan, Miroslan, Matejec Vlastimil et al., Fabrication and properties of doped porous polysiloxane sol-gel layers on optical fibers. Joining Adv. Spec Mater, Proc. Mater Solutions Conf. 1998,85~91
    115. Shiba kazuhiro. Semiconductor laser modules. JP 11186660 1999
    116. Grigorov K.G., Grigoyov G.I., Drajeva L. et al. Synthesis and charaterization of conductive titanium monoxide films. Elsevier Science Ltd. 1998
    117. Guidi V., Comini E., Ferroni M. et al., Study on nanosized TiO/WO_3 thin films achieved by radio frequency sputtering. J.Vac. Sci. Technol. A.2000,18(2),509~514
    118. Comini E., Sberveglieri G., Ferroni, M. NO_2 monitoring with a novel P-type material: TiO Sens. Actuators, B, 2000, 1368(1-3), 175~183
    119.朱心昆,林秋实,陈铁力.机械合金化的研究及进展.粉末冶金技术,1999,17(4),291~295
    120.吴年强,林硕,叶仲屏等.机械合金化中的固态反应.材料导报,1999,13(6),12~14
    121. E.Gaffet, M.Abdellaoui, N. Malhouroux: Foundation of Nanostructured Materials Induced by Mechanical Processing. Mater. Trams. JIM. 1995,36(2), 198
    122.刘心宽,马明亮,周敬恩.碳热还原反应制备氮化铝粉末工艺研究.有色金属,1999,51(1),78~80
    123. J. Unnam, R.N.Snenoy, R.K.Clark. Oxidation of Commercial Purity Titanium. Oxidation of Metal. 1986,26(3/4),231~252
    124. T. Moroishi, Y. Shida. Oxidation Behaviour of Titanium in high Temperature Steam. TITANIUM'80 science and technology. Edited by H. Kimura, O. Izumi. 2773~2782
    125. M.D.Bui, C. Jardin, J.P.Gauthier, et al., Oxidation Mechanisms in Industrial Titanium. TITANIUM'80 science and technology. Edited by H. Kimura, O. Izumi. 2819~2827
    
    
    126. J.B. Bignolas, M.Bujor, A.Genty, et al., A Study of Oxygen Chem. sorption on Titanium. TITANIUM'80 science and technology. Edited by H. Kimura, O. Izumi. 2829~283
    127.崔文芳,魏海荣,罗国珍等.IMI834和Ti-1100在550℃~750℃高温下的氧化行为.稀有金属材料与工程,1997,26(2),31~35
    128.崔文芳,罗国珍,周廉.氧在Ti-1100高温钛合金氧化中的扩散规律.东北大学学报,1998,19(1),19~21
    129. D. David, G. Beranger, E.A. Garcia. A Study of Diffusion of Oxygen in α-Titanium Oxidized in the Temperature Range 460~700℃. J. Electrochem. Soc.: Solid-State Science and Technology. 1983,1423~1426
    130. CASIMIR J. ROSA. Oxygen Diffusion in Alpha and Beta Titanium in the Temperature Range of 932°to 1142℃. Metallurgical. Transactions, 1970, 1, 2517~2522
    131. D.C. Lynch, D.E. Bullard. Phase Equilibria in the Titanium-Oxygen System. Metallurgical and Materials Transactions B. 1997,28B,447~453
    132. Wei-E Wang, Yeon Soo Kim. A thermodynamic evaluation of the titanium-oxygen system from O/Ti=O·3/2. Journal of Nuclear Materials, 1999, 270, 242~247,
    133. J.S.Anderson, A.S.Khan. Equilibria of Intermediate Oxides in the Titanium-Oxygen. Journal of the Less-Common Metals, 1970,22,219~223
    134.袁伟,廖海达.由二氧化钛制备三氧化二钛优化工艺条件的研究.北京化工大学学报,1999,27(3),79~82
    135.熊惟皓,周风云,李国安等.粉末粒度对Ti(C,N)基金属陶瓷组织与性能的影响.华中理工大学学报,1995,23(12),37~41
    136.申泮文,东云霞.无机化学丛书,第八卷.科学出版社,1998
    137.曹锡章,宋天佑,王杏乔.无机化学.高等教育出版社,2000
    138. Cambridge, Mass. Titanium science and technology. International Conference on Titanium. 2d. 1972
    139.符斌.常用化学手册.地质出版社,1997
    140.曾庆衡.物理化学.中南工业大学出版社,1991
    141. Mcquillan A.D. Titanium. 1956
    142.傅崇说.有色冶金原理.冶金工业出版社.1983
    143.陆世英,张廷凯,杨长强等.不锈钢.原子能出版社.1995
    144.姚守拙,朱元保,何双娥.元素化学反应手册.湖南教育出版社.1996
    145.梁英教,车荫昌,刘晓霞等.无机物热力学数据手册.1993
    146.黄培云.粉末冶金原理.冶金工业出版社.1982
    147. N. Y. Gordon, Breach. The Physics and Chemistry of Ceramics. 1963
    148. I. Massalski, Thaddeus D. Binary alloy phase diagrams. 1986
    149.姚允斌,解涛,高英敏.物理化学手册.上海科学技术出版社.1985
    150.王至尧.电火花线切割工艺.原子能出版社.1987
    151.江逢霖.量子化学原理.复旦大学出版社.1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700