多输入多输出随机振动试验控制算法及若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多输入多输出(MIMO)随机振动试验具有比单点振动试验更好的振动环境模拟能力,能够检验出更多的潜在可靠性和安全性问题,对于经济和国防等的发展和进步具有重要意义。多输入多输出随机振动试验已经被写入最新的美军标MIL-STD-810G中,国内外越来越重视多输入多输出随机振动试验。本文以多点线性振动试验控制理论为基础,研究了多输入多输出随机振动试验控制中的相关问题。
     基于数字信号处理的全相位谱分析理论,提出了用于改善MIMO随机振动试验控制效果的全相位频响函数估计方法。分析了频响函数估计不准对多输入多输出随机振动试验控制的影响。介绍了全相位谱估计理论并将之引入到频响函数估计中,构成了全相位频响函数估计方法,该方法改善了多输入多输出随机振动试验控制效果。
     分析了MIMO频响函数估计中的内存激励信号和实测响应信号之间的关系和不同步原因,提出了用于同步两种信号的二次相关法。对VXI数字信号发送和采集系统的工作流程作了介绍,对信号发送和采集过程中信号之间的同步问题。通过理论分析,根据激励信号和响应信号之间的关系,提出了基于相关函数和随机减量法的二次相关法,计算得到了由计算机生成的内存激励信号和VXI实测的响应信号之间的时间对应关系。
     研究了时域随机化过程的“加窗”和“叠加”过程,提出了一种改进的随机驱动信号生成方法。在试验中发现,生成的随机驱动信号的频谱和期望的驱动频谱不一致,从而造成多输入多输出随机振动试验控制结果中总是存在超标谱线。通过对时域随机化过程中的“加窗”和“叠加”两个部分的分析,本文提出了改进的随机驱动信号生成方法,在不改变谱线数的前提下增加伪随机驱动信号长度并采用四帧叠加的方法,改善了随机驱动信号的生成质量,改善了随机振动控制的效果。
     分析了影响MIMO随机振动试验控制精度的因素,提出了兼顾快速修正和提高试验控制精度的变参数PID控制算法。将PID控制思想引入到多输入多输出随机振动试验控制中,在对数坐标下引入比例、积分、微分控制环节,然后转变到线性坐标下。根据响应谱和参考谱之间的误差,动态的调整PID控制参数,完成了变参数PID控制算法,实现了在保证快速修正的条件下,提高了随机振动试验控制精度。
     对比分析了差分控制算法和比例均方根控制算法,提出了具有稳定收敛的自谱和互谱控制特性的矩阵幂次控制算法。理论推导了矩阵幂次控制算法,并对比分析了差分控制算法、比例均方根控制算法和矩阵幂次控制算法的各自特点,指出了差分控制算法存在“负值问题”的原因及后果。差分控制算法的误差假设和误差修正方法都是基于差分运算的,而矩阵幂次控制算法则采用矩阵乘法的形式进行误差假设、误差计算和误差修正,这种差异是矩阵幂次控制算法避免“负值问题”的原因。最后分别在仿真和试验中验证展示了三种控制算法的控制结果,验证了矩阵幂次控制算法的稳定收敛的自谱和互谱控制能力。
MIMO random vibration test can simulate the real vibration environment better than SISOrandom vibration test, it can find more potential reliability and security problems, and has importantmeaning for the development of economic and national defense. MIMO random vibration test hasbeen required in USA MIL-STD-810G, more attentions has been paid on MIMO random vibrationtest. Based on control theory for MIMO linear vibration test, related issues about MIMO randomvibration test control will be studied in this dissertation.
     Base on the all phase spectral estimation theory of digital signal process, all phase frequencyresponse function estimation method is proposed, which can improve the control results of MIMOrandom vibration test. The affect to MIMO random vibration test caused by the inaccurateness offrequency response function estimation is analyzed. Theory of all phase spectral estimation theory isintroduced and is applied into frequency response function estimation, and all phase frequencyresponse function estimation method is formed. This estimation method improved the control resultsof MIMO random vibration test.
     The relationship between memory excitation signals and measured response signals and thereason of their asynchronism are analyzed, a double correlation method to synchronize these twosignals is proposed. After the introduction of working process of VXI digital signal transmission andacquisition instrument, the synchronization problem between sending signals and sampling signals ispresented. Base on the relationship between exciting signals and response signals, a doublecorrelation method is proposed, in which the correlation function calculation and random decrementmethod are used. Double correlation method can get the time history relationship between excitingsignals in computer memory and response signals measured by VXI.
     The “window” and “overlap” process of the time domain randomization process are analyzed; animproved generation method of random exciting signal is proposed. It is found in tests that thefrequency spectrums of generated signals are not the same with the expected drive spectrums, whichwill result in the over range spectrum in control result of MIMO random vibration test. After theanalyses of “window” and “overlapping” of time domain randomization process, a four frameoverlapping method is proposed. Under the circumstance of not changing the number of spectrumlines, this method improves the exciting signals and the random test control results.
     Factors that affect the control accuracy of MIMO random vibration test are analyzed; PID controlalgorithm with variable arguments is proposed to make rapid correction and to improve control accuracy. The idea of PID control is applied into MIMO random vibration test control. Theproportional control, integral control and differential control is introduced in test control under thelogarithmic coordinates, and then been transformed into forms under linear coordinates. The valuesof arguments of PID control are adjusted according to the errors between response spectrums andreference spectrums. The PID control algorithm can make the rapid correction of response spectrums,and also improve the random vibration test control accuracy.
     Compare analsis among control algorithms are made, Matrix power control algorithm (MPCA) isproposed, which can steadily and convergently control the auto spectrum and cross spectrum. Thetheory of matrix power control algorithm is deduced. A compare analysis among difference controlalgorithm (DCA), proportional root mean square control algorithm (PRMSCA) and MPCA is made.The error assumption and error correction of DCA is based on difference operation, while the errorassumption, error calculation and error correction is base on matrix multiplication operation. Thisdifference forms is why MPCA can avoid the “negative value problems”. At last simulations andtests are made, the results proved the auto spectrum and cross spectrum control ability of MPCA.
引文
[1]高轶军.俄罗斯"联盟"太空船在铁路运输中"被震坏"[EB/OL].[2010-10-07].http://world.people.com.cn/GB/57507/12886140.html
    [2]李永乐,张明金,廖海黎.大跨度柔性斜拉-悬索体系风-车-线路耦合振动研究[J].振动工程学报,2010.2,23(1):69-75.
    [3] Smith Suzanne D. Characterizing the effects of airborne vibration on human body vibrationresponse[J]. Aviation, space, and environmental medicine,2002,73(1):36-45.
    [4] Uwe Stobenera, Lothar Gaul. Active vibration control of a car body based on experimentallyevaluated modal parameters[J]. Mechanical Systems and Signal Processing,2001.1,15(1):173:188.
    [5]宗文俊,李旦,孙涛,程凯等.机床振动对高精度金刚石刀具研磨质量的影响[J].航空学报,2005.5,26(3):367-370.
    [6] Fowler J R, Rosenthal J S. Missile Vibration Environment for Solid Propellant OscillatoryBurning[J]. AIAA paper,1971:71-756.
    [7]邹春平,陈端石,华宏星.船舶结构振动特性研究[J].船舶力学,2003.4,7(4):102-115.
    [8] Lazarus A, Prabel B,Combescure D. A3D finite element model for the vibration analysis ofasymmetric rotating machines[J]. Journal of Sound and Vibration,2010.8329(18):3780-3797.
    [9]袁宏杰,李传日,殷雪岩.正弦振动控制技术的研究[J].电器自动化,2001,(2):25-27.
    [10] MIL-STD-810G Environmental engineering considerations and laboratory tests [S].2008.10.3
    [11] GJB150.16A-2009军用设备实验室环境试验方法[S].2009.
    [12]胡志强,法庆衍,洪宝林,等.随机振动试验应用技术[M].北京:中国计量出版社,1996
    [13] Fisher D K. Theoretical and Practical Aspects of Multiple Actuator Shaker Control.43rd Shockand Vibration Bulletin. Part3,1973:153-174.
    [14] Fisher D K and Posehn M R. Digital Control System for a Multiple Actuator Shaker.47thShock and Vibration Bulletin,1977:79-96.
    [15] Tebbs D and Hunter N. Digital Control of Random Vibration Tests Using a Sigma VComputer[C]//Proceedings of the Institute of Environmental Sciences,1974:36-43
    [16] Lund R A. Environmental Simulation with Digitally Controlled Servo-Hydraulics[C]//Proc.Inst. Environ. Sci.,1976:65-70.
    [17] Smallwood D O. Multiple Shaker Random Control with Cross-coupling[C]//. Proceedings ofthe Institute of Environmental Sciences,1978:341-347.
    [18] Smallwood D O. Random vibration testing of a single test item with a multiple input controlsystem[C]//Proceedings of the Institute of Environmental Sciences.1982:42-49.
    [19] Smallwood D O. A Random Vibration Control System for Testing a Single Test Item withMultiple Inputs[C]//. SAE Transactions, SAE paper821482,1983.9:4571-4577.
    [20] Smallwood D O, Woodall T D, Buksa E J. Minimum drive requirements for a multiple inputmultiple output linear system[C]//Proceedings of the Institute of Environmental Sciences.1986:295-301
    [21] Paez T L, Smallwood D O, Buksa E. Random control at n2points using nshakers[C]//Proceedings of the Institute of Environ-mental Sciences.1987:271-275.
    [22] Smallwood D O, Paez T L. A frequency domain method for the generation of partially coherentnormal stationary time domain signals[J]. Shock and Vibration,1993,1(1):45-53.
    [23] Smallwood D O. Generation of Time Histories with a Specfied Auto Spectral Density,Skewness, and Kurtosis[C]//Proceedings of the Institute of Environ-mental Sciences,1996:304-309.
    [24] Smallwood D O. Generation of stationary non-Gaussian time histories with a specifiedcross-spectral density[J]. Shock and Vibration,1997,4(5-6):361-377.
    [25] Smallwood D O. Multiple shaker random vibration control–an update[C]//Proceedings of theInstitute of Environmental Sciences and Technology.1999:212-221
    [26] Smallwood D O. The Relationship Between the Variance of Energy Estimates and theUncertainty Parameter[J]. Journal of the IEST,2003,46(1):103-109.
    [27] Smallwood D O. Generating non-Gaussian vibration for testing purposes[J]. Sound andvibration,2005,39(10):18-24.
    [28] Smallwood D O. Multiple input multiple output (MIMO) linear systems extremeinputs/outputs[J]. Shock and Vibration,2007,14(2):107-131.
    [29] Pelletier M P, Underwood M A.Multichannel simultaneous digital tracking filters for swept-sinevibration control[J]. Journal of the IES,1994,37(5):23-29.
    [30] Underwood M A, Keller T. Recent system developments for multi-actuator vibration control[J].Sound and vibration,2001,35(10):16-23.
    [31] Underwood M A. Adaptive control method for multiexciter sine tests: USA.5299459[P].1994.4.5
    [32] Underwood M A. Apparatus and method for adaptive closed loop control of shock testingsystem: USA.5517426[P].1996.5.14
    [33] Underwood, M A. Multi-exciter testing applications: theory and practice[C]//Proceedings of theInstitute of Environmental Sciences and Technology,2002:1-10.
    [34] Underwood M A, Keller T. Rectangular control of multi-shaker systems: theory and practicalresults[C]//Proceedings of the Institute of Environ-mental Sciences Technology,2004,47(1):80-86.
    [35] Underwood M A, Keller T. Applying coordinate transformations to multi-dof shaker control[J].Sound and Vibration,2006,40(1):22-27.
    [36] Underwood M A, Keller T. Testing civil structures using multiple shaker excitationtechniques[J]. Sound and Vibration,2008,42(4):10-15.
    [37] Mianzo L, Peng H. LQ and H∞preview control for a durability simulator[C]//Proceedings ofthe American Control Conference.1997,1:699-703.
    [38] De Cuyper J, De Keersmaecker H, Swevers J, etc. Design of a multivariable feedback controlsystem to drive durability test rigs in the automotive industry[C]//Proceedings of the fifthEuropean control conference,, Karslruhe,Germany1999,40(2):13-19.
    [39] De Cuyper J and Coppens D. Service load simulation on multi-axis test rigs[J]. Sound andVibration,1999,30(1):30-35.
    [40] De Cuyper, J, Swevers J, Verhaegen M and Sas P. Hinf feedback control for signal tracking on a4poster in the automotive industry[C]//Proceedings of the international seminar on modalanalysis (ISMA25), Leuven, Belgium.2000:61-68.
    [41] D Vaes, W Souverijns, J De Cuyper, etc. Decoupling feedback control for improvedmultivariable vibration test rig tracking[C]//Proceedings of the International Seminar on ModalAnalysis, Leuven (Belgium).2002:525-534.
    [42] De Cuyper J, Verhaegen M and Swevers J. Off-line feedforward and H∞feedback control forimproved tracking on an industrial vibration test rig[J]. Journal of Control Engineering Practice,2003,11:129-140
    [43] Vaes D, Swevers J and Sas P. Experimental validation of different MIMO-feedback controllerdesign method[J]. Journal of Control Engineering Practice,2005,13:1439-1451.
    [44] Skogestad S, Postlethwaite I. Multivariable feedback control[M]. New York: Wiley,1996
    [45]吴家驹,多点随机激励的互谱模拟技术[J].强度与环境,1986(6):26-34.
    [46]吴家驹.振动试验中的多台并激技术[J].强度与环境,199285(1):1-5.
    [47]夏益霖.多轴振动环境试验的技术、设备和应用[J].导弹与航天运载技术,1996,(6):52-59.
    [48]吴家驹.多维振动环境试验方法[J].导弹与航天运载技术,2003(4):27-32.
    [49]王新.多台振动试验控制方法研究[J].强度与环境,2008.4,35(02):7-11.
    [50]吴家驹,多维振动环境试验控制策略的分析基础[J].强度与环境,2008.835(4):1-6.
    [51]陈立伟,卫国.多维随机振动试验条件制定方法研究[J].强度与环境,2010.12,37(6):1-6.
    [52]高贵福,赵保平.一种定量评价随机振动试验效果的新方法——计量法[J].装备环境工程,2006.2,3(1):67-68.
    [53]赵保平,王刚,高贵福.多输入多输出振动试验应用综述[J].装备环境工程,2006.6,3(3):25-32.
    [54]高贵福,王刚,赵保平.一种新的多维随机振动试验控制算法——矩阵微分法[J].强度与环境,2008.10,35(5):38-42.
    [55]高贵福,王刚,赵保平.细长体复杂结构双振动台振动试验方法标准编制若干问题研究[J].航天器环境工程(增刊),2009.12,26:116-117.
    [56]齐华.单轴多点激励正弦振动控制算法研究及其实现[D].北京:北京航空航天大学,2001.
    [57]袁宏杰,罗敏,姜同敏.随机振动环境测量数据归纳方法研究[J].航空学报,2007,28(1):115-117.
    [58]叶建华,李传日.多点随机振动试验控制技术[J].系统工程与电子技术.2008.130(1):124-127.
    [59]袁宏杰,唐环,李传日.多点随机振动试验的最小驱动[J].船舶力学,2008.412(2):319-322.
    [60] Yao J Y, Li C R, Diao X X. Study of real-time multi-shaker random vibration testingsystem[C]//Computer Science and Information Engineering,2009WRI World Congress on,Los Angeles, CA.2009:291-295.
    [61]刘阳,李传日.多输入多输出系统的相干性的问题分析[J].装备环境工程,2009.2,6(1):35-42.
    [62]韩军,陈怀海,许锋,等.基于遗传算法的多振动台随机振动控制方法[J].航空学报,2003,24(1):39-41.
    [63]田玉虎,鲍明,陈怀海,等. H∞理论在双振动台解耦控制中的应用[J]南京航空航天大学学报,2003,(5):516-520.
    [64]贺旭东,陈怀海.利用FIR滤波器生成随机振动试验驱动信号的新方法[J].航空学报,2003.5,24(3):220-222.
    [65]贺旭东,陈怀海.一种多点随机振动试验控制的新方法研究[J].振动工程学报,2004.3,17(1):49-52.
    [66]贺旭东,陈怀海.多点随机振动控制中的互谱矩阵研究[J].南京航空航天大学学报,2004.12,36(6):744-747.
    [67]贺旭东,陈怀海,申凡,等.双振动台随机振动综合控制研究[J].振动工程学报,2006.619(2):145-149.
    [68]贺旭东,陈怀海,申凡,等.多点简谐振动响应控制下的频响矩阵测试[J].航空学报,2006.9,27(5):869-872.
    [69]贺旭东.多输入多输出振动试验控制系统的理论、算法及实现[D].南京:南京航空航天大学,2006.
    [70]朱银龙,陈怀海,贺旭东,等.多输入多输出正弦振动试验控制系统算法研究即实现[J].振动工程学报,2008.2,21(1):62-65.
    [71]姜双燕,陈怀海,贺旭东.基于内膜控制的多输入多输出高阶振动系统PID控制器设计[J].航空学报,2009.2,30(2):326-341.
    [72]徐浩,陈怀海,游伟倩.多输入多输出冲击振动试验研究[J].振动、测试与诊断,2010.4,30(2):143-148.
    [73]孙成宽.多输入多输出随机加正弦控制系统研究[J].江苏航空(增刊),2010,51-53.
    [74]游伟倩,陈怀海,贺旭东,等.随机振动功率谱的H∞双自由度跟踪控制研究[J].振动工程学报,2010.6,23(3):317-323.
    [75]崔旭利,陈怀海,贺旭东,等.多输入多输出随机振动试验交叉比例控制算法[J].南京航空航天大学学报,2010.8,42(4):429-434.
    [76]崔旭利,陈怀海,贺旭东,等.多输入多输出随机振动试验变参数PID控制[J].航空学报,2010.931(9):1776-1780.
    [77]姜双燕,陈怀海,贺旭东,等.基于回路整型设计的多轴振动控制[J].航空学报,2010.10,31(10):1940-1945.
    [78]陆勇星,陈怀海,曹立娟.多点随机振动控制试验中随机相位双谱恢复方法[J].振动工程学报,2010.8,23(4):420-424.
    [79]沈国重,路甬祥.多分辨随机振动控制算法[J].机械工程学报,2001.10,37(10):14-18.
    [80]王述成,陈章位.随机振动试验中时域随机化技术的研究[J].机械工程学报,2005.5,41(5):230-233.
    [81]王述成,陈章位.基于多分辨谱分析的正弦加随机振动试验控制算法的研究[J].中国机械工程,2005.8,16(15):1335-1338.
    [82]王述成.振动试验实时控制系统的研究[D].杭州:浙江大学,2006.
    [83]叶凌云.多轴向多激励随机振动高精度控制研究[D].杭州:浙江大学,2006.
    [84]陈章位,于慧君.振动控制技术现状与进展[J].振动与冲击,2009,28(3):73-86.
    [85]陈章位,陈家焱,贺惠农.振动试验低频控制精度的研究[J].振动与冲击,2010,29(8):31-34.
    [86] Zhang-Wei Chen, Jia-Yan Chen, Jian-Chuan Zhou. Study on control method and system ofmulti-shaker random vibration test[C]//Mechanic Automation and Control Engineering(MACE),2010International Conference on, Wuhan.2010.6:5382-5385.
    [87]陈家焱,周建川,陈章位,等.多点同步并激振动试验控制系统的设计与实现[J].系统工程与电子技术,2010,32(12):2676-2680.
    [88]陈家焱,王海东,周建川,等.多点激励振动试验控制技术进展[J].振动与冲击,2011,30(3):69-73.
    [89]陈循,温熙森.多轴随机激励振动控制技术研究[J].国防科技大学学报,2000,22(1):65-68
    [90]蒋瑜,陈循,陶俊勇,等.超高斯伪随机振动激励信号的生成技术[J].振动工程学报,2005.618(2):179-183.
    [91]蒋瑜,陈循,陶俊勇.基于时域随机化的超高斯真随机驱动信号生成技术研究[J].振动工程学报,2005.1218(4):491-494.
    [92]蒋培,董理,张春华,等.多轴同步载荷的疲劳强化效能探讨[J].机械科学于技术2006.325(3):340-362.
    [93]韩俊伟,李玉亭,胡宝生.大型三向六自由度地震模拟振动台[J].地震学报,1998.5,20(03):327-331.
    [94]韩俊伟,于丽明,赵慧,等.地震模拟振动台三状态控制的研究[J].哈尔滨工业大学学报,1999,(03):21-23.
    [95]关广丰,丛大成,李洪人,等.随机振动功率谱复现迭代算法的研究[J].地震工程与工程振动,2006,26(6):71-76.
    [96]关广丰.液压驱动六自由度振动试验系统控制策略研究[D].哈尔滨:哈尔滨工业大学,2007.
    [97] Guan G, Xiong W, Wang H, etc. Generation of time domain drive signals in mimo randomvibration control system[C]//Proceedings of the7th JFPS international symposium on fluidpower, Toyama,2008:295-300.
    [98] Guangfeng Guan, Wei Xiong, Haitao Wang, etc.6Degree-0f-Freedom Long-Term WaveformReplication Control[C]//Information Engineering and Computer Science,2009. ICIECS2009.International Conference on, Wuhan,2009:1-4.
    [99] Guangfeng Guan, Wei Xiong, Haitao Wang. Adaptive control of random vibration testsystem[C]//Intelligent Control and Information Processing (ICICIP),2010InternationalConference on, Dalian.2010:149-153.
    [100]关广丰,王海涛,熊伟,等.6自由度液压振动台运动学分析及控制策略[J].振动、测试与诊断,2011.2,31(1):89-93.
    [101]严侠,朱长春,胡勇.三轴六自由度液压振动台系统建模研究[J].机床与液压,2006,(11):93-95.
    [102]严侠,牛宝良,黎启胜.多维波形再现控制系统设计与开发[J].振动与冲击,2007,26(09):162-164.
    [103]严侠,牛长春,牛宝良.多维波形再现数字控制系统研制[J].机床与液压,2009.6,37(6):146-148.
    [104]朱学旺,刘青林.飞行振动环境随机试验模拟的载荷等效[J].航天器环境工程,2006.10,23(5):257-261.
    [105]朱学旺,刘青林.随机振动载荷动力学等效的一种工程实现方法[J].实验力学,2007.12,22(6):568-574.
    [106]朱学旺.随机振动载荷峰值强度的一种工程表述[J].装备环境工程,2009.106(5):45-49.
    [107]刘成,李一兵,王仲范,等.多输入多输出试验系统的随机波形时域再现[J].汽车工程,2003,25(2):171-174.
    [108] IMV Corporation. Introduction of RC-1120Digital Vibration Controller[M].1998
    [109] IMV Corporation. Multi-degree of freedom random control system, F2/Multi-Random,Instruction manual[M].1998.
    [110] SignalStar Matrix Single and Multi Axis Vibration Testing, Data Physics Corporation[EB/OL]
    [2011.4.27]. http://www.dataphysics.com
    [111] SignalStar Matrix Shaker Controller, Data Physics Corporation[EB/OL][2011.4.27].http://www. dataphysics.com
    [112] Sri Welaratna. A New Algorithm for Random Vibration Control[J]. Evaluation Engineering,1994,33(12):51-55
    [113] Bart Peeters, Jan Debille. Multiple-input-multiple-output Random Vibration Control: Theoryand Practice[C]//Proceedings of the2002International Conference on Noise and VibrationEngineering,2002:507-516
    [114]张贤达.矩阵分析与应用[M].北京:清华大学出版社.2006.12.
    [115]郑方,章毓晋.数字信号与图像处理[M].北京:清华大学出版社,2006.
    [116]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000.
    [117] Phillips A W, Zucker A T, Allemang R J. A comparison of MIMO-FRF excitation/averagingtechniques on heavily and lightly damped structures[C]//Society for Experimental Mechanics,Inc,17th International Modal Analysis Conference,1999,2:1395-1404.
    [118] Phillips A W, Allemang R J. An overview of MIMO-FRF excitation/averaging/processingtechniques[J]. Journal of sound and vibration,2003,262(3):651-675.
    [119]段虎明,秦树人,李宁.频率响应函数估计方法综述[J].振动与冲击,2008,27(5):48-52.
    [120]滑广军,吴运新,吴吉平.一种新的频响函数无偏估计方法[J].振动、测试与诊断,2003.923(3):175-178.
    [121]滑广军,吴运新.用无偏估计方法计算简支梁的频响函数[J].噪声与振动控制,2009.10(5):47-49.
    [122] Schoukens J, Pintelon R. Measurement of frequency response functions in noiseenvironments[J]. IEEE Transactions onInstrumentation and Measurement,1990,39(6):905-909.
    [123] Guillaume P, Pintelon R, Schoukens J. Nonparametric frequency response function estimatorsbased on nonlineKr aura-sing techniques[J]. IEEE Transactions on Instrumentation andMeasurement.1992,41(6):739-746.
    [124] Schoukens J, Rolain Y, Pintelon R. Leakage reduction in frequency-response functionmeasurements[J]. IEEE Transactions on Instrumentation and Measurement,2006,55(6):2286-2291.
    [125] Antoni J. Leakage free identification of FRF’s with the discrete time Fourier transform[J].Journal of Sound and Vibration,2006,294(4-5):981-1003.
    [126] Antoni J, Schoukens J. A comprehensive study of the bias and variance offrequency-response-function measurements: Optimal window selection and overlappingstrategies[J]. Automatica,2003,43(10):1723-1736.
    [127] Schoukens J, Rolain Y, Pintelon R. Improved frequency response function measurements forrandom noise excitations[J]. IEEE Transactions on Instrumentation and Measurement,1998,47(1):322-326.
    [128] Adams D E, Allemang R J. A new derivation of the frequency response function matrix forvibrating non-linear systems[J]. Journal of sound and vibration,1999,227(5):1083-1108.
    [129]李德葆,陆秋海.实验模态分析及其应用[M].北京:科学出版社,2001.
    [130]张令弥.振动测试与动态分析[M].北京:航空工业出版社,1992.
    [131]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000.
    [132] Schoukens J, Rolain Y, Pintelon R. Analysis of windowing/leakage effects in frequencyresponse function measurements[J]. Automatica,2006,42(1):27-38.
    [133]王兆华,侯正信,苏飞.全相位FFT频谱分析[J].通信学报,2003,24(11A):16-19.
    [134]黄翔东,王兆华.全相位DFT抑制谱泄漏原理及其在频谱校正中的应用[J].天津大学学报,2007,40(7):574-578.
    [135]黄晓红,王兆华.一种减小泄漏的新型谱估计方法[J].信号处理,2007,23(1):144-147.
    [136]黄翔东.全相位数字信号处理[D].天津:天津大学电子信息工程学院,2006.
    [137]王兆华,黄翔东.数字信号全相位谱分析与滤波技术[M].北京:电子工业出版社,2009.
    [138]王兆华,曹继华,韩萍. FOUREIER重叠数字滤波器[J].信号处理,2001,17(2):189-191.
    [139]王兆华,侯正信.全相位FFT频谱分析装置:中华人民共和国国家知识产权局,200420028959.8[P].2004.5.12.
    [140]苏飞,王兆华.全相位FIR滤波器及其频谱分析中的应用[J].数据采集和处理,2004,19(1):60-67.
    [141] B. Gustavsen, A. Semlyen. Rational approximation of frequency domain responses by VectorFitting[J]. IEEE Trans. Power Delivery,1999.7,14(3):1052-1061.
    [142] B. Gustavsen. Improving the pole relocating properties of vector fitting[J]. IEEE Trans. PowerDelivery,2006.7,21(3):1587-1592.
    [143] D. Deschrijver, M. Mrozowski, T. Dhaene etc. Macromodeling of Multiport Systems Using aFast Implementation of the Vector Fitting Method[J] IEEE Microwave and WirelessComponents Letters,2008.6,18(6):383-385.
    [144]胡广书.数字信号处理——理论、算法与实现[M].北京:清华大学出版社,1997.
    [145] Cole H A. On line analysis of random vibration[C]. AIAA/AsM9th Strilcture,StructllralDynamics and Materials Conference,1968, AIAA Paper:68-288.
    [146]刘瑞岩,张健保.随机减量模态识别的试验研究[J].振动与冲击,1993,12(1):14-19.
    [147]张西宁,屈梁生.一种改进的随机减量信号提取方法[J].西安交通大学学报,2000,34(1):106-110.
    [148]刘彬,丁桦,时忠明.随机减量函数触发条件分析[J].振动与冲击,2007,26(7):27-31.
    [149] EX2500A LXI-VXI Gigabit Ethernet Slot-0Interface [EB/OL].[2011-04-07]http://www.vtiinstruments.com/ProductDescription.aspx?ProductID=1218
    [150] VT143616-channel102.4kSa/s24-bit digitizer plus DSP with built-in IEPE conditioning
    [EB/OL].
    [2011-04-07].http://www.vtiinstruments.com/ProductDescription.aspx?ProductID=327
    [151] VT1434A4-channel65kSa/sec Arbitrary Source[EB/OL].[2011-04-07].http://www.vtiinstruments.com/ProductDescription.aspx?ProductID=1062
    [152]乔新愚,肖建红,郑术力,随机振动的描述方法及稳态检验[J].电子质量,2006,(6):33-35.
    [153] JJG948-1999数字式电动振动试验系统[S].1999.
    [154] Harris F J. On the use of windows for harmonic analysis with the discrete Fourier transform[J].Proceedings of the IEEE,1978,66(1):51-83.
    [155] Ueno K, Imoto K. Vibration control system: USA,5012428[P].1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700