胭脂红酸检测方法及色素提取改善
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胭脂虫(Cochineal)是一类寄生在仙人掌类植物上的资源昆虫,其雌性成虫体内含有一种蒽醌类物质——胭脂红酸,是优质天然染色剂胭脂虫红色素的有效组分,具有较高的经济价值。本论文在近年来国内研究人员对胭脂虫及胭脂虫红色素研究的基础上,开展了HPLC在胭脂红酸检测上的应用,建立了胭脂红酸快速、精确的检验方法。为推进中国胭脂虫红色素产业化,论文从化学组分角度出发,对滇中地区繁养的胭脂虫进行了工业原料质量测评,研发了胭脂虫红色素高效提取方法;初步探索了酶解法在精制胭脂虫红色素上的应用可行性;测试了胭脂红酸清除自由基的能力。
     通过比较不同配比的流动相,不同流速和温度对出峰效果的影响,建立胭脂红酸的高效液相色谱检测方法,并与常用的分光光度法作比较,为胭脂红酸的分析检测提供参考依据。通过检测分析、比较胭脂虫(滇中)与胭脂虫(秘鲁)的堆密度、单重虫粒数、吸水率和体积膨胀率等物理指标,以及两地胭脂虫干虫体中四氯化碳提取物、乙醇提取物、石油醚提取物、总蛋白质、胭脂红酸、不溶性糖类和灰分等主要化学组分的含量,评估了我国滇中地区繁养的胭脂虫质量;并对引进国内后在滇中地区放养的不同世代的胭脂虫主要化学组分进行了分析对比,为我国繁养胭脂虫,并进一步开发利用胭脂虫资源提供了理论依据。通过进一步优化了胭脂虫红色素微波辅助提取的工艺参数,以及开发微波-超声波协同萃取胭脂虫红色素的工艺,为胭脂虫红色素的快速提取进一步充实理论依据。应用酶水解法与超滤膜法精制色素,除去胭脂虫红色素中可溶性大分子蛋白质,以达到除去致敏源蛋白质。研究了胭脂红酸作为功能性食品对自由基的清除能力,为利用胭脂虫红色素打下基础。
     (1)高效液相色谱检测胭脂红酸试验表明:流动相为甲醇-乙腈-磷酸(0.01%)的混合液(体积比为10:15:75),流速为0.8 mL /min,柱温为20℃,出峰效果最好。纯度为100%的胭脂红酸作为标准样品,绘制标准曲线,280 nm和494 nm的检测波长下分别得回归方程Y=60.7360X,R~2=0.9999;Y=8.6048X,R~2=0.9990,两者线性关系均良好。以280 nm和494 nm为检测波长,使用纯度为100%的胭脂红酸验证仪器的精密度,自制胭脂虫红色素验证稳定性和加标回收率。测得精密度相对标准偏差分别为0.42%和0.54%,稳定性相对标准偏差分别为0.16%和0.32%,加标回收率分别为96.8%和94.3%。以Sigma公司生产的胭脂红酸(纯度为96%)为标样,分别用高效液相色谱测峰面积和用分光光度法测吸光度,分别绘制标准曲线方程得:Y=7.8260X,R~2=0.9988和Y=0.0137X,R~2=0.9997浓度在9.5~95.0μg/mL的范围内线性相关性良好。并分别用高效液相色谱法和分光光度法对10种色素样品进行定量分析,分光光度法所得结果较高效液相色谱结果偏高,但两种方法所得结果经单因素方差分析,显著性指标P值为0.904,即两种方法测定结果差异性不显著。两种方法都可以用于定量分析胭脂红酸样品中的胭脂红酸。
     作为工业昆虫原料,我国引进的胭脂虫及不同繁养世代实验表明:胭脂虫(滇中)与秘鲁(胭脂虫的原产地)胭脂虫相比,除堆密度含量差异较小外,其余物理参数和主要化学组分差异性均较大,但滇中地区繁养的胭脂虫虫体中胭脂红酸的含量仍较高,作为生产加工胭脂红酸的原料,仍具有较高的开发利用价值。滇中地区繁养的不同世代的胭脂虫,虽然胭脂虫各组分有所差异,但胭脂红酸含量均较高,不同世代之间差异不显著,因此,三代胭脂虫作为生产加工胭脂虫红色素的原料,均具有较高的开发利用价值。
     (2)胭脂虫红色素微波辅助提取实验表明:微波处理前常温预浸泡40min,处理后75℃水浴浸提40min最适宜于色素提取。在单因素试验的基础上,对液料比,微波功率及微波辐射时间进行三因素三水平响应面分析试验,得到最优条件为液料比7.5,微波功率714W,辐射时间73s。最优条件下,合适的提取级数为12次。对胭脂虫红色素进行微波-超声波协同提取,在单因素试验的基础上,对微波功率、处理时间、液料比及超声波功率进行四因素三水平响应面分析试验,得到最优条件为微波功率464W,处理时间为18.48min,液料比为8.23,超声波功率627W。最优条件下,合适的提取级数为4次。微波提取与微波-超声波协同提取法相比,前者能耗较少,但所需时间长,提取级数较多,在生产实践中,可按不同的需求和所具备的条件选择适当的方法。
     (3)对提取的胭脂虫红色素进行木瓜蛋白酶水解实验,将水解后的胭脂虫红色素溶液依次透过100KDa、30KDa、10KDa、3KDa及1Kda的超滤膜,分别测定各截留液的体积,溶液中胭脂红酸浓度,含氮物质浓度,计算不同分子截留液中胭脂红酸及含氮物质的含量;并与未经木瓜蛋白酶水解的胭脂虫红色素溶液在相同条件处理后的参数作比较,发现经过木瓜蛋白酶水解,胭脂虫红色素中的大分子蛋白质被一定程度的降解,由于胭脂虫红色素中的致敏性物质多为大分子蛋白质,因此,木瓜蛋白酶水解对清除胭脂虫红色素的致敏性蛋白质,会起到一定的作用。
     (4)为了评估胭脂红酸清除自由基能力,以DPPH·、ABTS+·及O_2ˉ·等3种自由基为试验对象,通过比较特定波长下自由基溶液吸光度的变化,评估胭脂红酸清除自由基的能力,并与抗坏血酸清除3种自由基的能力做比较。胭脂红酸清除自由基结果表明:胭脂红酸与抗坏血酸对3种自由基DPPH·、ABTS+及O_2ˉ·均具有清除活性;当胭脂红酸达到一定浓度时,对DPPH·、ABTS+·及O_2ˉ·的清除率分别可达83%、85%及46%左右。表明胭脂红酸是一种对自由基具有一定清除活性的食品添加剂。
Cochineal (Dactylopius coccus Costa) dye can be used in food, medicine and cosmetics in the United States Food and Drug Administration. There are little research on the pigment in our country. Experiment parameters of the extraction of cochineal dye were optimized. For purification method, the method of ultrafiltration membrane and silica gel column chromatograph were used, and determine the main ingredient. The factors affecting pigment stability are discussed.
     The main results were as follows:
     (1) when mobile phase was consist of acetonitrile, methanol and phosphoric acid (0.01%) (volume ratio 10:15: 75), flow rate was 0.8 mL/min, column temperature at 20℃, peak shape was the best. This mothed used for determined car- minic acid both at 280 nm and 494 nm. Carminic acid(purity:100%) was utilized as standard sample, made standard curve, obtain regression equation Y=8.6048X, R~2=0.9990, and Y=60.7360X,R~2=0.9999, respectively. Both equa-tion’s linear relationship were fine. when determine cochineal red pigment, the result showed that in this method, sam- ple had good stability(determined at 280 nm, RSD=0.16%; at 494 nm, RSD= 0.32%), equipment had high precision(determined at 280 nm, RSD=0.42%; at 494 nm,RSD=0.54%) and sample had high recovery rate(determined at 280 nm, recovery rate was 96.8, at 494 nm was 94.3).compare high-performance liquid chromatography (HPLC) and spectrophotometry to determine the purity of carminic acid samples, these two methods make quantitative analysis of 10 kinds of samples, the result of spectrophotometry measurements is slightly higher than high-performance liquid chromatography, but the results of the two methods no insignificant difference.
     Significant differences were exist between cochineal cultivated in middle area of Yunnan province and in Peru, except bulk density. But the carminic acid contents is high. The conclusion is that Cochineal cultivated in middle area of Yunnan province can also used for making carminic acid. Through compare cochineal of three generations, the results show that even there some difference existi in cochineal of three generations, but the difference of carminic acid contents are not significant, so cochineal of three generations can all used for make cochineal dye.
     (2) In order to develop a method for microwave-assisted extract cochineal dye, single-factor test was carried out. The results show that cochineals should soak in water for 40min before microwave treatment, and extract with water for 40min after microwave treatment. On the basis of single-factor test, the microwave-assisted extraction process parameters about extraction of cochineal dye were optimized with response surface method. The results suggest that the optimal parameters should as follows: ratios of liquid to material 7.5, microwave power 714W, microwave treatment time 73s. Under this conditon, the best extracting times is 12.
     In order to develop a method for microwave - ultrasonic synergistic extract cochineal dye, On the basis of single-factor test (included microwave power, treatment time, ratios of liquid to material and ultrasonic power), optimized extraction process parameters with response surface method, best condition should as follows: microwave power 464W, treatment time is 18.48min, ratios of liquid to material 8.23, ultrasonic power 627W. Under this conditions, the suitable extraction times is 4.
     Compare the microwave-assisted extract mathod and microwave-ultrasonic extract mathod, we can find out that use microwave-assisted extract mathod, energy consumption are lower than microwave-ultrasonic extract mathod. But time consumption is longer, and extraction times is more than microwave-ultrasonic extract mathod.
     (3) Utilize the papayin hydrolisis cochineal dye, then penetrates the cochineal dye through the 100KDa, 30KDa, 10KDa, 3KDa and the 1Kda ultra filter. Determines the volume of different solution, and determines the carminic acid concentration, the azotic material concentration; And compare with cochineal dye that has not treated with the papayin, the results show that after the papayin hydrolisis, in the cochineal dye, macro-molecule protein degenerated in some extent, because in the cochineal dye, much of sensitization material are the macro-molecule protein, therefore, the papayin hydrolisis can eliminates the sensitization protein of cochineal dye.
     (4) To assess the free radical scavenging capacity of carminic acid, the research was carried out to investigate the free radical (including DPPH·, ABTS+·and O_2ˉ·) scavenging activity of it, make comparison of free radical scavenging activity between carminic acid and ascorbic acid. The result showed thatBoth carminic acid and ascorbic acid have free radical scavenging activity for DPPH·, ABTS+·and O_2ˉ·. Carminic acid’s can clean away 83% DPPH·in solution, 85% ABTS+·in solution, 46% of O_2ˉ·in solution. It’s show that carminic acid is a food addictive which has free radical scavenging activity.
引文
[1]郑乐怡,归鸿.昆虫分类(上) [M].南京:南京师范大学出版社, 1999. 433 - 434.
    [2] BRUTSCH M O, ZIMMERMANN H G. The prickly pear(Opuntia ficus-indica[Cactacear])in South Africa:utilization of the naturalized weed, and of the cultivated plants[J]. Economic Botany, 1993, 47(2):154-162.
    [3] GUERRA G P, KOSZTARAB M. Biosystenatics of the family Dactylopiidae(Homoptea: Coccinea)with emphasis on the life cycle of Dactylopius coccus Cost[M],1992.
    [4] LOTTO D, On the status and identity of the cochineal insects(Homoptem: Coccoidea Dactylopiidae)[J]. Journal of the Entomologica1. Society of Southem Africa, 1974, 37(1):167-193.
    [5]张忠和,石雷,徐珑峰.胭脂虫的形态分类及生物学特性概述[J].西南林学院学报, 2002, 22(4): 67-71.
    [6]张忠和,石雷,徐珑峰,等.世界胭脂虫的研究和利用概况[J].林业科学研究, 2002, 15(6): 719-726.
    [7]郑华,张弘,张忠和.天然动植物色素的特性及其提取技术概况[J].林业科学研究, 2003, 16(5): 628-635.
    [8]张忠和,杨勋章,王自力,等.胭脂虫实验种群研究[J].林业科学研究, 2003, 16 (3): 254-261.
    [9]包松莲,李志国.印榕仙人掌栽培和胭脂虫养殖技术[J].林业调查规划, 2005, 30(5): 121-123.
    [10]张建云,李志国,赵杰军,等.中国胭脂虫发展现状概述[J].西南农业学报, 2007, 20(3):560-564.
    [11]郑华,唐莉英,卢艳民,等.胭脂虫虫体主要化学组成分析[J].食品科学, 2008, 29 (11): 510-513.
    [12]郑华,张弘,张忠和.天然动植物色素的特性及其提取技术概况[J].林业科学研究, 2003, 16 (5): 628-635
    [13] MENDEZ A, GONZALEZ J, LOBO M, et a1. Color Quality of Pigments in cochineals (Dactylopius coccus Costa)[J]. Agric Food Chem, 2004, 52(5): 1331-1337.
    [14] LIZASO M T, MONEO I, GARCIA B E, et a1. Identification of allergens involved in occupational asthma due to carmine dye[J]. Ann. Allergy Asthma Immunol. 2000, 84(5): 549-552.
    [15] TABAR-PURROY A I, ALVAREZ-PUEBLA M J, ACERO-SAINZ S, et a1. Carmine (E-120) induced occupational asthma revisited[J]. Allergy Clin. Immunol. 2003, 111(2): 415-419.
    [16] CHUNG K, BAKER J R, BALDWIN J L, et a1. Identification of carmine allergens among three carmine allergy patients[J]. Allergy 2001, 56(1): 73-77.
    [17] RASIMAS J P, BLANCHARD G J. A Study of the Fluorescence and Reorientation Dynamics of Carminic Acid in Primary Alcohols. Phys. Chem[J].1995, 99(29): 11333-11338.
    [18]李志国,张建云,赵杰军,等.胭脂虫及其加工利用概述[J].中国食品添加剂, 2008, 54-59.
    [19] COMANICI R, GABEL B, GUSTAVSSON T, et a1. Femtosecond spectroscopic study of carminic acid–DNA interactions[J].Chemical Physics, 2006, 325: 509–518.
    [20]方晓春,汪财生,王忠华,等.高效液相色谱法测定胭脂红酸的研究[J].分析试验室, 2008, 27(7): 72-74.
    [21]喻凌寒,苏流坤,牟德海,等.糖类食品和肉制品中胭脂虫红色素的高效液相色谱法测定[J].分析测试学报, 2008, 27(16): 648-650
    [22]凌关庭.食品添加剂手册[M]. 3版.北京:化学工业出版社, 2003: 988.
    [23]张建云,李志国,赵杰军,等.胭脂红酸测定方法及稳定性研究[J].食品科学, 2007, 28 ( 08): 321-326.
    [24] GONZáLEZ M, LOBO MG, MéNDEZ J, et a1. Detection of colour adulteration in cochineals by spectrophotometric determination of yellow and red pigment groups[J]. Food Control, 2005, 16:105-112.
    [25]张弘,郑华,陈军,等.胭脂虫红色素稳定性研究[J].食品科学,2008, 29 (11), 59-64
    [26]张津凤,武彦文,王瑞.食用天然红色素胭脂虫红的性质研究[J].江苏调味副食品2006, 23 (2):17-19.
    [27]中国科学院中国植物志编辑委员会.中国植物志(第52卷,第一分册)[M].北京:科学出版社,1999,280.
    [28]包松莲,李志国印榕仙人掌栽培和胭脂虫养殖技术[J].林业调查规划2005, 30(5): 121-123.
    [29]罗香,李志国,赵杰军,等.印榕仙人掌的资源价值及开发利用[J].贵州农业科学, 2006, 34(4): 122-125.
    [30]李志国,杨勋章,杨时宇,等.胭脂虫引种繁养初步研究[J].西南林学院学报2001, 21(3): 165-169
    [31]张忠和,卢振龙,秦志虹,等.胭脂虫的行为及生殖特性[J].昆虫知识. 2008, 45(4):611-615.
    [32]张建云,李志国,赵杰军,等.胭脂虫繁养条件对胭脂红酸含量的影响[J].南京林业大学学报(自然科学版). 2009, 33(2):77-80.
    [33]余启洪,吴巧玲.胭脂虫红色素提取方法的研究进展[J].农产品加工·学刊, 2008,第9期: 59-61.
    [34] MONICA G, JESUS M, AURELIO C, et al. Optimizing conditions for the extraction of pigments in cochineals (Dactylopius coccus Costa) using response surface methodology[J]. Agric. Food Chem.,2002,50:6968- 6974
    [35]孙锋,杨月鹏,曹红梅,等.天然染料胭脂虫色素提取工艺的探讨[J].印染助剂,2005,22(8):41-43
    [36]崔易,李稳宏,唐璇,胭脂虫红色素提取工艺优化研究[J].化学工程, 2007,35 (6): 66-69.
    [37]卢艳民,郑华,周梅村,等.胭脂虫红色素的微波萃取条件优化[J].湖北农业科学, 2009, 48 (3): 707-709. [38]卢艳民.胭脂虫红色素提取与精制研究[D].昆明;昆明理工大学,2009.
    [39]三荣源有限公司.提纯的胭脂虫红色料和生产它的方法:日本, 01802714.8[P],2003-1-1.
    [40]卢艳民,周梅村,郑华,等.超滤膜精制胭脂虫红色素的研究[J].食品科学, 2008, 29(09): 196-198.
    [41]廖昌建,李稳宏,李冬,等.酶解法去除胭脂虫红色素提取液中蛋白工艺研究[J].天然产物研究与开发, 2008, 20: 1095-1098.
    [42]陈栋,周永传.酶法在中药提取中的应用和进展[J].中国中药杂志, 2007,32 (2):99-101.
    [43]盛家荣,孙小兵,卜铃东,等.酶法除南板蓝根粗多糖中蛋白质的最佳工艺研究[J].中药材, 2009,32(4): 615-617.
    [44]何钢,刘贤桂,李樊,等.金银花叶片绿原酸提取及工艺参数优化的研究[J].江西农业大学学报,2008, 30(1):136-143.
    [45]王晖,刘佳佳.银杏黄酮的酶法提取工艺研究[J],中药材, 2003,26(12):887-888.
    [46]吴超,苏红利,张晓鸣.银杏叶提取物制取黄酮苷元的酶解工艺研究[J].食品与机械, 2005, 21(6):27-30.
    [47]王艺,王长海,刘春辉等.耐海水芦荟粗多糖中游离蛋白的去除[J].烟台大学学报(自然科学与工版), 2007, 20(4):269-272.
    [48]李苹苹,丁霄霖.紫贻贝多糖脱除蛋白质方法的研究[J].上海水产大学学报, 2006, 15(3):328-332.
    [49]周琳,李元波,曾英.超声酶法提取三七总皂苷的研究[J].中成药, 2006, 28 (5):642-645.
    [50] RUSSO A, MAZZEO G. Dactylopius coccus Costa(Homoptera,Coeeoidea): carmine scale insect[J]. Informatore Fitopatologico, 1996, 46(4): 10-13.
    [51] SAKAE K, MASAKI M, KEINOSUKE O, et al. Evaluation of Photomutage-nicity and Photocytotoxicity of Food Coloring Agents[J]. Mutagenesis, 2005,20(3): 229-233.
    [52]王国华,梁炳午,王怀公.胭脂红酸荧光光度法测定铝[J].冶金分析, 1994, l4(3): 19-20.
    [53] MANZOORI J L, SOROIRADDIN M H, AMJADI M. Spectrophotometric determination of osmium based on its catalytic effect on the oxidation of carminic acid by hydrogen peroxide[J]. Talanta, 2000,53, 61-68.
    [54] DIAZ-FLORES L L, BARCENAS G L, GONZALEZ-FERNANDEZ J, et al. Preparation and Optical Properties of SiO2 [J]. Sol-Gel Made Glass Colored with Carminic Acid[J].Journal of Sol-Gel Science and Technology, 2005,33, 261-267.
    [55] CALLlCOAT D L, WOLSZON J D. Carminic acid procedure for determination of boron[J]. Analytica chemistry , 1959,31 (8): 1434 -1437
    [56] GUPTA H K L, BOLTZ D F. Spectrophotometric study of the determination of boron by the carminic acid method[J]. Mikrochimica Acta, 1974, 415-428.
    [57] CHEN J S, LIN H M, YANG M H. Spectrophotometric determination of trace and ultratrace levels of boron in silicon and chlorosilane samples[J]. Fresenius J Anal Chem, 1991, 340:357-362.
    [58] EVANS S, KR?HENBüHL U. Boron analysis in biological material:microwave digestion procedure and determination by different methods[J]. Fresenius J Anal Chem,1994, 349:454-459.
    [59] KAUR P, GUPTAa V K. Spectrophotometric determination of beryllium with carminic acid[J]. Fresenius Z Anal Chem, 1989, 334:447- 449.
    [60] MANZOORI J L, SOROIRADDIN M H, AMJADI M. Spectrophotometric determination of osmium based on its catalytic effect on the oxidation of carminic acid by hydrogen peroxide[J]. Talanta , 2000,53, 61-68.
    [61] LóPEZ-MARTíNEZ L, GUZMáN-MAR J L, LóPEZ-DE-ALBA P L. Simultaneous determination of uranium(Ⅵ)and thorium(Ⅵ) ions with carminic acid by bivariate calibration[J]. Journal of Radioanalytical and Nuclear Chemistry, 2001 247(2) 413-417.
    [62] GAWEDA S, STOCHEL G, SZACILIWSKI K .Photosensitization and Photocurrent Switching in Carminic Acid/Titanium Dioxide Hybrid Material [J]. Phys. Chem. ,2008, 112(48):19131-19141.
    [63] GOMZáLEZ E A, GARCíA E M, NAZARENO M A, et al. Free radical scavenging capacity and antioxidant activity of cochineal(Dactylopius coccus C.) extracts[J]. Food Chemistry,2009, 119(2010): 358-362.
    [64] FRNK E, LANCASTER D, JAMES F, et al. High-performance Liquid Chrom-atographic Separation ofCarminic Acid,α- andβ-bixin, andα- andβ-norbixin, and the Determination of Carminic Acid in Foods[J]. Journal of Chromatography A.,1996,732:394- 398.
    [65]郭元亨,马李一,郑华,等.高效液相色谱和分光光度法定量分析胭脂红酸的比较[J].食品科学, 2009, 30(18):303-306.
    [66]郭元亨,马李一,郑华,等.不同波长下高效液相色谱检测胭脂红酸的比较研究[J].广东农业科学, 2011.38(2):102~105.
    [67]李坤,张弘,郑华,等.高效毛细管电泳法测定胭脂虫提取物中胭脂红酸《食品科学》2010, 31(18 ):355~358.
    [68]许元红,唐亚军,吴明嘉,等毛细管电泳内标法测定糖果中胭脂红酸[J].分析测试学报,2007, 26 (11): 136-138.
    [69] GONZáLEZ E A, GARCíA E M, NAZARENO M A, NAZARNEO M A. Free radical scavenging capacity and antioxidant activity of cochineal(Dactylopius coccus C.) extracts[J]. Food Chemistry, 2010, 119(1):358~262.
    [70]郭元亨,马李一,郑华,张弘,甘瑾,李坤.胭脂红酸清除自由基的作用[J].食品科学, Food Science, 2010, 31(17): 73~76.
    [71]张忠和,秦志虹,卢振龙,等.胭脂虫高产培育试验[J].西南农业学报, 2008, 21(4):1160~1164.
    [72]乙小娟,俞晔,何松涛.全自动凯氏定氮仪测定己内酰胺中挥发碱[J].理化检验——化学分册, 2004, 40(7):418~419
    [73]吴晓荣,叶祥盛,赵竹青.流动注射法与凯氏定氮法测定土壤全氮的比较[J].华中农业大学学报, 2009, 28 (5):560~563.
    [74]张弘,卢艳民,郑华,等.水溶法提取胭脂虫红色素工艺及优化[J].食品科学,2009,30(16):115-118.
    [75] GONZA?LEZ M, ME?NDEZ J, CARNERO A, Optimizing Conditions for the Extraction of Pigments in Cochineals (Dactylopius coccus Costa) Using Response Surface Methodology[J]. Agricultural and Food chemsitry, 2002, 50(24), 6968~6974.
    [76]章凯,黄国林,陈中胜,等.微波辅助萃取柠檬皮中果胶动力学及热力学研究[J].食品科学, 2010, 31(15):107~111.
    [77]唐课文,易健民,李立.微波萃取——吸附分离法提取姜黄素的研究[J].化工进展, 2005,24(6):647~650.
    [78]黄建辉,江元汝,高昌轩,等.微波辅助提取丁香酚研究[J].应用化工, 2007, 36(2): 64~66.
    [79]赵改名,周光宏,徐幸莲,等.二肽酰肽酶IV在金华火腿加工过程中的活力变化[J].中国农业科学, 2005, 38(1):151~156
    [80]贾佳,杨磊,祖元刚.落叶松树皮原花青素的匀浆提取及响应面法优化[J].林产化学与工业, 2009, 29(3):78~84.
    [81]商小金,钱俊青,郭辉.响应面法优化延胡索生物碱乙醇提取工艺研究[J].林产化学与工业, 2010,30(2): 32-36.
    [82]杨玲,王振宇.响应面法优化蓝靛果抗氧化成分提取的工艺研究[J].林产化学与工业, 2010,30(1):67-72.
    [83]夏禹杰,曾建立,赵兵.超声强化溴化卜乙基一3一甲基咪唑从黄花蒿中提取青蒿素[J].过程工程学报, 2008,8(4):774-778.
    [84]欧阳杰,赵兵,王晓东,等.循环超声强化提取肉苁蓉中多糖和甜菜碱[J].过程工程学报, 2003,3(3):227-230.
    [85]吴华伟,夏帆.微波一超声波协同提取烟叶中茄尼醇的工艺研究[J].湖北农业科学,2010,49(2):447-449.
    [86]卢艳民,郑华,周梅村,等.硅胶柱层析纯化胭脂虫红色素[J].天然产物研究与开发, 2009,21 (增刊): 383~385.
    [87]卢艳民,郑华,张弘,周梅村,甘瑾,马李一,张忠和.超声波法提取胭脂虫红色素的研究[J].食品科学, Food Science,2009, 30(16):142~145.
    [88]王镜岩,朱圣庚,徐长法,等.生物化学[第三版][M].北京:高等教育出版社, 2002: 96-100; 461-462.
    [89] JAMISON J M, KRABILL K, FLOWERS D G, et a1. Polyribonucleotide anthraquinoe interactions; in vitro antiviral activity studies[J]. Cell Biol Int Rep, 1990, 14(3): 219-228.
    [90] AYUKO W O. Use of quinones in the treatment of cancer or aids: Europe, 0499467[P]. 1992-08-19.
    [91]王镜岩,朱圣庚,徐长法,等.生物化学[第三版][M].北京:高等教育出版社, 2002: 96-100; 461-462.
    [92] ARUOMA O I. Free radicals, oxidative stress, and antioxidants in human health and disease [J]. J Am Oil Chem Soc, 1998, 75: 199- 212.
    [93] LEE J, KOO N, MIN D B. Reactive oxygen species, aging, and antioxidative nutraceuticals [J]. Comprehensive Rev Food Sci Food Safety, 2004 (3) : 21-33.
    [94]赵保路.氧自由基和天然抗氧化剂[M].北京:科学出版社, 1999: 96-127.
    [95]陆阳.醌类化学[M].北京:化学工业出版, 2009:228-229.
    [96]王关林,田兵,方宏筠,等.芦荟抗氧化物质活性及对红细胞的保护作用[J].营养学报, 2002, 24(4):380-383.
    [97]黄丽英,林新华,陈伟,等.芦荟大黄素、芦荟素清除氧自由基作用的研究[J].中国医院药学杂志, 2006, 26(1):12-14.
    [98]白红进,汪河滨,杨翔.芦荟超声-微波协同萃取物抗脂质氧化作用的研究[J].塔里木大学学报, 2006, 18(4):62-67.
    [99]刘杰超,焦中高,张阳,等.甜樱桃红色素对自由基和亚硝基的清除作用[J].食品工业科技, 2008, 29(11): 122-124.
    [100]李婕姝,贾冬英,姚开,等.荸荠皮多糖体外清除自由基活性的研究[J].氨基酸和生物资源, 2008, 30(4):7-9.
    [101]任娜,郭丽萍,刘玉环,等,国产葡萄酒清除自由基作用的研究[J].食品科学, 2009, 30(15): 90-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700