高速动车组大功率牵引电机温度场分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速铁路是当代高新技术的集成,以其快速、高效、环保等优点在世界各国得到了迅猛的发展。高速动车组普遍采用变频调速交流传动系统,变频调速牵引电机是高速动车组的关键设备之一,其性能对动车组的安全、可靠性具有重要影响。随着动车组牵引功率不断提升,单台牵引电机容量需要大幅度提高。目前由于变流器开关器件的耐压水平无法提高,所以增大输入电流以提高单台电机的输出功率是实现牵引电机大容量化的有效方式之一。但是,大工作电流将使电机的损耗增加,同时由于动车组转向架的轴重和空间体积有限,电机运行和散热状况恶劣,造成牵引电机各部件工作温度升高(有时甚至达到200℃以上),电机内热点温度频繁超限,可能导致电机绝缘失效。因此,准确解析牵引电机电热场分布,发现电机温升热点,对电机冷却系统进行优化改进从而提高电机的服役性能成为大功率牵引电机设计制造的重要问题。
     根据电磁场理论构建了高速动车组大功率牵引电机场路耦合分析模型,研究了不同拓扑结构(两电平、三电平)牵引逆变器在正弦脉宽调制、方波控制以及电流跟踪控制方式下的输出特性,解析了牵引电机运行特性及启动过程中的电磁暂态过程,探明了电机瞬态电磁场分布规律。
     根据传热学理论构建了高速动车组大功率牵引电机全域三维温度场分析模型,研究了电机的主要传热方式及电机内绝缘层和表面层对传热的影响,确定了电机各部分损耗及等效散热系数的计算方法,解析了电机在额定负载下的稳态三维温度场、热流密度及热应力分布,找到了电机温升热点,并对影响温度场分布的因素进行了敏感度分析。
     研究了牵引电机温度场分布对定子绕组电磁线绝缘材料寿命的影响,以纳米复合聚酰亚胺(PI)薄膜为对象,测试分析了绝缘材料在连续方波脉冲下的失效时间,研究了连续高压方波脉冲下绝缘材料电热联合老化机理,得到了方波脉冲的幅值、频率和老化温度对绝缘寿命的影响规律,提出了聚酰亚胺薄膜电应力—热应力联合作用下的寿命模型。
High-speed railway, as the integration of multiple cutting edged techniques in contemporary era, has been developing at an alarming rate from all over the world for its characteristics of speediness, high efficiency and environment protection. High-speed Electric Motor train Unit (EMU) plays a core role in the rail transportation system which has great influence on the safety of passengers as well as the electrical equipment. With the rapid development of China's high-speed railway, the output power of traction motor increases significantly. Due to the limited space of the bogie as well as the maximum output voltage of converter switching device, the input voltage of traction motor cannot be further boosted. Moreover, the operating experience indicates that when the electrical insulation system is strengthened by one level, the output power of motor will correspondingly increase by10%to15%. So it's advisable to boost the output power of every single traction motor by increasing the winding current. However, the large current will inevitably cause huge loss in the motor which results in high temperature rise of each mechanical part (sometimes even reach up to200℃and above). In addition, in order to make full use of magnetic materials, the motor often designed at the point with heavy electromagnetic load. So the loss of the motor increases dramatically which leads to extra heat generated in the motor. Therefore, it has become a hot issue to limit the temperature rise by improving motor cooling system.
     The field-circuit coupled model of inverter-fed traction motor was established based on electromagnetic field theory. The output characteristics of the traction inverter using the two level, three-level and current tracking control were analysed. The two-dimensional transient electromagnetic field of the motor was calculation.lt was demonstrated that output voltage did not contain low harmonic spectrum using two-level control, while under three-level control model, the high harmonics was significantly reduced. Current tracking control provided motor current a good dynamic response. Electromagnetic field was mainly concentrated in a thin layer near the surface of the rotor when the motor started. The flux density was relatively high in the stator and rotor tooth. When the motor operated stably, the magnetic field lines were evenly distributed within the stator and rotor core. Due to big starting current, the rotor winding current density along the radial direction became larger.
     The global temperature field model of inverter-fed traction motor was set up based on the heat transfer theory. Static three-dimensional temperature field and thermal stress distribution of the motor were calculated at rated load. The influence factors of temperature field were analysed. It was demonstrated that the highest temperature was located at the rotor bars when the motor temperature was stable. There was less different of temperature between rotor core and bars. The overall temperature of the stator region was below that of the rotor region. Stator slot temperature was higher than that of stator core. The temperature of stator surface was the lowest. The maximum heat flux was located in the stator core yoke while the flux density of stator teeth was relatively low. The maximum thermal stress was located in the contact surface between the end of the winding and the stator slot. Thermal coefficient has a negative correlation relationship with the maximum temperature of the stator.The convection coefficient of the stator core surface was the most important factor which impacted the maximum temperature of the stator. Convection coefficient of the ventilation vents played the key role in the maximum heat flux of the stator.
     The influence of traction motor temperature distribution on the motor insulation was studied. Insulation material of inverter-fed taction motor winding-polyimide film was set as specimen frequency traction motor. The failure time of the insulating material was tested under the continuous square pulse. The influence of combined thermal and electrical stresses on the failure time was studied. It demonstrated exponential relationship between the aging temperature and insulation life. Also there was inverse power relationship between frequency and life. At last, multifactor life models under combined thermal and electrical stresses were proposed using the multi-stress approach. All the determination coefficients were above0.98which verified its accuracy.
引文
[1]王迁.轨道车辆电气制动控制过程的计算机模拟[D].南京理工大学,2005.
    [2]夏正泽,刘慧娟.异步牵引电动机定子温度场的计算与分析[J].微特电机,2009,37(4):22-25.
    [3]代刚.跨座式单轨车辆滚动试验台电气系统设计研究[D].西南交通大学,2011.
    [4]林春丽.对深圳一号线地铁交流传动系统的应用分析[D].北京交通大学,2006.
    [5]邓日江.和谐HXD1型机车用变频异步牵引电机[J].电力机车与城轨车辆,2007,30(1):18-20.
    [6]Siyambalapitiya D J T. McLaren P G. Tavner P J. Transient thermal characteristics of induction machine rotor cage [J]. IEEE Transactions on Energy Conversion. 1988,3(4):849-854.
    [7]Emanuel A E. Estimating the effects of harmonic voltage fluctuations on the temperature rise of squirrel-cage motors[J]. IEEE Transactions on Energy Conversion, 1991.6(1):162-169.
    [8]Boys J T. Miles M J. Empirical thermal model for inverter-driven cage induction machines [J]. IEE Journal on Electric Power Applications,1994.141(6):360-372.
    [9]Jokinen T. Saari J. Modelling of the coolant flow with heat flow controlled temperature sources in thermal networks [in induction motors][J]. IEE Journal on Electric Power Applications,1997.144(5):338-342.
    [10]Al-Tayie J K, Acarnley P P. Estimation of speed, stator temperature and rotor temperature in cage induction motor drive using the extended Kalman filter algorithm [J]. IEE Journal on Electric Power Applications.1997.144(5):301-309.
    [11]Feyzi M R. Parker A M. Heating in deep-bar rotor cages[J]. IEE Journal on Electric Power Applications.1997.144(4):271-276.
    [12]Shenkman A, Chertkov M. Heat conditions of a three-phase induction motor by a one-phase supply[J]. IEE Journal on Electric Power Applications.1999.146(4):361-367.
    [13]D. A. Gerlando. Perini R. Analytical Evaluation of the Stator Winding Temperature Field of Water-Cooled Induction Motor for Pumping Drives[J]. International Conference on Electrical Machines,2000.17(1):130-134.
    [14]Hwang C C. Wu S S. Jiang Y H. Novel approach to the solution of temperature distribution in the stator of an induction motor[C]. IEEE International Conference Record of Electric Machines and Drives,1997:A1-A2.
    [15]Ho S L, Fu W N. Analysis of indirect temperature-rise tests of induction machines using time stepping finite element method[J]. IEEE Transactions on Energy Conversion, 2001,16(1):55-60.
    [16]Maximini M. Koglin H J. Determination of the absolute rotor temperature of squirrel cage induction machines using measurable variables[J]. IEEE Transactions on Energy Conversion.2004.19(1):34-39.
    [17]Duran Martinez M J. Duran Paz J L. Perez Hidalgo F M. et al. Improved sensorless induction machine vector control with on-line parameters estimation taking into account the deep-bar and thermal effects[C]. IEEE 2002 28th Annual Conference of the Industrial Electronics Society.2002:1716-1720.
    [18]A. Shenkman. M. Chertkov, Moslem H. Thermal Behavior of Induction Motors under Different Speeds[J]. IEE Journal on Electric Power Applications.2005.152:1307-1310.
    [19]Mroz J. Temperature field of a double squirrel-cage motor during startup[J]. IEE Journal on Electric Power Applications.2005,152(6):1531-1538.
    [20]Turcanu O A, Tudorache T. Fireteanu V. Influence of squirrel-cage bar cross-section geometry on induction motor performances[C]. International Symposium on Power Electronics. Electrical Drives. Automation and Motion.2006:1438-1443.
    [21]Trigeol J F. Bertin Y. Lagonotte P. Thermal modeling of an induction machine through the association of two numerical approaches[J]. IEEE Transactions on Energy Conversion,2006.21(2):314-323.
    [22]陈志刚.等效热网络法和有限元法在电机三维温度场计算中的应用与比较[J].中小型电机,1995,22(1):3-6.
    [23]陆夫昌.空气自冷式微电机的表面换热计算[J].微特电机.1995(3):23-26.
    [24]葛红娟.庄心复.中小型风冷式电机定子等效导热系数的分析与计算[J].微特电机. 1995(3):20-22.
    [25]刘允松,励庆孚.异步电动机起动与堵转过程中转子笼三维温度场的计算[J].中小型电机,1998,25(5):5-9.
    [26]张新波,许承千.电机三维温度场的综合分析[J].电工技术杂志,2000(3):4-6.
    [27]龚晓峰,刘长红,饶方权等.特种异步电机转子温度场的计算[J].大电机技术,2004(5):13-16.
    [28]温志伟,顾国彪.实心磁极同步电动机转子温度场计算[J].大电机技术,2005(2):1-4.
    [29]丁文,周会军,鱼振民.基于ANSYS的开关磁阻电机温度场分析[J].微电机,2005,,38(5):13-15.
    [30]霍菲,张晓晨,程鹏.屏蔽电机定子温度场的数值计算与分析[J].电机与控制应用,2006,,33(4):7-12.
    [31]李伟力,付敏,周封等.基于流体相似理论和三维有限元法计算大中型异步电动机的定子三维温度场[J].中国电机工程学报,2000,20(5):14-17.
    [32]李伟力,李守法,谢颖等.感应电动机定转子全域温度场数值计算及相关因素敏感性分析[J].中国电机工程学报,2007,27(24):85-91.
    [33]李伟力,周封.大型水轮发电机转子温度场的有限元计算及相关因素的分析[J].中国电机工程学报.2002.22(10):85-90.
    [34]白延年.水轮发电机的设计与计算[M].北京:机械工业出版社,1982.
    [35]丁舜年.大型电机的发热与冷却[M].北京:科学出版社,1992.
    [36]Fukushima M. Yamashita K. Teraoka M. Study on a Ventilation Simulation for Hydroturbine Generator Motor[J]. IEEE Transactions on Energy Conversion,1985 (3):174-181.
    [37]Isabey D. Steady and pulsatile flow distribution in a multiple branching network with physiological applications[J]. Journal of Biomechanics.1982.15(5):395-404.
    [38]陈熙,翟殿春.对流传热[M].北京:科学出版社.1986.
    [39]福岛.旋转电机的通风冷却分析[J].国外大电机.1981(5):17-25.
    [40]胡俊辉,许承千.大中型异步电机通风的研究和计算[J].大电机技术,1992(1):24-29.
    [41]苗立杰.三峡水轮发电机热变形及冷却技术研究年度报告[R].1997.
    [42]Sabins J S, Eagar M A. Evolution of Intenral Flow in a Solid Roeket Motor with Radial Slot[J]. Journal of Propulsion and Power,1996,12(4):632-637.
    [43]黄仙,倪维斗.大型汽轮机转子动态热应力的数学模型[J].清华大学学报:自然科学版,1996,36(10):25-29.
    [44]梁红玉,曹鸿涛.关于2D温度场计算的有限元法分析[J].华北工学院学报,2000.21(1):74-77.
    [45]Liu Y, Lee Y. Jung H K. et al.3D thermal stress analysis of the rotor of an induction motor[J]. IEEE Transactions on Magnetics,2000,36(4):1394-1397.
    [46]马良,王星.应变电测与传感技术[M].北京:中国计量出版社,1993.
    [47]胡颖勇.刘世元.应变式扭矩仪测量信号的无线传输技术[J].传感器技术,2002,21(12):1-3.
    [48]陆冬良.基于重复控制的单极性SPWM逆变电源研究[D].四川大学,2006.
    [49]巩瑞春.单相SPWM逆变器死区效应及其重复控制技术的研究[D].内蒙古科技大学,2004.
    [50]吴正威,高平,邹剑.三角载波电流滞环PWM控制的矩阵变换器-PMSM矢量控制系统研究[J].电气应用,2008,27(15):67-70.
    [51]邓惠斌.850KB及850D型电机他励绕组温升高原因分析和解决方案[J].科技通讯(成都).2002(1):5-13.
    [52]尚爱霞.降低牵引电动机主极温升的方法[J].电机技术,2006(2):44.
    [53]陈红生,何恩广.机车变频三相异步牵引电机绝缘系统新思路[J].绝缘材料,2002.35(6):32-36.
    [54]夏正泽.异步牵引电机温度场分析[D].北京交通大学.2008.
    [55]李杰波.电动车组牵引电机装车后的温升试验方法研究[J].铁道机车车辆.2008.28(B12):114-117.
    [56]叶强.吴广宁,张雪原等.高压脉冲方波下聚酰亚胺薄膜电老化寿命模型[J].电工技术学报,2009(3):25-30.
    [57]Wheeler J C G. Effects of converter pulses on the electrical insulation in low and medium voltage motors[J]. IEEE Electrical Insulation Magazine,2005.21(2):22-29.
    [58]Fabiani D, Montanari G C, Cavallini A, et al. Relation between space charge accumulation and partial discharge activity in enameled wires under PWM-like voltage waveforms[J]. IEEE Transactions on Dielectrics and Electrical Insulation. 2004,11(3):393-405.
    [59]Weijun Y. Failure mechanism of winding insulations in inverter-fed motors[J]. IEEE Electrical Insulation Magazine, 1997, 13(6):18-23.
    [60]Kaufhold M, Borner G. Eberhardt M. et al. Failure mechanism of the interturn insulation of low voltage electric machines fed by pulse-controlled inverters [J]. IEEE Electrical Insulation Magazine,1996.12(5):9-16.
    [61]周凯,吴广宁,邓桃等.纳米复合绝缘材料的热刺激电流测试研究[J].中国电机工程学报,2007,,27(18):76-82.
    [62]Mazzanti G, Montanari G C. Dissado L A. A space-charge life model for ac electrical aging of polymers[J]. IEEE Transactions on Dielectrics and Electrical Insulation. 1999,6(6):864-875.
    [63]李忠华,尹毅,朱军.聚合物绝缘电热联合老化的陷阱理论和实验验证[J].中国电机工程学报,1999,19(2):70-74.
    [64]Kaufhold M. Aninger H. Berth M. et al. Electrical stress and failure mechanism of the winding insulation in PWM-inverter-fed low-voltage induction motors[J]. IEEE Transactions on Industrial Electronics, 2000.47(2):396-402.
    [65]Montanari G C. Mazzanti G. Simoni L. Progress in electrothermal life modeling of electrical insulation during the last decades[J]. IEEE Transactions on Dielectrics and Electrical Insulation.2002.9(5):730-745.
    [66]蒋雄伟.贾志东.绝缘材料老化寿命模型的研究进展[J].高电压技术,2000.26(3):44-46.
    [67]Bahder G. Sosnowski M. Katz C. et al. Physical Model of Electric Aging and Breakdown of Extruded Polymeric Insulated Power Cables[J]. IEEE Power Engineering Review,1982.PER-2(6):28-29.
    [68]佟来生.吴广宁.林同光等.一种用于脉冲绝缘老化试验的高压脉冲电源[J].高电压技术,2005,31(10):1-2.
    [69]廖瑞金,解兵,杨丽君等.油纸绝缘电-热联合老化寿命模型的比较与分析[J].电工技术学报,2006(02):17-21.
    [70]佟来生,刘曦,吴广宁等.周期性脉冲电压作用下绝缘局部放电的测量与分析[J].电力系统自动化,2006.30(15):61-64.
    [71]Zhou L R, Wu G N, Gao B. et al. Study on charge transport mechanism and space charge characteristics of polyimide films[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009.16(4):1143-1149.
    [72]佟来生,吴广宁,刘曦等.基于连续高压脉冲方波的绝缘老化寿命模型[J].电工技术学报,2006.21(8):44-47.
    [73]Fabiani D, Montanari G C. Cavallini A. et al. Relation between space charge accumulation and partial discharge activity in enameled wires under PWM-like voltage wave form s[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004.11(3):393-405.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700