中国煤中砷的环境地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砷作为Ⅰ类环境敏感元素,对生态环境和人体健康危害极大,由于砷污染所引发的环境问题已引起全球的广泛关注。我国是世界上砷中毒病区类型最全、危害最严重的国家之一。其中,80年代以来爆发于我国西南地区的燃煤型砷中毒危害更是严重。因此根据目前国内外对煤中砷的研究进展,在全国范围内有计划取样,研究中国煤中砷的含量、分布及其影响因素;探讨我国煤砷的赋存状态;选择大气中出现砷异常的西南地区,研究煤中砷脱洗机理;在室内模拟燃烧的基础上,研究燃煤砷排放机制。
     通过此次研究,得出以下几点认识:
     1、此次研究煤样中砷含量范围为0.24—70.83mg/kg;算术平均含量为6.43mg/kg,几何平均含量为3.96mg/kg。
     2、在引入中国煤炭储量权重的基础上,得出煤中砷含量为5.28mg/kg,这是对中国开采的以及未开采煤炭作出的一个总的砷近似平均含量评价;在引入中国2001年煤炭产量的权重基础上,得出中国煤中砷含量为6.03mg/kg,这是对我国2001年煤炭砷平均含量的评价。由于高砷煤储量极微,对砷平均含量影响可以忽略不计。
     3、与世界上大多数国家相比,中国煤中砷含量并不高。中国虽是世界上唯一发现燃煤型砷中毒的国家,但只是局部地区不正当使用特高砷煤的结果,不具有普遍性。
     4、在地质时代上,此次研究的煤砷含量是按照第三纪、晚三叠世、中石炭世、早石炭世、早侏罗世、晚侏罗世、中侏罗世、晚二叠世、晚石炭世、早二叠世依次降低,在煤变质程度上,砷含量是按照褐煤、肥煤、长焰煤、瘦煤、
Arsenic is ranked in Group I environment sensitive element, endangering to the ecosystem environment and human bodies healthily. The problems caused by arsenic contamination have been study widely. Endemic arsenic poisoning in China is widespread and locally very severe. It is very peculiar that the region of arsenism and the number of arsenism people caused by burning high arsenic coals. Based on the progress of study on the arsenic in coals, this dissertation mainly studies the arsenic content, its distribution in Chinese coals and control factors;discuss the mode of occurrence of arsenic in coals;study the arsenic reduction of coals mainly from southwest, which the air was polluted by arsenic;based on the simulative experiment of burning coals, study the mechanism of arsenic release. Based on the study, some conclusions can be drawn.1 、 Arsenic content in these coal samples range between 0.24 mg/kg to 71 mg/kg. The average mean of Arsenic is 6.43mg/kg and the geometric mean of Arsenic is 3.96 mg/kg.2、 Weighted by the reserves of the five main coal-cumulating areas, arsenic content is 5.28 mg/kg. This value is the arsenic content of whole coals of China, including the coalmine is mined and not mined;Weighted by the coal productions of 26 provinces in 2001, arsenic content is 6.0 mg/kg. This value is the arsenic content of whole coals that had mined;The influence of high arsenic coal from Guizhou Province can be ignored because the reserve is very small.3 、 Compared with the coals from around the world, the average arsenic contents arelower. The health problems in China derived from in coal (arsenism) are duelargely to poor local life-style practices in cooking and home heating with coalrather than to high arsenic contents in the coal.4、 The arsenic contents decreases with coal forming in the order: Tertiary > Early
    Jurassic > Late Triassic > Late Jurassic > Middle Jurassic > Late Permian > Early Carboniferous > Middle Carboniferous > Late Carboniferous > Early Permian;The arsenic contents decreases with coal rank in the order: he>fei> chanyan > shou > pin > wuyan > jiao > qi. But it is meanlsss. The concentrations of arsenic in coals are affected by many factors. Source material, depositional environment, climatic and hydrologic conditions are the controlling factors of trace elements during the early stages of coal formation. However, rank, tectonic setting and geochemical nature of groundwater and country rocks have greater influence during the coalification stages. Most of these factors are regional. So it is difficult to found a relationship between arsenic contents of Chinese coals and coal-forming periods and coal ranks.5> There is not relationship between arsenic content and ash content in all coal samples. With the increase of ash content, arsenic content is not increase. When the ash content locate in 0 to 15%, the relationship between arsenic content and pyritic sulfur is very good;When the ash content range from 0 to 25%, the relationship between arsenic content and sulfate sulfur is found;There is good relationship between arsenic content and organic sulfur in high ash content coals. The arsenic probably presents mainly in organic matters.6> There is good relationship between arsenic content and sulfur, pyritic sulfur, sulfate sulfur, organic sulfur in all coal samples. With the increase of sulfur content, the number of high arsenic coal is increased too. When the sulfur content is lower than 0.5%, arsenic contents has no relativity with them;When the sulfur content locate in 0.5% to 1.5%, the relationship between arsenic content and pyritic sulfur, sulfate sulfur, sulfur is good;When the sulfur content is higher than 1.5%, only the relationship between arsenic content and sulfur is found. In lower sulfur and high sulfur coals, arsenic maybe presents in form of various matters. In other coals? although the mode of arsenic is very complicated, arsenic mainly presents in form of sulfur.7^ Physical coal cleaning techniques are effective in arsenic, ash and sulfur reduction. When arsenic content lower than 5.5 mg/kg, arsenic will mainly or wholly occurs
    in organic matter and occurs in mineral which be enwrapped by organic matter, So it is difficult to remove arsenic and arsenic will enrich in washing coals. When arsenic content higher than 5.5 mg/kg, arsenic will mainly in mineral. The arsenic of coal can be wiped off easily.8> The volatility of arsenic increases along with the temperature. During 800 °C to 1200°C, the volatility of arsenic change greatly.
引文
1. Allan Kolker, F.E. Huggins, C.A. Palmer, et al. Mode of occurrence of arsenic in four US coals. Fuel Processing Technology. 2000, 63: 167—178
    2. Belkin.H.E Preliminary results on the geochemistry and mineralogy of arsenic in mineralized Coals from Endemic Arsenosis Area in Guizhou Province, P. R. China. International meeting on Coals, Taiyuan, China. 1997
    3. Bencko V, Symon K. Health Aspects of Burning Coal with a High Arsenic Content. Environmental Research, 1977;13: 378-385
    4. Bouska C A. Geochemistry of Coal. Academia Pragus. 1981.
    5. Bouska V, Pesex J. Counts of Trace elements of the European and world lignite deposits. Uhli, Randy, Geologicky Pruzkum Praha, 1994 (in Czech)
    6 Braman R S, Foreback C C. Methylated forms of arsenic in the environment. Science. 1978, 182: 1247-1249
    7. Ding ZH, Zheng BS, Long J, Belkin HE, Finkelman RB, Chen CG, Zhou DX, Zhou YS. Geological and geochemical characteristics of high arsenic coals from endemic arsenosis areas in Southwestern, Guizhou Province, China. Applied Geochemistry. 2001;16: 1353-1360
    8. Ferguson J F, Gavis J. A review of the arsenic cycles in natural waters. Water Res. 1972, 6: 1259-1274
    9. Finkleman R B. Modes of occurrence of potentially hazardous elements in coal: level of confidence. Fuel Process Technol. 1994, 39(1): 21-34
    10. Frandsen F, Dam-Johansen K, Rasmuseen P. Trace elements from combustion and Gasification of Coal-An Equilibrium Approach. Prog Energy Combustion Sci, 1994, 20: 115-138
    11. Goulden F, Kennaway E L, Urquhart M E. Arsenic in the suspended matter of town air. Br. J. Cancer. 1952, 6:1-7
    12. Guliett B K, Ragnunathan K. Reduction of Coal-based Methal Emission by Furnace Sorbent Injection. Energy&Fuels. 1994, 8(5): 1068-1076
    13. Harrington J M, Middaugh J P, Morse D L. A survey of a population exposed to high concentrations of arsenic in well water in Fairbanks, Alaska. Am. J. Epidemiol. 1978, 108: 377-385
    14. Ho T C, Ghebremeskel A, Wang K S et al. Trace metal Capture by Various Sorbents During Fluidized Bed Coal Combustion. In: Proceedings of the international Technical Conference on Coal Utilization & Fuel Systems. 1997, 877-888
    15. Huggins. F. E, Goodarzi. F, and Lafferty. C. J, Mode of occurrence of arsenic in subbituminous Coals. Energy & Fuels, 1996a, 10(4): 1001—1004.
    16. Huggins. F. E, and Huffman. G. P. Modes of occurrence of trace elements in coal from XAFS spectroscopy. International Journal of Coal Geology. 1996b, 32:31-53
    17. Huggins.F.E, and Huffman.GP. Application of XAFS spectroscopy to coal geochemistry. In: M.D.Dyar,C.McCammon and M.W.Schaefer, Mineral spectroscopy:A tribute to Roger.GBurns, The Geochemical Society, special publication No.5, 1996, 133—51
    18. Johnson D L. Bacterial reduction of arsenate in sea water. Nature. 1972, 240: 44-45
    19. Levy D B, Schramke J A, Esposito K J. The shallow ground water chemistry of arsenic, fluorine, and major elements: Eastern Owens Lake, Cailfornia. Applied Geochemistry. 1999, 14:53-65
    20. Mahuli S, Agnihotri R., Chauk S et al. Mechanism of Arsenic Sorption by Hydrated Lime. Environ Sci Technol. 1997, 31:3226-3231
    21. Nelson K W. Industrial contribution of arsenic to the environment. Environ. Health Perspect. 1977, 19:31-34.
    22. Nriagu J O, Pacyna. J.M. Quantitative assessment of worldwide contamination of air, water, and soils by trace metals. Nature. 1988,333:134-139.
    23. Nriagu J O. A global assessment of natural sources of atmospheric trace metals. Nature. 1989, 338 : 47-49.
    24. Palmer.C.A,Krasnow.M.R,Finkelman.R.B, and D'Anelo.W.M, An evaluation of leaching to determin modes of occurrence of selected toxic elements in coal. J.Coal Quality, 1993, (12): 135—141.
    25. Penrose W R, Conacher H B S, Black R, et al. Implications of inorganic/organic interconversion on fluxes of arsenic in marine food webs. Environ. Health Perspect. 1977,19: 53-59
    26. Pflughoeft-Hassett D, Dockter B A, Eylands K E et al. Impact of Mercury Emisssion Control Technologies on Conventional Coal Combustion By-product Management. In: Proceedings of the Air& Waste Management Association's Annual Meeting&Exhibition, 1996. 16
    27. Ren DY, Zhao FH, Wang YQ, Yang SJ. Distributions of minor and trace elements in Chinese coals. International Journal of Coal Geology. 1999, 40: 109 — 1187
    28. Swaine DJ and Goodarzi F. Environmental Aspects of Trace Elements in Coal. Dordrecht, Kluwer Academic Publishers, 1995.
    29. Swaine DJ. Why trace elements are important. Fuel Processing Technology. 2000, 65—66: 21 -23
    30. Thornton I. Sources and pathways of arsenic in the geochemistry environment: health implications. 1996, No.113: 163-181.
    31. Tossell J A. Theoretical studies on arsenic oxide and hydroxide species in minerals and in aqueous solution. Geochimica et Cosmochimica Acta. 1997, 61(8): 1613-1623
    32. Vladimir Bencko and Karel Symon. Health Aspects of Burning Coal with a High Arsenic Content.Environmental Research, 1977(13): 378~385
    33. Walsh P R, Duce J R, Fasching J L. Consideration of the enrichment sources and flux of arsenic in the troposphere.. J. Geophys. Res. 1979, 84(c4): 1719-1726
    34. Young B C, Pavlish J H, Gerlach T R et al. Mitigation of Air Toxic Elements from the combustion of low-rank Coals in power Generation Plants. In: Proceedings of the Air & Waste Management Association's Annual Meeting & Exhibition, 1996. 18
    35. Zhang JY, Ren DY, Zhu YM. Mineral matter and potentially hazardous trace elements in coals from Qianxi Fault Depression Area in southwestern Guizhou, China. International Journal of Coal Geology, 2004a, 57: 49-61
    36. Zhang JY, Zheng CG, Ren DY. Distribution of potentially hazardous trace elements in coals from Shanxi Province, China. Fuel, 2004b, 83: 129-135
    37. Zheng BS, Ding ZH, Huang RG, Zhu JM, Yu XY, Wang AM, Zhou DX, Mao DJ, Su. HC. Issues of health and disease relating to coal use in southwestern China. International Journal of Coal Geology.1999;40: 119-132
    38. Zhou YP, Ren YL. Distribution of arsenic in coals of Yunnan Province, China, and its controlling factors. International Journal of Coal Geology. 1992, 20: 85—98
    39.安冬,何光煜,胡小强,等.室内燃用高砷煤引起的地方性砷中毒.中国地方病学杂志.1994,13(4):245-247
    40.安冬,何光煜,王泉弟,等.室内敞灶燃煤所致二氧化硫、砷、氟污染及其危害.环境与健康杂志.1995,12(4):167-169
    41.白向飞.中国煤中微量元素的分布赋存特征及其迁移规律试验研究.博士学位论文.煤炭科学研究总院,2003
    42.曹守仁.煤烟污染性氟中毒.中国地方病学杂志,1991,10:369-373.
    43.曹征彦.中国洁净煤技术.北京;中国物质出版社,1998
    44.陈冰如,钱琴芳,杨亦男.我国107个煤矿样中微量元素的浓度分布.科学通报.1985,(1):27-29
    45.陈鹏.中国煤炭、性质、分类和利用.北京,化学工业出版社.2001
    46.陈萍,黄文辉,唐修义等.我国煤中砷的含量 赋存特征及对环境的影响.煤田地质与勘探,2002a(增刊),30(3):1—4
    47.陈萍,旷红伟,唐修义.煤中砷的分布和赋存规律研究.煤炭学报.2002b,27(3):259—263
    48.陈清,卢国珵.微量元素与健康.北京:北京大学出版社.1989.
    49.陈同斌,范稚莲,雷梅,等.磷对超富集植物蜈蚣草吸收砷的影响及其科学意义.科学通报.2002a,47(15):1156-1159
    50.陈同斌,韦朝阳,黄泽春,等.砷超富集植物蜈蚣草及其对砷的富集特征.科学通报.2002b,47(3):207-210
    51.崔风海,陈怀珍.我国煤中砷的分布及赋存特征.煤炭科学技术.1998,26(12):44—46 代世峰,任德贻,李生盛等.华北地台晚古生代煤中微量元素及As的分布.中国矿业大学学报,2003,111—114
    52.丁振华.2000a.贵州高砷煤的矿物学和地球化学研究.中国科学院地球化学研究所博士学位论文.
    53.丁振华,郑宝山.黔西南高砷煤的分布规律与地球化学特征.地球化学,2000b,5:90—94
    54.丁振华,郑宝山,Finkleman R B,等.典型高砷煤样品的连续浸取实验研究.地球科学-中国地质大学学报.2003,28(2)209-213
    55.樊金串,张振桴.煤中微量元素在燃烧过程中的动态.煤炭加工与综合利用.1995,12:12-15
    56.冯树屏.砷的分析化学.北京:中国环境科学出版社.1986.
    57.郭欣,郑楚光,刘迎辉.煤中汞、砷、硒赋存形态的研究.工程热物理学报.2001,22(6):763-766
    58.郭英廷,侯慧娟,李娟,等.煤中砷氟、汞、铅、铬、在灰化过程中的逸散规律.1994,5(4):54-56
    59.洪全.重庆某发电厂灰渣中微量元素分布特征研究.重庆环境科学,2003,25(7):37-38
    60.柯长茅,王海梅,刘英才,等.生活用煤引起砷中毒的调查报告.环境科学丛刊,1980,4:10
    61.韩德馨.中国煤岩学,北京:中国矿业大学出版社.1996
    62.黄文辉,唐修义.煤燃烧过程中微量元素的迁移和富集.中国煤田地质.2002(增刊),14,75-87
    63.金奎励.当代煤及有机岩研究新技术.北京:地质出版社,1997.17 7
    64.李大华,陈坤,邓涛,等.中国西南地区煤中砷的分布及富集因素探讨.中国矿业大学学报,2002,31(4):419-422
    63.黎彤.化学元素的地球化学丰度.地球化学,NO.3.1976.
    66.刘桂建,彭子成,杨萍玥.煤中微量元素富集的主要因素分析.煤田地质与勘探,2001,29(4):1-4
    67.刘桂建,彭子成,杨萍玥,等.煤中微量元素在燃烧过程中的变化.燃料化学学报.2001,29(4):119-123
    68.刘桂建,杨萍玥,彭子成,等.兖州矿区煤中某些微量元素的赋存状态研究.地球化学.2002,31(1):85-90
    69.刘桂建,杨萍玥,余明高,等.燃煤过程有害微量元素挥发与其赋存状态及燃烧温度的关系.燃烧科学与技术.2003,9(1):6-10
    70.龙江平.黔西南与金矿化有关的高砷煤的地址地球化学研究.矿物岩石地球化学通讯.1993,3:125—127
    71.陆晓华,曾汉才,晏蓉.煤中微量元素与三态的模型.环境化学.1997,16(4):306-310
    72.罗颖都.煤质及化验基础知识[M].煤炭工业出版社,1985.7
    73.卢新卫.渭北煤中砷的含量分布及赋存规律.干旱区资源与环境.2003,17 (6):66—70
    74.雒昆利,张新民,陈昌和,等.我国燃煤电厂砷的大气排放量初步估算.科学通报.2004,49 (19):2014—2019
    75.马恒之,夏雅娟,武克恭,等.地方性砷中毒的致末梢微循环的改变.中国地方病学杂志.1995,14:54-57
    76.毛节华,许惠龙.中国煤炭资源预测与评价[M].北京:科学出版社,1999.245
    77.孟韵,张军营,钟秦,等.燃煤过程钟微量元素砷和硒形态转化的热力学平衡模拟.环境污染治理技术与设备.2002,3(9):1-5
    78.潘自强.燃煤排放物中有害物质的测定与分析.北京:原子能出版社.1995
    79.秦勇,王文峰,宋党育.太西煤中有害元素在洗选过程中的迁移行为与机理[J].燃料化学学报.2002,30(2):147—150.
    80.全国地方病防治工作年报表.2000年度卫生部疾病控制司.
    81.任德贻,赵峰华,张军营,等.煤中有害微量元素的成因类型初.地学前缘.1999,6(增刊):17—21
    82.宋党育,秦勇,王文峰.电厂燃煤中有害微量元素的燃烧迁移行为研究.中国矿业大学学报.2003,32(3):316-320
    83.孙波然,聂国瑞,张玉明,等.慢性砷中毒的调查报告:贵州省卫生防疫站卫生防疫资料汇编(第四辑).1984
    84.孙俊民,孙志宽,姚强,等.燃煤固体产物中元素分布特征.热能动力工程.2001,16(96):601-603
    85.陶长林.国外选煤动态分析.选煤技术,1999,(3):44-48.
    86.王德永.煤中砷含量分布特征与分级研究[J].煤质技术,2000,6:27—30
    87.王华东、郝春曦、王建,环境中的砷——行为、影响、控制;中国环境科学出版社,1992,北京
    88.王连方.砷与慢性砷中毒.防治研究通报.1983,2(1):36-41
    89.王连方.地方性砷中毒与乌脚病.乌鲁木齐:新疆科技卫生出版社.1997
    90.王起超,康淑莲,陈春,等.东北、内蒙古东部地区煤炭中微量元素含量及分布规律.环境化学,1996,15 (1):27—35
    81.王起超,邵庆春,康淑莲,等.煤中15种微量元素在燃烧产物中的分配.燃料化学学报.1996,24(2):137-142
    82.王起超,邵庆春,周朝华.不同粒度飞灰中16种微量元素的含量分布.环境污染与防治.1998,20(5):37-41
    93.王煦曾,朱榔如,王杰.中国煤田的形成与分布[M].北京:科学出版社,1992.
    94.王运泉,任德贻,雷加锦,等.煤中微量元素分布特征初步研究.地质科学,1997,32(1):65—73
    95.王文峰,秦勇,宋党育.煤中有害元素的洗选洁净潜势[J].燃料化学学报.2003,31(4):295—299
    96.王浙芬,孙学信,李敏.煤燃烧中微量元素的转换机理及富集规律研究.煤炭转化 1999,22(1):58-62
    97.WHO,砷的环境卫生标准.中文版.北京:人民卫生出版社,1985.
    98.武汉地质学院地球化学教研室,地球化学.北京:地质出版社.1979.
    99.无机化学.北京:高等教育出版社.1981.
    100.徐应成,翟建平,涂俊,等.华能南京电厂不同粒径粉煤灰中微量元素分布及其富集规律.地球化学.1997,26(3):73-78
    101.严荣芬.台湾黑脚病的流行病学调查.流行病学研究实例第一卷(钱宇平主编).北京:人民卫生出版社.1984
    102.杨绍晋,钱琴芳,姜镇等.火力发电厂燃煤过程中元素在各产物中的分布.环境科学,1983(2):32
    103.张建平,王运泉,张汝国,等.煤及其燃烧产物中砷的分布特征.环境科学研究,1999,12(1):27~29,34
    104.张军营.煤中潜在毒害微量元素富集规律及其污染性抑止研究.中国矿业大学(北京校区)博士学位论文.1999.
    105.张军营,郑楚光,刘晶,等.燃煤砷污染和抑制研究进展.煤炭转化.2002,25(2):23-28
    106.张晓红,陈敏.砷的污染毒性及对人体健康的影响.甘肃环境与监测.1999,48(12):215-218
    107.张振桴,樊金串.小龙潭煤中砷、铅、铬等元素的结合状态[J].煤炭转化,1993,16:86—88.
    108.张振桴,樊金串,晋菊芳,等.煤中砷,铅,铍,铬等元素的存在状态[J].燃料化学学报,1992,20 (2):206—212.
    109.赵峰华.煤中有害微量元素分布赋存机制及燃烧产物淋滤实验研究.1997,中国矿业大学(北京校区)博士学位论文.
    110.赵峰华,任德贻,尹金双,等.煤中As赋存状态德逐级化学提取研究[J].环境科学.1999,2(2):79—81
    111.赵峰华,任德贻,彭苏萍,等.煤中砷的赋存状态[J].地球科学进展.2003,18(2):214-220
    112.周代兴.高砷煤污染引起慢性砷中毒的调查.中华预防医学杂志.1993,27:147-150
    113.周贤定.赣中地区煤中砷含量的变化规律初探.中国煤田地质,1991,3(3):39—44
    114.朱玉仙,崔晓光.概率论与数理统计[M].长春:东北师范大学出版社,1989.207
    115.庄新国,向才富,曾荣树.三种不同类型盆地煤中微量元素的对比研究.岩石矿物学杂志.1999a,18(3):254-264
    116.庄新国,杨生科,曾荣树.中国主要几个煤产地煤中微量元素特征.地质科技情报.1999b,18(3):63-66
    117.中国统计年鉴,2001.
    118.周运书,杜晖,程明亮等.燃煤型砷中毒患者死因的调查[J].中国地方病学杂志.2002,2(6):484—486
    119.周运书,周代兴,周陈,等.燃煤型砷中毒病区居民总摄砷量与病情的相关研究.中国地方病杂志,1994,13(4) 215~218
    120.朱建明.鱼塘坝黑色富硒岩石中硒的赋存状态及其对局域环境的效应研究:[博士学位论文].贵阳:中国科学院地球化学研究所,2001,18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700