黄曲霉毒素B_1高灵敏度检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄曲霉毒素B_1(Aflatoxin B_1,AFB_1)危害极大,广泛存在于各种农产品、食品和饲料中,严重威胁人类和动物的生命安全。世界各国设置极其严格的限量标准,造成技术性贸易壁垒,研究建立高灵敏度的AFB_1检测技术,对实施从农田到餐桌的农产品质量控制管理措施,破解技术壁垒,及时发现和剔出受AFB_1污染的产品,防止AFB_1含量超标的产品进入食物链具有重要意义。
     本研究根据AFB_1的荧光特性,研究提高AFB_1检测灵敏度的方法:采用激光光源进行激光诱导荧光,建立高灵敏度LIF-HPCE AFB_1检测技术;提出AFB_1配合物的荧光增强效应,研究新型HgCl_2荧光增强剂;建立高灵敏度HPLC柱后HgCl_2衍生AFB_1检测技术;应用HgCl_2的荧光增强效应,建立AFB_1免疫亲和柱净化-荧光快速定量检测技术。主要结论如下:
     1.采用375nm小功率(20mW)半导体泵浦固体激光器作为新型的激发光源,与HPCE耦合,搭建了AFB_1高灵敏度检测平台,以MECC分离模式对AFB_1检测,大大提高灵敏度。缓冲溶液:50mmol/L NaDC,6mmol/L Na_28_4O_7,10mmol/LNa_2HPO_4,10%乙腈;λex=375nm,λem=440nm,操作电压15kV,电流104μA,毛细管柱直径75μm,柱长度57 cm,到检测窗口距离50cm。方法精密度RSD<3%,重复性RSD<5%,回收率为84.1%-96.1%,R~2=0.9988。最低检出质量0.17pg,最低定量限0.56pg,绝对检出量的灵敏度提高了3个数量级,显著高于其他方法。
     2.通过研究AFB_1与多种金属离子荧光体系荧光值变化情况,确定HgCl_2是一种新型的AFB_1荧光增强剂。室温下Hg(Ⅱ)与AFB_1混匀,反应摩尔比大于1:1时,荧光增强反应体系2min内快速、稳定达到平衡,完成最大增强。比传统的荧光增强剂Br_2水增强程度高2倍以上,大大提高了AFB_1的检测灵敏度;验证了Hg(Ⅱ)离子与AFB_1形成配合物荧光增强效应,发生AFB_1到Hg(Ⅱ)的LMCT跃迁,通过光氧化还原反应,形成稳定的配合产物,使反应物体系中刚性结构加强,共轭体系增加,荧光效率提高,荧光值大大增强。
     3.采用HgCl_2对AFT特别是AFB_1、AFG_1、AFM_1进行柱后衍生,建立高灵敏度HPLC柱后HgCl_2衍生检测技术。流动相为甲醇—乙腈—水(22:18:60 v:v:v),荧光检测器检测(λex=365nm,λem=440nm),柱温30℃,流动相流速0.8mL/min;柱后衍生试剂流速0.4mL/min,进样量10μL,可以在13min内同时分离检测五种主要的AFT(B_1,B_2,G_1,G_2和M_1)。AFB_1的最低检出限和最低定量限分别达到了0.05μg/kg和0.17μg/kg,最低检出质量为0.5pg,绝对检出量的灵敏度提高超过了2个数量级。重复性RSD为1.81%,低于5%;精密度RSD为4.28%,在5%以下;回收率为84.67-91.10%,RSD<5%。方法成功分析污染花生,花生酱,花生油,大米,玉米等农产品中的黄曲霉毒素,是检测农产品和食品中黄曲霉毒素可靠有效的方法。
     4.将HgCl_2荧光增强效应引入AFB_1免疫亲和快速测定技术中,建立了一套快速、准确、简易的IAC前处理技术,用于农产品及食品中AFB_1,大大提高了速测技术的检测灵敏度,最低定量限0.3μg/kg,同收率>90%,单个样品制备在40min之内,RSD<3%,R~2>0.99,具有操作简单,速度最快,费用最低,准确度高,检测结果直接读数的特点,对环境及检验人员安全性最高,适于现场和口岸检测。
Aflatoxin B_1 (AFB_1) seriously threatened human and animal healthy or life safety. AFB_1 commonly contaminates agricultural commodities, food and animal feedstuffs, which is an important problem all through. Standard of AFB_1 limits and technical barriers to trade (TBT) were set by many countries. TBT led to impeded export of agricultural production and damaged the interests of farmers. Development of high sensitivity test method for AFB_1 determination is important and crucial to break out TBT. Detection technology with high sensitivity must be studied in order to guarantee agro-food quality control and management from farm to table, find out the contaminated production in time and prevent the production contained excess the standard AFB_1 into food chain.
     Based on the fluorescence characteristic of AFB_1, study on how to improve the sensitivity of detection technology was done. First, laser was introduced into the detection technology to induce fluorescence and laser induced fluorescence (LIF)-high performance capillary electrophoresis (HPCE) was developed with high sensitivity. Besides of laser lamp-house researchment, the new fluorescence enhancer of AFB_1 was researched and its scientific hypothesis of AFB_1 chelation fluorescence enhancement was established and deduced from experiments. The novel post-column derivatization method by high performance liquid chromatography (HPLC) was developed with high sensitivity by applied the new fluorescence enhancer. As fluorescence enhancer, HgCl_2 may be induced into IAC fast test method and improved sensitivity. The main conclusions were as follow.
     1. Laser diode double-pumped solid laser of 375nm wavelength was studied for a new excitation light source and coupled HPCE to detect AFB_1 in MECC separation mode. The optimized conditions were as follow. Buffer was composed of 50mmol/L NaDC, 6mmol/L Na_2B_4O_7, 10mmol/L Na_2HPO_4, 10% Acetonitrile. Excitation wavelength was at 375nm and detected emission wavelength was at 440nm. The applied voltage was 15kV and the current was 104μA. The capillary (75μm i.d., 57 cm total length, 50 cm length to detector) was chosen. The concentration of AFB_1 in samples was determined by LIF-HPCE. The results showed that repeatability expressed as RSD values was under 5% and intermediate precision expressed as RSD values was under 3%. Recovery was in the range of 84.1-96.1%. The data also fit the line y= 10~6x + 319847 (R~2=0.9988) in the linear range of AFB_1. For sample injection volume being little, the absolute limit of detection (0.17pg) and quantitative limit of AFB_1 (0.56pg) were far lower than other method. The absolute mass detection sensitivity of LIF-HPCE improved three magnitudes relatived to AFB_1 detection method
     2. Fluorescence spectrums and fluorescence signal changes of fluorescence system were researched and fluorescence enhancement technology chelated by metal ions was introduced into AFB_1 fluorescence detection. The result showed that HgCl_2 solvent could be a new enhancer to AFB_1 being enhanced the fluorescence intensity of AFB_1 rapidly, steadily, intensively in the room temperature. The enhanced condition influenced fluorescence system of AFB_1-Hg (II) was studied. The room temperature was accepted. The fluorescence enhancement reaction could balance and complete basically within the 2min when the molar ratio of Hg (II) and AFB_1 should exceed 1:1. In the same condition, enhanced fluorescence intensity by HgCl_2 was stronger than that of Br_2. The sensitivity of AFB_1 detection was improved by HgCl_2 enhancement. Fluorescence enhancement hypothesis of AFB_1 chelation with HgCl_2 was established and deduced. In the process of AFB_1 fluorescence enhancement, octahedral chelated resultant came into being and light redox reaction in LMCT occured and formed steady chelated products. Steady chelated products could extend rigidity plane or conjugate structure and fluorescence intensity was enhanced greatly by fluorescence efficiency being improved
     3. A novel post-column derivatization method for simultaneous enhancement of aflatoxin B_1, B_2, G_1, G_2, and M_1 by HPLC was developed. The aqueous solution of Mercuric Chloride was utilized as a new fluorescence enhancer for aflatoxin B_1, G_1, and M_1 in post-column. Full separation of five aflatoxins with fluorescence detector (λax=365nm,λam=440nm) could be achieved in the baseline by the mobile phase composed of methanol-acetonitrile-water (22:18:60 v:v:v) within 13 minutes. The flow rate of flow phase was 0.8mL/min and the flow rate of enhancer was 0.4mL/min. Sample injection was 10μL. The sensitivity was improved by the fluorescence intensity enhancement of HgCl_2. The limit of detection of AFB_1 was 0.05μg/kg and limit of quantitative of AFB_1 was 0.17μg/kg. The absolute mass detection sensitivity improved above two magnitudes relatived to AFB_1 detection method. Repeatability expressed as RSD values was 1.81% and intermediate precision expressed as RSD values was 4.28%. Recovery was in the range of 84.67-91.10%. The new method was proven to be an efficient method with high sensitivity, high accuracy and high repeatability for simultaneous determination of aflatoxins and successfully applied to analyze aflatoxins in contaminated peanut, rice, corn, peanut oil, and peanut butter.
     4. Fluorescence enhancement of HgCl_2 may be induced into IAC fast test method and sample pretreatment technology was developed for AFB_1 determination accurately, fast, conveniently in agricultural production and food. The limit of quantitative was 0.3μg/kg. The recovery of AFB_1 in spiked samples was above 90%. Repeatability expressed as RSD values was under 3% and R~2 was 0.99. The test time was shorter than 40min of single sample. The pretreatment process was simple and timesaving for whole process time of single sample being within 40min and the time was shorter when sample amount increased. The fast test method fit for test in spot and port etc with highlighted advantages such as high accuracy, low-cost, simple-manipulation, fast-run, high safety and so on.
引文
1. Abbas H.K.,Shier W.T.,Horn B.W.,et al.Cultural Methods for Aflatoxin Detection.Journal of Toxicology:Toxin Reviews.2004,23(2-3) :95~315.
    2. Abdulkadar A.H.W.,Abdulla AI-Ali,Jassim Al-Jedah.Aflatoxin contamination in edible nuts imported in Qatar.Food Control,2000:157~160.
    3. Aja-Nwachukeu J.,Emejuaiwe S.O.Aflatoxin-producing fungi associated with maize.Environmental Toxicology,2001,9(1) :17~23.
    4. Akiyama H.,Goda Y.,Tanaka T.,et al.Determination of aflatoxinB1,B2,G1 and G2 in spices using a multifunctional column clean-up.Journal of Chromatography A,2001,932:153~157.
    5. Ali N.,Hashim N.H.,Yoshizawa T.Evaluation and application of a simple and rapid method for the analysis of aflatoxins in commercial foods from Malaysia and the Philippines.Food Addit.Contam.1999,16(7) :273~280.
    6. Aoyagi S.,Imai R.,Sakai K.,et al.Reagentless and regenerable immunosensor for monitoring of immunoglobulin G based on non-separation immunoassay.Biosensors and Bioelectronics,2003,18:791~795.
    7. AOAC Official method 994. 08.
    8. AOAC Official method 999. 07.
    9. AOAC Official method 2000. 16.
    10. Beaver R.W.,Wilson D.M..Comparsion of post-column derivatization liquid chromatography with thin-layer chromatography for determination of aflatoxins in naturally contaminated corn.Journal of AOAC.Int.,1990,73(4) :579~581.
    11. Beebe R.M..Reverse phase high pressure liquid chromatographic determination of aflatoxins in foods.J.Assoc.Off.Anal.Chem.1978,61:1347~1352.
    12. Beggs M.,Novotny M.,Sampedro S.,et al.A self-performing chromatographic immunoassay for the qualitative determination of human chorionic gonadotrophic(HGG) in urine and serum.Clin Chem.,1990,36:1084~1086.
    13. Bhatnagar D.,Yu J.,Ehrlich K.C..Toxins of Filamentous Fungi.Chem.Immunol,2002,81:167~206.
    14. Bhattacharya D.,Bhattacharya R.,Dhar T.K..A novel signal amplification technology for ELISA based on catalyzed reporter deposition.Demonstration of its applicability for measuring aflatoxin B1. J.Immunol.Meth.1999,230:71~86.
    15. Blesa J.,Soriano J.M.,Molto J.C.,et al.Determination of aflatoxins in peanuts by matrix solid-phase dispersion and liquid chromatography.J.Chromatogr.A.2003,1011:49~54.
    16. Bradburn N.,Coker R.D..A comparative study of solvent extraction efficiency and the performance of immunoaffinity and solid phase columns on the determination of aflaoxin B1. Food Chemistry,1995,52:179~185.
    17.Braga S.M., de Medeiros F.D., de Oliveira E.J., Macedo R.O.. Development and validation of a method for the quantitative determination of aflatoxin contaminants in Maytenus ilicifolia by HPLC with fluorescence detection. Phytochem Anal. 2005 16(4):267~271.
    18.Buskov S., Mφller P., Sφrensen H., et al. Determination of vitamins in food based on supercritical fluid extraction prior to micellar electrokinetic capillary chromatographic analyses of individual vitamins. Journal of Chromatography A, 1998, 802: 233~241.
    19.Candlish A.A.G., Pearson S.M., Aidoo K.E., et al. A survey of ethnic foods for microbial quality and aflatoxin content. Food Addit. Contam. 2001,18:129~136.
    20.Carlson M.A., Bargeron C.B., Benson R.C.. An automated, handheld biosensor for aflatoxin. Biosens. Bioelectron, 2000, 14: 841~848.
    21.CAST. Mycotoxins economic and health risks. Council for Agriculture Science and Technoloy.1989:116.
    22.CAST. Mycotoxins: risks in plant, animal and humans. (Richard J. L., Payne, G. A. eds). Council of Agricultural Science and Technology (CAST) Task Force Report Ames, Iowa, 2003, 139:199.
    23.Cavaliere C., Foglia P., Pastorini E., et al. Liquid chromatography/tandem mass spectrometric confirmatory method for determining aflatoxin M_1 in cow milk Comparison between electrospray and atmospheric pressure photoionization sources. Journal of Chromatography A, 2006, 1101:69~78.
    24.Cepeda A, Franco CM, Fente CA. et al. Postcolumn excitation of aflatoxins using cyclod extrins in liquid chromatography for food analysis. J Chromatogr A, 1996, 721(1):69~74.
    25.Childress W.L., Krull I.S., Selavka C.M.. Dtermination of deoxynivalenol in wheat by high-performance liquid chromatography with photolysis and electrochemical detection. J. Chrom. Science. 1990, 28:76.
    26.Chu F.S., et al. Preparation and characterization of aflatoxinB1-O-carboxy methyl loxime, J Assoc Off Anal Chem 1977, 60(6): 791.
    27.Chu F.S., Fan T S L, Zhang J S, et al. Improved enzyme-linked immunosorbent assay for aflatoxin in agricultural commodities. J AOAC Int, 1987, 70(5): 854~857.
    28.Chu F.S.,Ueno I. et al. Production of antibody against aflatoxin B1. Appl Environ Microbiol 1977,33(5): 1125~1129.
    29.Chu, F. S.; Bhatnagar, D. Mycotoxins. in Fungal biotechnology in agricultural, food and environmental applications. (Arora, D. K. editor). Marcel Dekker, New York, Basel, 2004: 325~342.
    30.Cole R.O., Holland R.D., Sepaniak M.J.. Factors influencing performance in the rapid separation of aflatoxins by micellar electrokinetic capillary chromatography. Talanta, 1992,39(9): 1139~1147.
    31.Commission Regulation (EC) No. 466/2001 of 8 March 2001, Official Journal European Communities L 077, 16/03/2001, pp. 0001-0013.
    32.Commission Regulation (EC) No. 683/2004 of 13 April 2004 amending Regulation (EC) No. 466/2001, Official Journal European Communities L 106, 15/04/2004, pp. 0003-0005.
    33.Cupid B.C., Lightfoot T.J., Russell D., et al. The formation of AFB_1-macromolecular adducts in rats and humans at dietary levels of exposure. Food Chem Toxicol. 2004, 42(4):559~569.
    34. Dall'asta C.,Ingletto G.,Corradini R..Fluorescence Enhancement of Aflatoxins Using Native and Substituted Cyclodextrins.J.Inclusion Phenomena and Macrocyclic Chem.2003,45:257~263.
    35. David S.H.Survey of recent advances in analytical applications of immunoaffinity chromatography.Journal of Chromatography B,1998,715:3~28.
    36. Davis N.D.,Diener U.L..Confirmatory test for the high pressure liquid chromatographic determination of aflatoxin B1. J.Assoc.Off.Anal.Chem.1980,63:107-109.
    37. Detroy R.W..Microbial Toxins.New York:Academic Press,1971,163~178.
    38. Dominguez J.,Gali N.,Matas,et al.Ewaluation of a rapid immunochromatographic assay for the detection of Legionella antigen in urine sample.Eur.J.Clin.Microbiol Infect Dis,1999,18:896~898.
    39. Engler K.H.,Efstratiou D.N.,Norn R.S..Immunochromatographic strip test for rapid detection of diphtheria toxin:Description and Multicenter evaluation.J.Clin.Micro.,2002,40 (1) :80~83.
    40. Espinosa E.T.,Askar K.A.,Torres L.R.N.,et al.Quantification of aflatoxins in corn distributed in the city of Monterrey,Mexico.Food.Addit.Contam.1995,3:383-386.
    41. European Commission,Commission Regulation 1525/98,Off.J.L201,0093,1998.
    42. Faraday M..Preparation of Colloidal gold.Philos Trans R Soc London,1857,147:145.
    43. Faulk W.P.,Taylor G.M..An immunocolloid method for the electron microscope.Immunochemistry,1971,8:1081~1083.
    44. Ferreira I.M.P.L.V.O.,Mendes E.,Oliveira M.B.P.P..Quantification of Aflatoxins B1,B2,G1,and G2 in Pepper by HPLC/Fluorescence.Journal of Liquid Chromatography & Related Technologies.2004,27:325~334.
    45. Food and Agriculture Organisation of the United Nations,FAO Food and Nutrition Paper,FAO,Rome,1995.
    46. Fouqué B.,Schaack B.,Obe(?)d P.,et al.Multiple wavelength fluorescence enhancement on glass substrates for biochip and cell analyses.Biosensors and Bioelectronics,2005,20:2335~2340.
    47. Francis O.J.,Kirschenheuter G.P.,Ware G.M.,et al.Beta-cyclodextrin post-column fluorescence enhancement of aflatoxins for reverse-phase liquid chromatographic determination in corn.J.Assoc.Off.Anal.Chem.1988,71:725-728.
    48. Garden S.R.,Strachan N.J.C..Novel colorimetric immunoassay for the detection of aflatoxin B1. Analytica Chimica Acta,2001,444:187~191.
    49. Garner R.C.,Whattam M.W.,Taylor P.J.L.,Stow M.W.,Analysis of United Kingdom spices for aflatoxins using an immunoaffinity column clean-up procedure followed by high-performance liquid chromatographic analysis.J.Chromatogr.1993,648:485.
    50. Ghosh P.,Shukla A.D.,Das A..Cerium ion-induced fluorescence enhancement of a tripodal fluoroionophore.Tetrahedron Letters Pergamon,2002,43:7419~7422.
    51. Gilbert J..Overview of mycotoxin methods,present status and future needs.Nat.Toxins,1999,7:347~352.
    52. Gillbert J..Validation of analytical methods for determining mycotoxins in food stuffs.Trends in analytical chemistry,1999,21:468~472.
    53. Gurbay A.,Aydin S.,Girgin G.,et al.Assessment of aflatoxinM1 levels in milk in Ankara,Turkey.Food Control,2006,17:14.
    54. Hainfeld J.F.,Powell R.D..Nanogold technology:new frontiers in gold labeling.Cell Vis,1997,4:408~432.
    55. Hainfeld J.F..A small gold-conjugated antibody lael:improved resolution for electron microscopy.Science,1987,236:450~453.
    56. Hainfeld JF,Furuya FRA 1,4-nm gold cluster covalently attached to antibodies improbes immunolabeling.J Histochem Cytochem,1992,40:177-184.
    57. Hajare S.S.,Hajarel S.N.,Sharma A..Aflatoxin Inactivation Using Aqueous Extract of Ajowan (Trachyspermum ammi) Seeds.Journal of Food Science.2005,70:29.
    58. Hassan J.A.,Huq A.,Tamplin M.L..A novel kit for rapid detection of vibro cholerue O.J.Clin Microbiol,1994,32(1) :249~252.
    59. Hendricks J.D.,Wales J.H.,Sinnhuber R.O.,et al.Rainbow trout (Salmo gairdneri) embryos:a sensitive animal model for experimental carcinogenesis.Food Proc.1980,39(14) :3222~3229.
    60. Holcomb M.,Wilson D.M.,Trucksess M.W.,et al.Determination of aflatoxins in food products by chromatography.Journal of Chromatography.1992,624:341-352.
    61. Horwitz W..(eds) Official Methods of Analysis of AOAC International.17th ed.Chapter 49,Mycotoxins.AOAC International,Gaithersbury,MD.2000.
    62. Hurst W.J.,Toomey.Determination of aflatoxins in peanuts products using reversed phase HPLC.Journal of Chromatography Science,1988,16:372~376.
    63. Hussein H.S.,Brasel J.M..Metabolism,and impact of mycotoxins on humans and animals.Toxicology.2001,167(2) :101~103.
    64. International Agency for Research on Cancer,IARC Monographs on the Evaluation of Cancinogenic Risk to Humans.World Health Oranisation,lyon,1987,Supply 7.
    65. International Agency for Research on Cancer,IARC Monographs on the Evaluation of Cancinogenic Risk to Humans.World Health Oranisation,lyon.1993,56.
    66. International Agency for Research on Cancer,IARC Monographs on the Evaluation of Cancinogenic Risk to Humans.World Health Oranisation,lyon,2002,82.
    67. Jaimez J.,Fente C.A.,Vazquez B.I.,et al.Application of the assay of aflatoxins by liquid chromatography with fluorescence detection in food analysis.Journal of Chromatography A.2000,882:1~10.
    68. James F.H.,Richard D.P..New frontiers in gold labeling.Journal of Histocytochemistry and Cytochemistry,2000,48(4) :471~480.
    69. Jia X.J.,Wang T.B.,Wu J..Determination of palladium by graphite furnace atomic absorption spectroscopy without matrix matching.Talanta,2001,54 (4) :741~751.
    70. Jin S.,Xu Z.,Chen J.,et al.Determination of organophosphate and carbamate pesticides based on enzyme inhibition using a pH2sensitive fluorescence probe.Anal Chim Acta,2004,523:117~123.
    71. Joshua H..Determination of aflatoxins by reversed-phase high-performance liquid chromatography with post-column on-line photochemical derivatization and fluorescence detection. Journal of Chromatography A. 1993,654: 247.
    72.Keller N.P., Watanabe C.M., Keller H.S., et al. Requirement of monoxygenase -mediated steps for sterigMatocystin biosynthesis by Aspergillus nidulans. Appl Environ Microbiol, 2000,66: 359~362.
    73.Khan M.M., Tayyab S.. On the modulation of photoinduced fluorescence enhancement and conformational stability of albumin-bound bilirubin: Elect of ε-NH2 groups blocking and chloroform binding. Biochimica et Biophysica Acta, 2000, 1523:147~153.
    74.Klaus R., Wolfgang M. F Determination of aflatoxins in medical herbs and plant extracts.Journal of chromatography A, 1995,692:131~136.
    75.Kok W.T.. Derivatization reactions for the determination of aftatoxins by liquid chromatography with fluorescence detection. J Chromatogr B, 1994, 659:127~137.
    76.Langone J.J., Van Vunakis, H.. Aflatoxin B1: specific antibodies and their use in radioimmunoassay. Journal of the National Cancer Institute. 1976, 56:591~595.
    77.Leitao J., Blanquat G. D. S., Bailly J.R., et al. Quantitation of aflatoxins from various strains of aspergillus in foodstuffs. J. Chromatogr.A. 1998,435:229~234.
    78.Lee H.S., Kim Y.A., Cho Y.A., et al. Oxidation of organophosphorus pesticides for the sensitive detection by a cholinesterase-based biosensor. Chemosphere, 2002, 46:571~576.
    79.Leszezynska J., Zegota U.K.H.. Aflatoxins in nuts assayed by immunological methods. Eur Food Technol 2000, 210:213~215.
    80.Luo G., Wen T., Wang Y., et al. Advance of immunoaffinity capillary electrophoresis. Acta Pharmaceutics Sinica, 2002,37(6):479~484.
    81.Manabe M.T., Goto, Matsuura. High performance liquid chromatography of aflatoxins with fluorescence detection.Agric.Biol.Chem., 1978,42: 2003~2007.
    82.Maragos C.M., Greer J.I.. Analysis of aflatoxin B_1 in corn using capillary electrophoresis with laser-induced fluorescence detection. Journal of Agriculture and Food Chemistry. 1997, 45: 4337~4341.
    83.Maria P., Slabomir D., Enrica B., et al. Characterization of an enzyme linked immuno sorbent assay for aflatoxin B_1 based on commercial reagents.Talanta, 1997,45:91~104.
    84.Maria SM-M.,Amaury J.M.. Mold occurrence and aflatoxin B_1 and fumonisin B_1 determination in corn samples in Venezuela. Journal of Agriculture and Food Chemistry,2000,48:2833~2836.
    85.Marrazza G., Chianella I., Mascini M., et.al. Disposable DNA electrochemical biosensors for environmental monitoring. Analytica Chimica Acta, 1999,387: 297~307.
    86.Maurice O.M.. Risk assessment for aflatoxins in food stuffs.Inter national Biodeterioration and Biodegradation ,2002,50,137~142.
    87.Michael G.W.. Immunochromatographic techniques-a critical review. Fresenius Journal of Anal Chem,2000,366: 635~645.
    88.Michael J.S., Tuan Vo-Dinh, Victoria Tropina, et al. Evaluation of a Separation-Based Fiber-Optic Sensor in a Micellar Electrokinetic Capillary Chromatography Mode of Operation. Anal. Chem. 1997, 69:806~811.
    89.Moreau C.. Moisissures Toxiques dans Alimentation. Paris: Masoson Editrurs Press, 1974, 71~164.
    90.Mousavi M.F., Rahmani A., Barzegar M., et al. Sensitive catalytic2photometric method for the determination of trace amounts of palladium(Ⅱ) by using a computerized probe-type photometer. Anal Chem, 2004, 59(1):71~74.
    91.Olivier M., Hussain S.P., Caron de Fromentel C., Hainaut P., Harris C.C..TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer. IARC Sci Publ. 2004, 157:247~270.
    92.Osikowicz G., Begge M. One-step chromatographic immunoassay for qualitative determinationof choriogonadotropin in urine. Clin Chem.,1990,36:1586~1587
    93.Ossama EL-N.,Pestka J.J., Chu FS.Determination of aflatoxin B1 in corn,wheat and peanut butter by enzyme-linked immunosorbent assay and solid phase Radioimmunoassay. J. Assoc.Off.Anal.Chem, 1981,64(5): 1077~1079.
    94.Otta K.H., Papp E., Mincsovics E., et al, Determination of Aflatoxins in Corn by Use of the Personal OPLC Basic System. J. Planar. Chromatogr. 1998,11:370.
    95.Papadopoulou-Bouraoui A., Stroka J., Elke A.. Comparison of two post-column derivatization systems, ultraviolet irradiation and electrochemical determination, for the liquid chromatographic determination of aflatoxins in food. Journal of AOAC. 2002, 85:411~416.
    96.Peraica M., Radic B., Lucic A., Pavlovic M.B.. Toxic effects of mycotoxins in humans. Bull World Health Organ. 1999,77: 754~766.
    97.Peska J.J, Gaur P.K, Chu F.S. Quantitatin of aflatoxin B1 antibody by ELISA. Apple. And Eniron. Microbiol. 1980(12): 1027~1031.
    98.Ponland A.E.. Mycotoxins in review. Food Additives and contaminations, 1993, 10(1): 17~28.
    99.Powell R.D., Halsey C.M.R., Hainfel.. Combined fluoresecent and gold immuno-probes: reagents and methods for correlative light and electron microscopy. Microsc Res Tech, 1998,42: 2-12.
    100.Puerta A., Carlos J., Masa D., et al. Deveolopment of an immunochromatographic method to determine β-lactoglobulin at trace levels. Analytica Chimica Acta, 2005, 537: 69~80.
    101.QI W., Bingyin P.U.. Surbactants and Analysis Chemistry (Vol. 2). Beijing: Measurement Press of the People's Republic of China, 1987.95.
    102.Qian X., Xiao Y.. 4-Amino-1, 8-dicyanonaphthalene derivatives as novel fluorophore and fluorescence switches: efficient synthesis and fluorescence enhancement induced by transition metal ions and protons. Tetrahedron Letters, 2002, 43:2991~2994.
    103.Qin W., Liu W., Tan M.. Study on the new fluorescence enhancement system of Tb-1, 10-bis (2-carboxylphenyl)-1,4,7,10-tetraoxadecane in silver chloride collosol and its analytical application. Analytica Chimica Acta, 2002, 468: 287~292.
    104.Ramírez-Galicia G., Garduno-Juárez R., Gabriela Vargas M.. Effect of water molecules on the fluorescence enhancement of Aflatoxin B1 mediated by Aflatoxin B1: β-cyclodextrin complexes. A theoretical study. Photochemical & Photobiological Sciences, 2007, 6:110~118.
    105.Roch O.G., Blunden G., Coker R.D., et al. The development and validation of a solid phase extraction/HPLC method for the determination of aflatoxins in groundnut meal. Chromatographia. 1992, 33: 208~212.
    106.Rustom I.Y.S.. Aflatoxin in food and feed: occurrence,legislation and inactivation by physical Methods. Food Chemistry, 1997,59(1):57~67.
    107.Saad A.M., Abdelgadir M., Moss M.O.. Exposure of infants to aflatoxin M1 from mothers' breast milk in Abu Dhabi, UAE. Food Addit. Contam. 1995,12: 255~261.
    108.Saha D., Acharya D., Roy D., et al. Filtration-based tyramide amplification technique—a new simple approach for rapid detection of aflatoxin B_1. Anal Bioanal Chem, DOI 10.1007/s00216-006-0943-y.
    109.Sobolev V.S., Dorner J.W.. Cleanup Procedure for Determination of Aflatoxins in Major Agricultural Commodities by Liquid Chromatography. Journal of AOAC Int. 2002, 85: 642~645.
    110.Stroka J., Anklam E., Jorissen U., et al. Immunoaffinity Column Cleanup with Liquid Chromatography Using Post-Column Bromination for Determination of Aflatoxins in Peanut Butter, Pistachio Paste, Fig Paste, and Paprika Powder: Collaborative Study. J. AOAC Int. 2000, 83: 320~340.
    111.Stroka J., Anklam E.. Development of a simplified densitometer for the determination of aflatoxins by thin-layer chromatography. Journal of Chromatography A, 2000, 904:263-268.
    112.Stroka J., Anklam E.. New strategies for the screening and determination of aflatoxins and the detection of aflatoxin-producing moukds in food and feed. Trends in Analytical Chemistry, 2002, 21 (2).
    113.Sun H.W., Suo R.. Enhancement reagents for simultaneous vapor generation of zinc and cadmium with intermittent flow system coupled to atomic fluorescence spectrometry. Analytica Chimica Acta, 2004,509 : 71~76.
    114.Sweeney M.J., Dobson A.D.W.. Mycotoxin production by Aspergillus, Fusarium and Penicillium species. Int. J. Food Microbiol, 1998, 43: 141~158.
    115.Takahashi D.M.. Reversed phase high performance liquid chromatographic analytical sysetem aflatoxin in wines fluorescence detection. Journal of Chromatography, 1977,131:147~156
    116.Takeda T., Yanagata K.. Evaluation of immunochromatography based rapid detection kit for fecal Escherichss Colio 157. Kanserstcgaku-Zasshi, 1998,72(8):834~899.
    117.Takino M., Tanaka T., Yamaguchi K., Nakahara T.. Atmospheric pressure photo-ionization liquid chromatography/mass spectrometric determination of aflatoxins in food. Anal Chem. 2004,76(1):98~104.
    118.Tarter E.J., Hanchay J.P., Scott P.M.. Improved liquid chromatographic methods for determination of aflatoxins in peanut butter and other commodities. J.AOAC Int., 1984,67:597~600.
    119.Tbakhi A., Totos G., Hauser-Kronberger C., et al. Fixation conditions for DNA and RNA in situ hybridization: a reassessment of molecular morphology dogma. Am. J. Pathol. 1998, 152:35~41.
    120.Thorsteinson A.D.T., Forest D.. Chromatography of mycotoxins on precoated reverse-phase thin-layer phates, Arch.Environ.Contam.Toxicol., 1989,18:327~330.
    121.Thuwander A., Moiler T., Enghardi H., et al. Dietary intake of important mycotoxins by the Swedish population. Food additives and Contaminations, 2001, 18(8): 696~706.
    122.Totos G., Tbakhi A., Hauser-Kronberger C., et al. Catalyzed Reporter Deposition: A new era in molecular and immunomorphology - Nanogold-silver staining and colorimetric detection and protocols. Cell Vision, 1997, 4:433~442.
    123.Trucksess M.W., Stack M.E., Nesheim S, et. al. Immunoaffinity column coupled with solution fluorometry or liquid chromatography postcolumn derivatization for determination of aflatoxins in corn, peanuts, and peanut butter: collaborative study. J. AOAC, 1991, 74(1): 81-88.
    124.Trucksess M.W.. Comparsion of two immunochemical methods with thin layer chromatographic methods for determination of aflatoxins. Journal of AOAC Int., 1990,73(3):425~428.
    125.Vah M., Jorgensen K.. Determination of aflatoxins in food using LC/MS/MS.Z Lebensm Unters Forsch A, 1998, 206: 243~245.
    126.Valkirs G.E., Barton R.. Immunochromatographic-a new format for solid-phase immunoassays. Clin Chem, 1985, 31: 1427~1431.
    127.Velky J.T., Groopman J.D., Strickland P.T., et.al. An automated, handheld biosensor for aflatoxin. Biosensors & Bioelectronics 2000, 14: 841~848.
    128.Ventura M., Gómez A., Anaya I., et al. Determination of aflatoxins B1, G1, B2 and G2 in medicinal herbs by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A. 2004, 1048: 25~29.
    129.Wagner B.D., Gregory J., McManus.. Enhancement of the fluorescence and stability of o-phthalaldehyde-derived isoindoles of amino acids using hydroxypropyl-β-cyclodextrin. Analytical Biochemistry, 2003, 317: 233~239.
    130.Wei J., Okerberg E., Dunlap J., et al. Determination of Biological Toxins Using Capillary Electrokinetic Chromatography with Multiphoton-Excited Fluorescence. Anal. Chem. 2000, 72: 1360~1363.
    131.Westagard J.O.. Point of care in using statistics in methods comparison studies. Clin Chem, 1998, 210: 2240~2245.
    132.Whitaker T.B., Hagler W.M., Giesbert J.. Immunoaffinity Column Cleanup with Liquid Chromatography Using Post-Column Bromination for Determination of Aflatoxins in Peanut Butter, Pistachio Paste, Fig Paste, and Paprika Powder: Collaborative Study. J. AOAC Int. 2000,83 : 320~340.
    133.WHO (World Health Organization). Evaluation of certain food additives and contaminants. Forty-fourth report of the joint FaAO/WHO Expert Committee on Food Additives.WHO Technical Report Series, 1996, No.859.
    134.Wilson T.J., Romer T.R.. Use of the Mycosep multifunctional cleanup column for liquid chromatographic determination of aflatoxins in agricultural products. J. Assoc. Off. Anal. Chem. 1991, 74:951~956.
    135.Withanage G., Murata H., Koyama T., et al. Agonistic and on SKY, HHUA, and Hep G2 human cancer cell lines. Vet Hum Toxicol, 2001, 43: 6~10.
    136.Yang R.H., Wang K.M., Xiao D., et al. A selective optical chemical sensor for the determination of Tween-60 based on fluorescence enhancement of tetraphenylporphyrin. Analytica Chimica Acta, 2000, 404:205~211.
    137.Yong R.K, Cousin M.A.. Detection of moulds producing aflatoxins in maize and peanuts by an immunoassay. International Journal of Food Microbiology, 2001,65:27~38
    138.You F.T., Jin L.P., Zhao H.C.. Study on fluorescence of the Tb~(3+)-enoxacin system and the determination of enoxacin. Anal Common, 1999, 36:231~233.
    139.Yousif AL-Y., Anderson J., Chard C.. Development,evaluation, and application of lateral-flow immunoassay for detection of Rotavirus in Bovine fecal sample. Clin. and Diagn.Lab,2002,9(3):723~724
    140.Yu J.J., Chang P.K., Ehrlich K.C., et al. Clustered Pathway Genes in Aflatoxin Biosynthesis. Applied and environmental microbiology. 2004, 70(3): 1253~1262.
    141.Yukihide S.,Daisuke A.,Naoki T.. pH-dependent color change of colloidal dispersions of gold nanoclusters effect of stabilizer.The European Physical Journal Eur,2002,8:377~383.
    142.Zasshi S. E.. Application and improvement of aflatoxin analysis in foods using a multifunctional column and HPLC. 2001,42 (1):56~62.
    143.Zhang L., Chen H., Hu S., et al. Determination of the amino acid neurotransmitters in the dorsal root ganglion of the rat by capillary electrophoresis with a laser induced fluorescence-charge coupled device. Journal of Chromatography B, 1998, 707: 59~67.
    144.白敏,程燕,石运伟,等.高效毛细管电泳用于二肽衍生物的手性拆分.分析化学,2006,34(1):119~122.
    145.陈福生,李根久.酱油中黄曲霉毒素B_1的酶联免疫检测.中国调味品,1998,8(8):26~30.
    146.陈国庆,朱拓,虞锐鹏,等.甲醇溶液的荧光光谱特性.光电工程,2005,32(6):31~34.
    147.陈兰明,陈永萱.黄曲霉毒素B1间接竞争抑制ELISA定量分析法的建立及应用.南京农业大学学报,1998,21(2):65~72
    148.陈建民,张雪辉,杨美华,等.黄曲霉毒素检测方法研究进展.中国中药杂志,2005,30(24):1890~1894.
    149.陈荣三,张树成,黄孟健,等.无机及分析化学.北京:高等教育出版社,1985.
    150.陈涛,刘耘,潘进权.分离纯化新技术亲和层析.广州食品工业科技,2003,19(2):98~101.
    151.陈文利,周全,邢达.黄曲霉毒素B1测量方法的研究.生物物理学报,2006,22(增):465.
    152.陈锡文,邓楠,韩俊,等.中国食品安全战略研究.北京:化学工业出版社,2004.
    153.陈义.毛细管电泳技术及应用.第1版.北京:化学工业出版社,2000.
    154.出口油籽、坚果及坚果制品中黄曲霉毒素的检验方法液相色谱法.中华人民共和国国家标准SN 0637-1997.
    155.邓延倬,何金兰.高效毛细管电泳.北京:科学出版社,1996.
    156.邓省亮.1黄曲霉毒素B1胶体金免疫层析快速检测方法的研究2应用噬菌体展示肽库淘选黄曲霉毒素B1模拟表位.[硕士学位论文].南昌:南昌大学,2006.
    157.邓永沛,赵红秋,江龙.纳米金颗粒在仿生工程中的应用中国基础科学.科学前沿,2000:11~14.
    158.丁平,侯亚莉,程晓伟.高效液相色谱法测定饲料中的黄曲霉毒素B1.饲料研究,2006,9:61~63.
    159.达世禄.色谱学导论.武汉:武汉大学出版社,1999.
    160.邓延倬,何金兰.高效毛细管电泳.北京:科学出版社,1996.
    161.段淑芬,胡文广,戴良香.花生黄曲霉毒素国家标准与绿色贸易壁垒.中国农学通报,2006,22(6):95~98.
    162.范伟刚,刘道杰.光化学荧光分析法研究进展.理化检验—化学分册,2006,42(1):66~70.
    163.冯建蕾,许梓荣,史莹华.HPLC法检测发酵玉米粉中的黄曲霉毒素B1、B2、G1、G2.中国饲料.2005,16:25~27.
    164.傅平青,刘丛强,吴丰昌.三维荧光光谱研究溶解有机质与汞的相互作用.环境科学,2004,25(6):140~144.
    165.高鹤娟.食品中黄曲霉毒素的测定方法.食品卫生检验方法注解,北京:卫生部食品卫生监督检验所出版,1987,153.
    166.高军侠,万昊雷,刘作新.Florisil柱净化玉米、水稻及糙米中黄曲霉毒素的最优化条件研究.郑州大学学报(理学版),2005,37(2):101~104.
    167.高凌,陈伯涛.Y~(3+)等对含碘的Eu(Ⅲ)β二酮物的荧光增强作用.北京师范大学学报,1993,28(2):261~262..
    168.高秀芬,计融.黄曲霉毒素的分析方法.中国食品卫生杂志,2005,17(4):347~352.
    169.国家标准.食品中黄曲霉毒素B1的限量标准及测定方法GB/18979-2003 5009.
    170.韩松.快速斑点免疫结合试验的进展.中华医学检验杂志,1994,17(4):249~250.
    171.黄飚,陶文沂,张莲芬,等.黄曲霉毒素B1的高灵敏时间分辨荧光免疫分析.核技术,2006,29(4):295~300.
    172.贾玉珠,骆和东,林健,等.HPLC法同时检测食品中黄曲霉毒素B1、B2、G1和G2的研究.三峡预防医学杂志,2005,11(3):7~9.
    173.江湖,熊勇华,许杨.黄曲霉毒素分析方法研究进展.卫生研究,2005,34(2):252~255.
    174.纪淑娟.农产品化学农药残留快速检测技术研究.[博士学位论文].沈阳:沈阳农业大学,2005.
    175.金盛烨,陈吉平,郭荣波,等.酶抑制荧光探针法检测果蔬样品中农药残留的研究.精细化工,2004,21(12):946~949.
    176.居乃琥.黄曲霉毒素.北京:轻工出版社.1980.
    177.黎源倩,杨经国,周颖,等.毛细管电泳—激光诱导荧光检测装置的研制及应用.四川大学学报(医药版),2004,35(1):103~106.
    178.李培武,马良,杨金娥,等.粮油产品黄曲霉毒素B1检测技术研究进展.中国油料作物学报,2005,27(2):77~81.
    179.林建忠,邹伟,张志刚,等.LC/MS/MS测定食品中黄曲霉毒素B1的研究.检验检疫科学,2004,14(增):31~33.
    180.林裕.高效液相色谱法测定食品中黄曲霉毒素.中国热带医学,2006,6(4):677~678.
    181.柳洁,何碧英.高效液相色谱法测定食品中黄曲霉毒素的方法研究.现代预防医学, 2002,29(2):137~140.
    182.柳洁,何碧英.黄曲霉毒素高效液相色谱检测方法研究进展.中国卫生检验杂志,2005,15(7):891~896.
    183.柳洁,何碧英.黄曲霉毒素免疫化学分析方法研究进展.现代预防医学,2005,32(5):467~470.
    184.柳洁,何碧英,孙俊红.ELISA和免疫亲和柱HPLC方法测定粮油食品中黄曲霉毒素B1.现代预防医学,2005,(6):653~655.
    185.柳洁,何碧英,孙俊红.粮油食品中黄曲霉毒素B1测定.中国公共卫生,2006,22(1):122~123.
    186.柳其芳.酶联免疫吸附法和薄层色谱法联合分析黄曲霉毒素B1的研究.中国热带医学,2006,6(2):246~248.
    187.李文静,敖登高娃,张佩麟.以铕离子为荧光探针测定痕量依诺沙星.稀土,2005,26(4):46~48.
    188.李文先,武国军,刘中仕,等.苯基羧甲基亚砜体系中高氯酸铥对高氯酸铽的荧光增强效应研究.光谱学与光谱分析,2002,22(6):905~907.
    189.李晓霞.流动注射化学发光分析新方法的研究.[硕士学位论文].西安:陕西师范大学,2003.
    190.李振甲.陈泮藻,高平,等.时间分辨荧光分析技术与应用.北京:科学出版社,1996.
    191.廖伯寿.花生.武汉:湖北科学技术出版社.2003.
    192.刘保生,高静,刘智超,等.吖啶橙—罗丹明B荧光共振能量转移猝灭法测定砷.光谱学与光谱学分析,2006,26(2):306~308.
    193.刘斌.蔡酞亚胺类荧光化学传感器的研究.[博士学位论文].上海:华东理工大学,2005.
    194.刘邻渭.食品化学.北京:中国农业出版社,2000.
    195.刘海兴,杨更亮,赵敬相,等.毛细管胶束电动色谱法测定夏枯草中两种有效成分.分析化学,2000,28(10):1275~1277.
    196.刘曙照,韦林洪,徐维娜.克百威的免疫亲和色谱分析研究.色谱,2005,23(2):134~137.
    197.刘伟平,杨一昆,熊惠周,等.铂族金属配合物的光化学研究概论.贵金属,1997,18(2):53~57.
    198.刘亚风,杨冀州,苗丽.饲料中黄曲霉毒素检测技术综述.河南畜牧兽医,2006,27(1):11~12.
    199.刘艳丽,程安春,汪铭书.黄曲霉毒素及其检验方法的研究进展.黑龙江畜牧兽医,2006,6:15~17.
    200.刘约权.现代仪器分析.北京:中国农业科技出版社,1998.
    201.刘震,邹汉法,施维,等.有机改性剂对胶束电动毛细管色谱中电渗和电泳迁移的影响.分析化学,1997,25(4):460~463.
    202.鲁长豪.食品检验.成都:四川科学技术版社,1978:108~114.
    203.陆东东.乙肝表面抗原阳性患者黄曲霉毒素水平与肝癌发生的关系.右江医学,1998,26(4):215~216.
    204.路戈,计融.食品中黄曲霉毒素B1单克隆抗体ELISA方法的建立及初步应用.卫生研究,1996,25(3):162~165.
    205.陆建华,陆卫中,陈建国.黄曲霉毒素检测方法及其应用.中华医学实践杂志, 2005,4(3):210~212.
    206.马丽玲,简林凡,晁志等.两种亲和色谱在中草药活性成分分离和纯化中的应用.井冈山学院学报(自然科学版),2006,27(6):87~89.
    207.马明生,韩慧婉,刘国诠.激光诱导荧光检测器—一种高灵敏度的高效液相色谱和毛细管电泳检测器.色谱,1995,13(4):257~261.
    208.梅明华,吴世康.三爪结构萘乙酰胺衍生物与过渡金属离子的螯合荧光增强.化学学报,2001,59(12):2186~2190.
    209.孟昭赫,张国柱,宋圃菊主编.真菌毒素研究进展.北京:人民卫生出版社,1979.
    210.倪梅林,谢东华,曹苏仙,等.高效液相色谱法与快速酶免疫法检测食品中的黄曲霉毒素的比较.江苏农业科学,2006,5:167~169.
    211.宓晓黎,赵晓联,成恒嵩等.ELISA法快速检测黄曲霉毒素B1.卫生研究,1998,27(增):139.
    212.潘多海,苗润才,李秀英,等.SERS活性表面荧光增强或淬灭的机制研究.物理学报,1989,38(6):965~972.
    213.潘崴.黄曲霉毒素快速检测技术.[硕士学位论文].天津:天津商学院,2005.
    214.裴道国,刘冰,张立冬.测定花生及花生制品中黄曲霉毒素:免疫亲和柱净化·光化学在线衍生·高效液相色谱—荧光.中国国境卫生检疫杂志,2006,29(6):368~371.
    215.齐剑英,冯德雄,杨培慧,等.锌离子对谷胱甘肽荧光增强的作用.暨南大学学报(自然科学版),2002,23(5):60~63.
    216.邱宏,钟汉怀,全德甫.高效液相色谱法同时测定食品中四种黄曲霉毒素的方法探讨.现代预防医学,2006,33(5):790~791.
    217.邱宗萌,李惠芝,曾少波.高效液相色谱中的化学衍生法.色谱,1989,7(6):340~349.
    218.沈关心,周如麟.现代免疫学实验技术.武汉:湖北科学技术出版社,1998,15~25.
    219.食品中黄曲霉毒素的测定 免疫亲和层析净化高效液相色谱法.中华人民共和国国家标准GB/T 18979-2003.
    220.食品中黄曲霉毒素B1的测定.中华人民共和国国家标准GB/T 5009.22-2003.
    221.孙秀兰.食品中黄曲霉毒B1金标免疫层析检测方法研究.[博士学位论文].无锡:江南大学,2005.
    222.孙燕,张红宇.酱油中黄曲霉毒素B1检测方法的探讨.中国调味品,2005,3:54~56.
    223.孙宗棠,吴玉英,邬少明.抗黄曲霉毒素B1的单克隆抗体及其应用潜力.中华肿瘤杂志,1983,5(6):401.
    224.汪尔康,陈义.生命分析化学.北京:科学出版社.2006.
    225.王迪,杨曙明.兽药残留检测有效净化技术—免疫亲和层析.中国畜牧兽医,2006,33(3):45~48.
    226.王峰莹.粮油食品中黄曲霉毒素含量的测定.大庆高等专科学校学报,2001,21(4):67~70.
    227.王峰莹.高效液相色谱法测定花生中的黄曲霉毒素.现代仪器,2002,3:22~24.
    228.王海花,汪德刚,张晓峰.黄曲霉毒素检验技术的研究进展.食品研究与开发,2006,27(4):176~178
    229.王光建,鲁长豪,王道若等.黄曲霉毒素B1抗体的制备研究.华西医大学报,1995,26(3):275~278.
    230.王培之,徐克沂,皮国华.胶体金免疫结合试验在检验医学中的应用.中华检验医学杂志,2000,23(5):308~309.
    231.王雄.黄曲霉毒素分析的免疫亲和柱法简介.检验检疫科学,2001,11(1):61.
    232.王勇刚,马骁宇,冯小明.浅谈激光医学及其发展趋势.红外,2003,9:26~29.
    233.王永明.柱后衍生高效液相色谱法测定花生奶中的黄曲霉素B1的含量.饮料工业,2005,8(4):41~43.
    234.王志龙,颜承农,梅平,等.甲氧苄啶的同步增敏荧光光谱分析法研究.分析测试学报,2005,24(6):59~61.
    235.王忠东.农产品化学农药残留快速检测技术研究.[博士学位论文].秦皇岛:燕山大学,2005.
    236.王重庆.分子免疫学基础.北京:北京大学出版社,1999,24~28.
    237.王璋,许时婴,汤坚.食品化学.北京:中国轻工业出版社,1999.
    238.韦林洪.农药多残留免疫亲和色谱技术研究.[硕士学位论文].扬州:扬州大学,2004.
    239.魏丹毅,葛从辛,周湘池,等.β-环糊精及其衍生物对A1(Ⅲ)-铁试剂的荧光增强效应及机理.化学研究与应用,2000,12(6):626~628.
    240.魏梅生.两种免疫胶体金快速诊断技术简介.植物检疫,2001,15(2):125~127
    241.夏锦尧.实用荧光分析法.北京:中国人民公安大学出版社,1992.
    242.肖志军,李培武,张文,等.粮油黄曲霉毒素B1高效快速检测微柱的研制.中国油料作物学报,2006,28(3):335~341.
    243.熊丽林,唐萌,王加生,等.微囊藻毒素和黄曲霉毒素及付马菌素联合毒性.中国公共卫生,2006,22(5):548~549.
    244.徐超一,刘岩,韩深,等.进出口中成药中黄曲霉毒素检验方法的研究.检验检疫科学,2005,15(6):36~39.
    245.徐进,罗雪云.黄曲霉毒素生物合成的分子生物学.卫生研究,2003,32(6):628~63 1
    246.许旭,高红军,林炳承.用于毛细管电泳或微芯片电泳的半导体激光诱导荧光检测方法.分析测试学报,2005,24(5):122~129.
    247.许丙社.纳米材料及应用技术.北京:化学工业出版社,2004,14~17.
    248.许书道.镧(Ⅲ)对铽(Ⅲ)—邻—氟苯甲酸—乙二胺体系荧光的增强及其分析应用.分析化学,2002,30(10):1257~1259.
    249.许梓荣,史莹华,冯建蕾,等.光化学衍生法结合HPLC测定食品和饲料中的黄曲霉毒素.中国粮油学报,2005,20(2):71~75.
    250.杨丙成,关亚风,黄威东,等.一种共聚焦激光诱导荧光检测器的研制.色谱,2002,20(4):332~334.
    251.杨丙成,谭峰,关亚风.新型高效液相色谱激光诱导荧光检测器的研制.色谱,2004,22(6):613~615.
    252.杨春洪,李培武,张文,等.聚丙烯酰胺固相微球与黄曲霉毒素B1抗体偶联条件的研究.中国油料作物学报,2005,27(2):62~65.
    253.杨惠芬.食品中黄曲霉毒素B1的薄层色谱法.食品卫生理化检验标准手册,北京:化学工业出版社,1998,272
    254.杨利国,胡绍旭,魏平华等.酶免疫测定技术,南京:南京大学出版社,1998
    255.应国清,王玉姣,易喻,等.免疫亲和层析技术及其医药应用进展.药物生物技术,2005,12(5):342~346.
    256.尤慧艳,齐建平,崔晓光.浅谈主族金属配合物的光化学.内蒙古民族师院学报(自然科学版),1996,11(1):92~94.
    257.游淑珠.小麦、玉米中DON气相色谱检测方法的建立及OTA单克隆抗体免疫亲和柱的研制.[硕士学位论文].南昌:南昌大学,2005.
    258.俞英,周震涛.蛋白质光谱探针的研究进展.光谱学与光谱分析,2005,25(4):628~632.
    259.袁易全,陈思忠.近代超声原理与应用.南京:南京大学出版社,1996.134.
    260.曾红燕,黎源倩,晋军,等.毛细管电泳法测定玉米赤霉烯酮及其代谢物.四川大学学报(医药版),2003,34(2):333~336.
    261.曾义,陈勇,胡进.花生黄曲霉毒素检测中两种净化方法的比较.检验检疫科学,2004,14(5):52~55,
    262.张迪.便携式生物毒性快速检测仪的设计研究.[硕士学位论文].秦皇岛:燕山大学,2005.
    263.张建莹,齐剑英,杨培慧,等.锌离子增强荧光光谱法测定谷胱甘肽.暨南大学学报(自然科学版),2004,25(1):88~91.
    264.张丽,朱姝,张文海.高效液相柱后衍生法测定食品中的黄曲霉毒素B1.中国卫生检验杂志,2006,16(1):70~71.
    265.张鹏,顾正志,李震海,等.免疫亲和—荧光光度法快速测定食品中的黄曲霉毒素.中国卫生检验杂志,2000,10(6):677~678.
    266.张黔玲,刘剑洪,任祥忠,等.多吡啶钴(Ⅲ)配合物与Zn~(2+)形成的新型“关-开”荧光探针.无机化学学报,2006,22(5):885~889.
    267.张铁莉,吴燕,赵慧春,等.铽-氟罗沙星配合物光化学荧光增强研究.中国稀土学报,2000,18(4):297~300.
    268.张雪辉,陈建民.高效液相色谱法与荧光光度计法检测中药材中黄曲霉毒素的比较.药学学报,2004,39(12):997.
    269.赵飞,焦彦朝,连宾,等.黄曲霉毒素检测方法的研究进展.贵州农业科学,2006,34(5):123~126.
    270.郑屏,盛旋,于晓峰,等.基质固相分散液相色谱法检测辣椒产品中的黄曲霉毒素.色谱,2006,24(1):62~64.
    271.郑荣,毛丹,王柯,等.HPLC法测定中药中黄曲霉毒素B1、B2、G1、G2的含量.药物分析杂志,2005,25(6):610~613.
    272.郑树亮,黑恩成.应用胶体化学.上海:华东理工大学出版社、1996:13~14.
    273.郑铁松,钟文辉.高效液相色谱法测定食品中的黄曲霉毒素B1.食品工业科技,2005,26(9):169~172.
    274.周艳梅,徐文国,童爱军.新型钯荧光探针的应用研究.北京理工大学学报,2006, 26(4):369~372.
    275.周元军.饲料中黄曲霉毒素的危害与防治研究进展.安徽农业科学,2006,34(5):913~914.
    276.朱立平,陈雪清.免疫学实验方法.北京:人民军医出版社,2000,120~150.
    277.朱漠忠.肉食品毒理学.上海:上海科学技术出版社,1992,161~165.
    278.祝大昌.分子发光分析法.上海:复旦大学出版社,1985.
    279.庄海宁.免疫亲和色谱的原理及其在食品安全检测中的应用.中国食品添加剂,2006,5:154~158.
    280.庄宛,叶玫,刘海新,等.兽药残留分析中的样品处理技术进展.中国卫生检验杂志,2003,13(6):780~783.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700