高压下VO_2的电输运性质及其金属化相变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
VO_2是一种对温度变化很敏感的半导体材料,它在68℃时具有从单斜晶系到四方晶系的温致结构相变并伴随电学性质上的金属化相变。得益于其光学性质和电学性质在相变前后所表现出的明显差异,VO_2被广泛应用于太阳能温控材料、红外脉冲激光辐射保护膜、光电开关、锂电池电极等诸多领域,有关其物性的研究也普遍开展。但到目前为止,有关VO_2在高压这一极端条件下的物性研究工作还鲜有报导,因此在本论文中,我们特别针对高压下VO_2的电输运性质进行了系统的研究,具体研究内容包括高压下VO_2电阻率随压力的变化关系、VO_2的高压霍尔效应以及高压下VO_2能带结构的理论计算等,并得到如下结论:
     (1)通过基于金刚石对顶砧技术的电阻率原位测量方法,我们发现在12GPa左右出现了电阻率随压力的不连续变化。电阻率随温度变化的测量结果表明:在12GPa之前VO_2的电阻率随温度的上升而减小,表现出半导体的传导特性;而在12GPa之后其电阻率随温度的上升而增加,表现出金属的传导特性。结合VO_2的载流子激活能随压力的变化关系我们认为在12GPa左右出现的VO_2电阻率的不连续变化是由压致金属化相变引起的。(2)利用基于金刚石对顶砧技术的高压原位霍尔效应测量方法,我们发现VO_2的载流子浓度、霍尔系数和霍尔迁移率在12GPa左右都发生了突变,这同样来源于VO_2的压致金属化相变。(3)此外,我们还利用第一性原理,对VO_2的能带结构进行了计算,发现高压下VO_2的能隙变窄。
VO2is a kind of semiconductor whose physical and chemical properties are very sensitive to temperatures. It undergoes a structural phase transition from monoclinic structure to tetragnal structure at68℃, which simultaneously is accompanied with a temperature-induced metallization. Taking advantage of the big difference in the optical and electrical properties between before and after phase transition, VO2has been widely applied in various technical fields including solar temperature-controlled materials,infrared pulsed laser radiation protective film, photoelectric switches, and lithium electrode. Relevant studies on the physical properties of VO2have also been conducted. But up till now, the study on the physical properties of VO2under the extreme condition of high pressure has seldom reported. So, in this thesis, we have put our main focus on the systematic research of electrical transport properties of VO2under high pressure, including the study of the pressure dependent resistivity, the Hall effect and the energy band structure of VO2under high pressure, and have obtained the results as follow:
     (1) With the DAC based in-situ electrical resistivity measurement, we have found a discontinuous change in the resistivity at12GPa. It is shown by the temperature dependent resistivity measurement that below12GPa the electrical properties of VO2are of semiconductor as the resistivity decreases with temperature increase, however, above12GPa VO2becomes a metal because the resistivity increases with the temperature increase. Together with the information of activation energy curve, we consider that the discontinuity of VO2resistivity at12GPa results from the pressure induced metallization.(2) With the in-situ Hall effect measurement, we have investigated the pressure dependence of charge carrier concentration, Hall coeficient and mobility of VO2, and abnormal changes could be found at12GPa, which is also caused be the pressure induced metallization of VO2.(3) Meanwhile, we have conducted first-principle calculation on the energy band structure of VO2under high pressure. The theoretical calculation has suggested that the energy band gap width would become narrow as increasing the pressure.
引文
[1]高压物理讲义(参考资料),吉林大学超硬材料国家重点实验室,2006[2]SPAIN I L, in High Presure Techonlogy [M]. Vol.1, ed. SPAIN I L, PAAUWE J, Dekker, New York,1977.[3]HALL H T, Anvil Guide Device for Multiple-Anvil High Pressure Apparatus [J]. Rev. Sci. Instrum.1962,33:1278-1280.[4]The President's Report [R]. Carnegie Institution of Washington Yearb,1987,86:79-88.[5]王庆林.PbTiO3和SrTiO3高压下的介电性质及相变研究[D].吉林:吉林大学原子与分子物理研究所,2010.[6]GRZECHNIK A, BRECZEWSKI T, FRIESE K, High-pressure single-crystal X-ray diffraction of Tl2SeO4[J].J. Solid State Chem.2008,181,11:2914-2917.[7]PIERMARINI G J and WEIR C E, A diamond cell for x-ray diffraction Studies at high pressures [J]. J. Res. Natl. Bur. Stand., Sec. A.1962,66(4):325-331[8]苏宁宁.高压下AIN纳米线和Fe304粉末的电输运性质研究[D].吉林:吉林大学原子与分子物理研究所,2009.[9]关瑞.高压下ZnSe和ZnTe的电学性质及其可逆相变的研究[D].吉林:吉林大学原子与分子物理研究所,2007.[10]VODAR B, KIEFFER J. La Conference Internationale sur les Hautes Pressions, Chateau de; la Verrerie des Ets[M]. France,1965[11]FORMAN R A, PIERMARINI G. J, BARNET et al. Pressure Measurement Made by the Utilization of Ruby Sharp-Line Luminescence [J]. Science,1972,176:284-285.[12]BARNETT J D, BLOCK S and PIERMARINI G J, An Optical Fluorescence System for Quantitative Pressure Measurement in the Diamond-Anvil Cell [J]. Rev. Sci. Instrum.1973,44:1-9.[13]PIERMARINI G J, BLOCK S, Ultrahigh pressure diamond-anvil cell and several semiconductor phase transition pressures in relation to the fixed point pressure scale [J].Rev. Sci. Instrum.1975,46:973-979.[14]PIERMARINI G J, BLOCK S, and BARNETT J S, Hydrostatic limits in liquids and solids to100kbar [J].J. Appl. Phys.1973,44:5377-5382.[15]MAO H K, MAO A and BELL P M, Abstract of the8th AIRAPT Conference, Uppsala, edited by Beckman C M, Johannisson T and Tegner L (ISBN, Swedan), Vol. II, p.453.[16]李岩.CaB4及Bi2Sr2CoO (6+x)高压下的电输运性质及结构相变[D].吉林:吉林大学原子与分子物理研究所,2009.[17]林鹏.BC2N的高压相变研究[D].吉林:吉林大学原子与分子物理研究所,2008.[18]YU P Y and WELBER B, High pressure photoluminescence and resonant Raman study of GaAs [J]. Solid State Commun.1978,25:209-211.[19]ITKIN G, HEARNE G R, STERER E, PASTERNAK M P and POTZEL W, Pressure-induced metallization of ZnSe [J].Phys. Rev. B1995,51(5):3195-3197.[20]刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:电子工业出版社,2010.[21]钱佑华,徐至中.半导体物理[M].北京:高等教育出版社,1999.[22]陈治明.半导体概论[M].北京:电子工业出版社,2008.[23]王季陶,刘明登.半导体材料[M].北京:高等教育出版社,1990[24]万群.半导体材料浅释[M].北京:化学工业出版社,1999.[25]周永溶.半导体材料[M].北京:北京理工大学出版社,1992[26]宋晶晶.磁控溅射氧化钒薄膜制备工艺研究[D].重庆:重庆理工大学,2009[27]巢昆.低价氧化钒和钒酸盐纳米结构的合成与表征[D].山东:青岛科技大学,2008[28]施剑秋,顾广新,游波,等.钨掺杂二氧化钒粉体的制备和热致变色性能[J].复旦学报(自然科学版),2007,46(3):360-365.[29]吴卫和,王德平,黄文品,等.掺杂与热处理温度对V02薄膜性能的影响[J].??建筑材料学报,2006,9(5):548.[30]Jin P. A novel multifunctional srnRrt window with VCh and TiO2coatings[J]. J Shaanxi University of Science&Technology,2004,22(5):1.[31]杜艳秋,尚春雨.强度防护型激光防护机制[J].激光与红外,2009,39(4):363-366[32]刘必鎏,时家明.激光对卫星的威胁及其防护[J].红外与激光工程,2009,38(3):470-475.[33]宁永刚,孙晓泉.二氧化钒薄膜在激光防护上的应用研究[J].红外与激光工程,2005,34(5):530.[34]刘良涛.二氧化钒多层膜系设计与实现[D].湖北:华中科技大学,2009[35]龙航宇.热致变色钒氧化物膜的制备、结构与性能的研究[D].湖南:中南大学,2010[36]陈长琦,方应翠,朱武,等.二氧化钒相变分析及应用[J].真空,2001,6:9.[37]黄维刚,林华,涂铭旌,纳米VO2粉体的制备及性能和应用[J].表面技术,2004,33(2)67-69.[38]S. Biermann et al. Effective band structure of Correlated Materials-The Case of VO2[J]. Phys. Rev. Lett.,2005(94):026404.[39]F. J. Morin. Oxides which show a metal-to-insulator transition at the neel temperature [J]. Phys. Rev. Lett.,1959,3(1).[40]M. Imada et al. Metal-insulator transitions[J]. Rev. Mod. Phys.,1998,70:1039[41]Arcangeletti E, Baldassarre L, et al. Evidence of a Pressure-Induced Metallization Process in Monoclinic VO2[J].Phys Rev Lett.,2007,98(19):196406[42]崔晓岩.高压相变中的载流子行为[D].吉林:吉林大学原子与分子物理研究所,2010.[43]VAN DER PAUW L J, A method of measuring specific resistivity and hall effect of discs of arbitrary shape[J]. Philips Res. Rep.1958,13:1[44]VAN DER PAUW L J, A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape[J]. Philips Tech. Rev.1958,20:220-224.[45]KOON D W, Effect of contact size and placement, and of resistive inhomogeneities on van der Pauw measurements [J]. Rev. Sci. Instrum.1989,60:271.[46]刘鲍.高压下过渡金属硫族化合物的点输运性质及金属化相变[D].吉林:吉林大学原子与分子物理研究所,2011.[47]胡廷静.高压下半导体的载流子行为[D].吉林:吉林大学原子与分子物理研究所,2011.[48]韩永昊.金刚石对顶砧上原位电导率测量方法[D].吉林:吉林大学原子与分子物理研究所,2005.[49]HIXSON R S, BONESS D A, et al. Acoustic Velocities and Phase Transitions in Molybdenum under Strong Shock Compression [J].Phys. Rev. Lett.1989,62(6):637-640.[50]RICHET P, XU J A, MAO H K. Quasi-hydrostatic compression of ruby to500Kbar [J]. Physics and Chemistry of Minerals,1988,16(3):207-211.[51]胡鹤.高压下InSb的电学性质和相变研究[D].吉林:吉林大学原子与分子物理研究所,2011.[52]HEMLEY R J, MAO H K, et al. X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures [J]. Science,1997,276(5316):1242-1245.[53]MAO H K, BELL P M. Compressibility and x-ray diffraction of the epsilon phase of metallic iron (e-Fe) and periclase (MgO) to0.9Mbar pressure, with bearing on the earth's mantle-core boundary[J]. Carnegie Inst. Washington Yearb,1976,75:509-513.[54]MAO H K, BELL P M, et al. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1fluorescence pressure gauge from0.06to1Mbar[J]. J. Appl. Phys.1978,49(6):3276-3283.[55]MAO H K, XU J, BELL P M, Calibration of the ruby pressure gague to??800kbar under qusi-hydrostatic conditions[J]. Journal of Geophysical Research,1986,91(B5):4673-4676.[56]ZHANG S X, CHOU J Y, LAUHON, L J. Direct correlation of structural domain formation with the metal insulator transition in a VO, nanobeam [J]. Nano Letters,2009,9(12):4527-4532.[57]QAZILIBASH M M, BURCH K S, et al. Correlated metallic state of vanadium dioxide [J]. Phys. Rev. B,2006,74(20):205118-205122.[58]GALY J, MIEHE G. Ab initio structures of (M2) and (M3) VO2high pressure phases [J]. Solid State Sci.,1999,1(6):433-448.[59]MCWHAN D B, MAREZIO M, REMEIKA J P, DENIER P D. X-ray diffraction study of metallic VO2[J]. Phys. Rev. B,1974,10(2)490-495.[60]D. B. McWhan, et al. X-ray diffraction study of metallic VO2. Phys. Rev. B,1974,10:490-495.[61]ZHAO Y, et al. Optical and dielectric properties of a nanostructured NbO2thin film prepared by thermal oxidation [J]. Journal of PhysicsD:Applied Physics,2004,37(24):3392-3395.[62]SIDOROV V A, et al, Superconducting and normal state properties of heavily hole-doped diamond [J]. Physical Review B,2005,71,060502-1-060502-4.[63]DAGAN Y, BARR M C, et al. Origin of the Anomalous Low Temperature Upturn in the Resistivity of the Electron-Doped Cuprate Superconductors [J]. Phys. Rev. Lett.,94(5):057005-1-057008-4.[64]SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation:ideas, illustrations and the CASTEP code[J]. J. Phys:Condens. Matter,2002,14(11):2717-2744.[65]朱卫娟.碳纳米管/石墨片与其它纳米结构的相互作用[D].南京:南京航空航天大学理学院,2008.[66]孟醒,AB03类稀土过渡金属氧化物的第一原理研究[D].吉林:吉林大学材料科学与工程学院,2006.[67]FISCHER TH, ALMLOF J, General methods for geometry and wave function??optimization[J]. J. Phys. Chem.,1992,96(24):9768-9774.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700