含大规模风电的互联系统的负荷频率控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源的日益枯竭和环境的不断恶化,风能得到了大力的发展,它所产生的大量风电并入电力系统,成为一种重要的消纳方式。由于风电功率具有波动特性,其大规模接入电网易引起系统频率的波动,进而增加了调频和运行调度等的负担。为确保系统频率的稳定性和安全性,有必要研究风电大规模并网给系统频率带来的影响并设计出能适应波动性风电接入的负荷频率控制器。本文主要从以下几个方面进行了研究。
     1)在分析风速模型、风机模型的基础上,模拟了一段时间内的风速变化和风电场输出特性,并将该风电场输出作为负的负载波动接入系统中,实现了风电与系统的结合。
     2)研究了系统各部分的动态数学模型,确定了系统的控制对象和控制模式,并且通过仿真讨论了控制系统的参数、模式组合及非线性特性对负荷频率控制效果的影响,从而构建了一个较合理的两区域互联系统的LFC模型。
     3)鉴于智能控制策略较好的自适应和处理非线性系统的能力,将粒子群算法和模糊控制引入到传统的控制器中,其中对标准的粒子群算法进行了改进,提高了该算法性能;将模糊控制与比例积分控制相结合,充分发挥两者的优势。
     在MATLAB/Simulink仿真环境中,针对一个构建的含风电的两区域互联系统,在不含负荷频率控制、含传统的负荷频率控制和含改进后的负荷频率控制三种情况下进行了仿真,通过观察两区域的频率和联络线交换功率变化等动态响应情况,一方面验证了负荷频率控制的必要性,及其在含大规模风电接入的系统中的频率控制能力和作用,’另一方面显示了改进后控制器在抑制频率波动方面的可行性和优越性。
Faced to the serious situation of energy and environment, wind power developed fast in the past years, large amount of wind power integrated to the main grid is one of important ways. As the fluctuation characteristics of wind power, its output causes the fluctuations of frequency, thereby gives challenge to the main grid in frequency management and operation scheduling. In order that frequency is within permitted range, the effect of wind power on frequency should be researched and load frequency controller must be designed to adapt to the fluctuation resulted by injected wind power. The main followings contents are researched in this thesis.
     1) Based on the mode of wind speed and generator, the wind power output is simulated based on the MATLAB, which is handled as a negative load fluctuation for the interconnected system, realizing the combination of wind power and system.
     2) The dynamic model of system is analyzed, the control object and control mode are defined. Moreover, how the parameters of LFC, combination of control mode and the nonlinear characteristics of some modules influence the control results are discussed, following these, a more reasonable LFC model of an interconnected system with two regions is described.
     3) In view of the better adaptivity of intelligent control strategy and its ability to handle nonlinear systems, particle swarm intelligent control and fuzzy control are introduced to the traditional controller. In order to futher improve the performance of frequency control, the standard particle swarm algorithm is modified; fuzzy control and PI control are combined.
     Then an inter-connected power system with large scale of wind power integrated is researched, three calculation schemes, i.e with no LFC, with the traditional LFC and with the improved LFC are simulated based on the MATLAB/Simulink. The results shows that LFC is necessary to deal with the greater fluctuation came from the inputted wind power, and the advanced controllers with fuzzy control strategy and with PSO optimization control have better control.
引文
[1]余国勤.电力能源装换与储存.北京.中国电力出版社[M].2011.8-9.
    [2]姚兴佳,刘国喜,朱玲等.可再生能源及其发电技术[M].北京.科学出版社.2010.4-6.
    [3]马怀新.新能源及减碳[J].四川水力发电.2010.29(z2).286-301.
    [4]顾为东.中国风电产业发展新战略与风电非并网理论[M].北京.化学工业出版社.2006.
    [5]Chompoo-Inwai Chai, Lee Wei-Jen, Fuangfoo Pradit. System impact study for the interconnection of wind generation and utility system[J]. IEEE Trans on Industry Applications.2005.41(1).163-168.
    [6]朱莉,潘文霞,霍志红等.风电场并网技术[M].北京.中国电力出版社.2011.98-100.
    [7]Piwko Richard, Miller Nicholas, Sanchez-Gasca Juan. Integrating large wind farms into weak power grids with long transmission lines[C].5th International Power Electronics and Motion Control Conference. Shanghai. 2006.1122-1128.
    [8]彭晖,黄学良.基于MATLAB-SIMULINK软件风电场建模仿真研究[J].电工电气.2009(3).33-36.
    [9]成海彦,郑广辉.电网自动发电控制技术的控制策略及优化[C].加入WTO后中国电机工程科技发展的机遇与挑战学术会议论文集.成都.2002.83-88.
    [10]徐琰,朱翠兰.华中电网AGC控制模式的研究[J].华中电力.2000.13(6).12-]4.
    [11]陈琰,邱家驹,黄志龙,郭佳田.华东与福建联网后频率控制策略的研究[J].电网技术.2002.26(6).8-13.
    [12]杨平,庞佳玲,张志雄.互联电网AGC控制模式研究[J].上海电力学院学报.2011.27(2).138-143.
    [13]刘奇,刘斌,余涛.基于CPS统计特性的自适应自动发电控制策略[J].电力自动化设备.2010.30(12).74-78.
    [14]M. Yao, R.R. Shoults, R. Kelm. AGC Logic Based on NERC's New Control Performance Standard and Disturbance Control Standards. IEEE Trans. on Power System. 2002.15(2).852-857.
    [15]李滨,韦化,农蔚涛等.互联电网CPS下AGC控制参数的优化[J].电力系统自动化.2009.33(18).37-41.
    [16]张俊芳,秦红霞,贾晋等.基于改进遗传算法的AGC机组优化组合研究[J].南京理工大学学报(自然科学版).2009.33(6).801-805.
    [17]刘文许,林礼清,温步瀛.电力市场下基于改进粒子群算法的AGC机组选择[C].中国高等学校电力系统及其自动化专业第二十四届学术年会论文集.2008.1847-1851.
    [18]张倩茅,周明,李庚银等.用于AGC容量预测和机组选择的动态统一模型及方法[J].电网技术.2007.31(10).46-50.
    [19]翟伟翔,苏适.火电厂分散控制系统数据通信接口[J].自动化仪表.2011.32(10).21-28.
    [20]闫东梅.区域互联电网AGC先进控制策略研究[C].北京.华北电力大学.2008.3-6.
    [21]Kirchmayer L K. Economic control of interconnected systems [M].New York.Wiley.1959.
    [22]吴捷,刘永强,陈薇.现代控制技术在电力系统控制中的应用(一)[J].中国电机工程学报.1998.18(6).377-381.
    [23]Erscher J, et al. Automation of a hydroelectric power system using variable structure control system.Automatica.1974.10.31-36.
    [24]Sivaramakrishnan A.Y, M.V Hariharan and Srisailam M.C. Switched control of frequency of interconnected power systems using variable structure. Int J.Systems Science.1986.16(11): 1409-1424.
    [25]孟祥萍,张淑清.互联电力系统的模糊滑模负荷频率控制[J].长春工程学院学报(自然科学版).2001.2(1).11-16.
    [26]Kanniah J,Tripathy S.C,Malike O.P and Hope G.S. Microprocessor—based adaptive load frequency control. IEE Proceedings,Trans&Distrib.1984.131(4).121-128.
    [27]H. Shayeghi, H. A. Shayanfar. Power System Load Frequency Control Using RBF Neural Networks Based on μ-Synthesis Theory[C].2004 IEEE Conference on Cybernetics and Intelligent Systems Singapore.2004.93-98.
    [28]Shayeghi H, Shayanfar H A. Application of ANN technique based on μ-synthesis to load frequency control of interconnected power system[J]. Electrical Power and Energy Systems.2006.28.503-511.
    [29]罗兵,章云,黄红梅.小波神经网络与PID相结合的负荷频率控制[J].电力自动化设备.2006.26(1).25-28.
    [30]A.Sreenath, Y.R.Atre, D.R.Patil. Two Area Load Frequency Control with Fuzzy Gain Scheduling of PI Controller[C]. First International Conference on Emerging Trends in Engineering and Technology.2008.899-904.
    [31]赵菁,彭慧敏,谢维廉.基于模糊控制的自动发电控制[J].贵州工业大学学报.2003.32(1):49-52.
    [32]王京茹,李平康.基于模糊控制的自动发电控制技术研究[J].华北电力技术.2005(11).1-7.
    [33]Cam E, Kocaarslan I. Load frequency control in two area power systems using fuzzy logic controller[C]. Energy Conversion Manage.2005.46.233-243.
    [34]张佩,张建武,许伟明等.复杂非线性对象的模糊RBF神经网络自适应控制[J].仪器仪表学报.2007.28(z8).688-690.
    [35]张建武,刘向杰,黄宏清.电力市场环境下的新型负荷频率控制方法[J].电网技术.2008.32(12).64-69.
    [36]王丽珍.神经网络自组织模糊控制算法及其应用[J].机械研究与应用.2011(6).10-12.
    [37]王小东,徐沪萍.基于BP算法的模糊神经网络控制系统的仿真实现[J].数字技术与应用.2010(12).93.
    [38]Praghnesh Bhatt, Ranjit Roy, S.P. Ghoshal. GA/particle swarm intelligence based optimization of two specific varieties of controller devices applied to two-area multi-units automatic generation control[J].Electrical Power and Energy Systems.2010.299-310.
    [39]崔杨,兰文博,严干贵等.大规模风电接入系统后的频率控制问题初探[C].中国电机工程学会第十届青年学术会议.吉林.2008.580-583.
    [40]许睿超,罗卫华.大规模风电并网对电网的影响及抑制措施研究[J].东北电力技术.2011.32(2).1-4.
    [41]杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报.2005.25(11).1-5.
    [42]El-Fouly T H M, El-Saadany E F, Salama M M A. Improved grey predictor rolling models for wind power prediction[J]. IET Generation Transmission &Distribution,2007,6(1):928-937.
    [43]戚双斌,王维庆,张新燕.基于支持向量机的风速与风功率预测方法研究[J].华东电力.2009.37(9).1600-1603.
    [44]武小梅,白银明,文福拴.基于RBF神经元网络的风电功率短期预测[J].电力系统保护与控制.2011.39(15).80-83.
    [45]关宏亮,迟永宁,王胜伟等.双馈变速风电机组频率控制的仿真研究[J].电力系统自动化.2007,31(7).61-65.
    [46]O.Anaya-Lara, F.M. Hughes, N. Jenkins, G. Strbac. Contribution of DFIG-based wind farms to power system short-term frequency regulation[J].IEEE Proceedings-Generation,Transmission and Distribution.2006.153(2).164-170.
    [47]韩肖清,董桐宇,程昱舒等.变速恒频风电机组的有功-频率控制[J].电力系统及其自动化学报.2011.23(6).57-61.
    [48]刘昌金,胡长生,李霄等.基于超导储能系统的风电场功率控制系统设计[J].电力系统自动化.2008.32(16).83-88.
    [49]赵瑜,周玮,孙辉.基于混合储能系统的平抑风电波动功率方法的研究[J].电力系统保护与控制.2011.39(24).35-40.
    [50]Changling Luo, H.Golestani Far, H.Banakar, Estimation of Wind Penetration as Limited by Frequency Deviation[J]. IEEE Transactions on Energy Conversion,2007,22(3):789-791.
    [51]Jose Luis Rodriguez-Amenedo, Santiago Arnalte, Juan Carlos Burgos. Automatic Generation Control of a Wind Farm With Variable Speed Wind Turbines[J]. IEEE Transactions on Energy Conversion.17(2):279-284.
    [52]贾涛.AGC平抑风电场输出功率波动的仿真分析[C].中国高等学校电力系统及其自动化专业第二十四届学术年会论文集.北京.2008:95-98.
    [53]高翔,严正,李端超等.现代电网频率控制应用技术[M].北京.中国电力出版社.2010.6-9.104-105.
    [54]《电力系统调频与自动发电控制》编委会.电力系统调频与自动发电控制[M].北京.中国电力出版社.2006.74-75,81-86.
    [55]李东东,陈陈.风力发电系统动态仿真的风速模型[J].中国电机工程学报.2005.25(21):41-44.
    [56]王大光.电力系统(分析)[M].北京.中国电力出版社.2010.100-102.
    [57]魏毅立,韩素贤,时盛志.风力发电系统中组合风速的建模及仿真[J].可再生能源.2010.28(2).18-20.
    [58]Gilbert M.Masters王宾,董新洲.高效可再生分布式发电系统[M].北京.机械工业出版社.2009.260-263.
    [59]徐希望,李庚银.基于Matlab/Simulink的双馈感应风力发电机组建模和仿真研究[J].电网与清洁能源.2010.26(11).95-101.
    [60]黄学良,刘志仁,祝瑞金等.大容量变速恒频风电机组接入对电网运行的影响分析[J].电工技术学报,2010.25(4).142-149.
    [61]Hadi Saadat王葵.电力系统分析[M].第二版.北京.中国电力出版社.2008.333-346.
    [62]温步瀛.计及调速器死区影响的两区域互联电力系统AGC研究[J].电工技术学报.2010.25(9).176-181.
    [63]崔智全,赖一楠,赵韩涛等MATLAB 2009从入门到精通[M].北京.中国铁道出版社.2011.391.
    [64]魏秀业,潘宏侠.粒子群优化及智能故障诊断[M].北京.国防工业出版社.2010.17-25.
    [65]李丽,牛奔等.粒子群优化算法[M].北京.冶金工业出版社.2009.34-36,61-63.
    [66]R.Roy, S.P.Ghoshal. A novel crazy swarm optimized economic load dispatch for various types of cost functions. Electrical Power and Energy Systems. 2008 (30).242-250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700