用户名: 密码: 验证码:
基于CMIP5的北半球积雪面积和北极涛动的归因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球变暖已经是一个不争的事实,并且全球变暖的归因问题是当今全球变化和地球系统科学无法回避的基本科学问题。当前国际关于气温、降水等要素的归因研究已经开展很多,然而关于北半球积雪的归因研究开展很少。本文分析了北半球积雪面积的时空变化特征,评估了参加CMIP5的耦合气候模式对北半球春季积雪面积及北极涛动(AO)的模拟能力并与CMIP3模式结果进行了比较。应用多模式集合对未来不同排放情景下北半球春季积雪面积进行了预估。分析了海平面气压、北极涛动与北半球春季积雪面积的关系,不同强迫对北半球春季积雪面积的影响。对比了所有强迫、自然强迫、温室气体强迫三组历史模拟试验下CMIP5耦合模式模拟的北半球春季积雪面积及海平面气压、北极涛动的变化特征。基于三组历史试验结果,应用统计分析方法对北半球春季积雪面积和北极涛动进行了归因分析。主要得到以下结论:
     (1)北半球积雪面积的显著减少主要发生在春季和夏季,而在增温最显著的冬季和秋季减少不明显,所以温度并不是制约积雪存在的唯一主要因素。北半球积雪面积变化的关键区是以青藏高原为代表的中纬度地区,过去几十年中纬度地区的积雪减少最明显。不同季节北半球积雪变化的周期特征不同。冬季变化周期表现为7.8年以及3-4年,秋季表现出4-5年的变化周期;春季和夏季北半球积雪以周期为8年左右的变化为主。
     (2) CMIP5耦合模式对北半球积雪面积具有一定的模拟能力,整体上能模拟出积雪的分布特征,模式模拟的积雪面积与观测值的空间相关系数均达到了0.9。多数模式低估了北半球积雪面积的减少趋势,多模式集合对模拟效果有一定的改进。对比CMIP3模式,CMIP5模式对北半球积雪的模拟有一定的改进。未来不同温室气体排放情景下,应用23个CMIP5模式集合平均对未来北半球春季积雪面积预估发现,未来不同温室气体排放情景下北半球积雪面积变化显著不同。在低排放情景下,积雪面积减少不明显;而在高排放情景下,积雪面积将显著减少。整体上,温室气体排放越多,未来北半球积雪面积减少越明显,控制温室气体排放对于未来北半球积雪的生存至关重要。
     (3) CMIP5模式能够较好地模拟出冬、春季AO模态的空间分布特征,模拟的AO模态与观测的空间相关系数均超过了0.6,并且标准差也接近于观测。尽管CMIP5模式没能模拟出冬、春季AO指数前30年处于显著负位相后20年处于显著的正位相的显著特征,但是基本能够模拟出冬、春季AO指数在50年间表现出的显著的增强趋势以及周期特征,多模式集合改进了模拟效果。尽管CMIP5模式对冬、春季AO指数的模拟能力还不够理想,没有完全模拟出AO指数的变化特征,但对比CMIP3模式结果,无论是对AO模态还是对AO指数的模拟都有一定改进。
     (4)北半球春季积雪面积与冬、春季北极涛动呈现出负相关关系,并且积雪面积与冬季北极涛动的负相关要更显著。前冬海平面气压变化造成北极涛动的增强从而加快北半球春季积雪面积的减少。前冬北极涛动的显著增强可能是造成北半球春季积雪面积减少的一个重要因素。
     (5)不同强迫与北半球春季积雪面积的相关性差异显著,温室气体强迫与北半球春季积雪面积有很强的正相关,自然强迫与北半球春季积雪面积的相关性不显著。并且不同强迫对北半球积雪面积的影响显著不同。温室气体强迫对北半球积雪面积的减少起到显著的促进作用,而其它强迫则显著的抑制了北半球积雪面积的减少。不同外强迫下CMIP5模式的历史模拟试验表明,北半球春季积雪的减少主要发生在1950年后,在温室气体强迫试验中北半球春季积雪减少最为显著,在自然强迫试验中没有表现出减少趋势。由所有强迫和温室气体强迫试验得到的海平面气压所表现出来的趋势分布特征与观测的一致,并且强度上温室气体强迫试验更为接近于观测,自然强迫试验得到的海平面气压的趋势特征则相反。同样温室气体强迫试验得到的北极涛动最为接近于观测。基于三组历史试验结果,应用统计方法分析发现北半球春季积雪面积的减少以及北极涛动的增强主要是温室气体强迫造成的。
Global warming is an indisputable fact. The attribution of global warming is a basic question of Global Change and Earth System Science. In the current, there are lots of attribution studies for temperature, precipitation and so on, but the research which is for the attribution of Northern Hemisphere snow cover is less. In this study, the temporal and spatial distributions of Northern Hemisphere snow cover were analyzed, and the simulating capability of snow cover and Arctic Oscillation (AO) of global climate models which joined the CMIP5were tested, and the results were compared with CMIP3models. Then we used the method of model ensemble average to predict the variation of Northern Hemisphere snow cover in future in RCP2.6, RCP4.5, RCP6.0and RCP8.5. The connection which existing between snow cover and sea level pressure, AO in Northern Hemisphere and the influence which radiative forcings produced on snow cover were analysised. The changes of snow cover, sea level pressure and AO which simulated by coupled models were contrasted in Historical, HistoricalNat and HistoricalGHG scenarios. Based on the results of three historical experiments, attribution of Northern Hemisphere spring snow cover and AO are analyzed. The main contents and conclusions are as the follow:
     (1)The significant decrease of Northern Hemisphere snow cover occurs mainly in the spring and summer, not in winter and autumn, although global warming is the most significant in winter. So, the temperature is not the only major factor that restricted the snow cover. The key area where the reduction of snow cover is the most obvious over the past few decadal is Qinghai-Tibet Plateau in the mid-latitude region. Cycle characteristics of snow cover are different in four seasons. There are mainly high frequency changes of snow cover in winter and autumn with the cycles of7-8years,3-4years in winter and4-5years in autumn, and the8years cycles of high-frequency change is represented in spring and summer.
     (2)The CMIP5models simulating capability of Northern Hemisphere snow cover is well. Overall the distribution characteristics of snow cover can be presented in the simulation by CMIP5models with the spatial correlations which existing between simulations and observation are more then0.9. But the simulation of snow cover in complex terrain area for example Qinghai-Tibet Plateau is poor and the significant trend towards a reduced spring snow cover extent over the1979-2005is underestimated. The multi-model ensemble has improved the effect of the simulations by CMIP5models. Through comparison, the simulation of snow cover by CMIP5models is better than CMIP3models. The projection by multi-model ensemble show that the changes of snow cover under different greenhouse gas emission scenarios. The northern Hemisphere snow cover will reduce most significantly and continue until the end of the century under RCP8.5scenario; Under RCP2.6, the snow cover will reduce in the first half of this century and remain stable after2040. Therefore, the more greenhouse gas emissions the more obviously Northern Hemisphere snow cover will reduce. It is crucial to control the discharge of GHG emissions for mitigating the disappearance of snow cover over Northern Hemisphere.
     (3)The basic characteristics of winter and spring AO modal can be reproduced by CMIP5models. A strong positive spatial correlation exits between the AO modal simulated by models and the observed with the correlation coefficient reaching0.6and the standard deviation of the AO modal simulated is close to the observed. The significant increasing trend and oscillation cycle of winter and spring AO index can be reproduced by models although the salient features that winter and spring AO is significant negative phase in the first30years and positive phase in the last20years aren't shown up in the simulation. The multi-model ensemble has improved the effect of the simulations by CMIP5models. Although the simulations aren't good enough to catch all the significant features of winter and spring AO index by CMIP5models, but relative to CMIP3models, there are significant improvement not only for the reducing trend but also for the change cycle in the simulations by CMIP5models.
     (4)The negative relationship exists between Northern Hemisphere spring snow cover and winter or spring AO with the relationship that existing between snow cover and winter AO is stronger. The enhancement of winter AO caused by the change of preceding winter SLP can produce significant impact on the Northern Hemisphere snow cover, the enhancement of the previous winter AO will accelerate the reduction of the Northern Hemisphere spring snow cover. The enhancement of winter AO is one of the important factors that have cause the reduction of Northern Hemisphere spring snow cover.
     (5)The correlations between Northern Hemisphere spring snow cover and the different radiative forcings are significantly different. A strong negative correlation exists between SCA and GHGs forcing. The correlation between SCA and natural forcing or that between SCA and precipitation is not obvious. There are different roles that different forcings have played in snow cover. The GHGs forcing played significant promoting effect in the reduction of snow cover, while the other forcing played a significant inhibitory effect; however, the effect natural forcing played is not significant. The historical simulation experiments with different forcings in CMIP5show that, the decrease of snow cover mainly occurred after1950, and in the HistoricalGHG experiment the decrease trend is the most obvious, there isn't decrease trend in the HistoricalNat experiment. In the Historical and HistoricalGHG experiments, the distribution characteristics of the trend in sea level pressure is consistent with observation, and that in HistoricalGHG is more close to observation. There is opposite characteristics presented in the sea level pressure which simulated in HistoricalNat experiment. The same as sea level pressure, AO simulated in the HistoricalGHG experiment is the most close to observation. Based on the results of three historical experiments, statistical analysis showed that the decrease of Northern Hemisphere spring snow cover and the enhancement of winter AO were due to the Greenhouse gases.
引文
[1]IPCC. Climate Change 2007:The Physical Science Basis [R]. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA:Cambridge University Press,2007
    [2]李培基.近百年来冰冻圈波动[J].冰川冻土,1988,10(2):105-116
    [3]Robinson DA, Dewey KF, Heim R (1993) Global snow cover monitoring:an update. Bull Am Meteor Soc 74:1689-1696
    [4]Frei A, Robinson DA (1999) Northern Hemisphere snow extent:regional variability 1972-1994. Int J Climatol 19:1535-1560
    [5]Arndt, D. S., Baringer, M. O., and Johnson, M. R.:State of the Climate in 2009, B. Am. Meteorol. Soc.,91, S1-S222, doi:10.1175/BAMS-91-7-StateoftheClimate,2010
    [6]Foster, J., Liston, G., Koster, R., Essery, R., Behr, H., Dumenil, L.,Verseghy, D., Thompson, S., Pollard, D., and Cohen, J.:Snow cover and snow mass intercomparisons of general circulation models and remotely sensed datasets, J. Climate,9,409-426,1996.
    [7]Frei, A., Brown, R., Miller, J. A., and Robinson, D. A.:Snow mass over North America: observations and results from the sec-ond phase of the Atmospheric Model Intercomparison Project (AMIP-2), J. Hydrometeorol.,6,681-695,2005
    [8]Roesch, A.:Evaluation of surface albedo and snow cover in AR4 coupled climate models, J. Geophys. Res., 111, D15111, doi:10.1029/2005JD006473,2006.
    [9]Brown, R. D. and Frei, A.:Comment on "Evaluation of surface albedo and snow cover in AR4 coupled models" by Roesch, A., J.Geophys. Res.,112, D22102,doi:10.1029/2006JD008339, 2007
    [10]Hall, A. and Qu, X.:Using the current seasonal cycle to constrainsnow albedo feedback in future climate change, Geophys. Res.Lett.,33, L03502,doi:10.1029/2005GL025127,2006
    [11]Fernandes, R., Zhao, H., Wang, X., Key, J., Qu, X., and Hall, A.:Controls on Northern Hemisphere snow albedo feedback quantified using satellite Earth observations, Geophys. Res. Lett.,36, L21702,doi:10.1029/2009GL040057,2009.
    [12]Flanner, M. G, Shell, K. M., Barlage, M., Perovich, D. K., and Tschudi, M. A.:Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008, Nat. Geosci.,4,151-155,doi:10.1038/ngeo1062,2011.
    [13]Brown, R. D.:Northern Hemisphere snow cover variability and change,1915-1997, J. Climate,13,2339-2355,2000.
    [14]Groisman PY, Karl TR, Knight RW (1994) Changes of snow cover, temperature, and radiative heat balance. J Climate 7:1633-1656
    [15]Groisman PY, Easterling D (1994) Variability and trends of total precipitation and snowfall over the United States and Canada. J Climate 7:184-205
    [16]De'ry, S. J., and R. D. Brown,2007:Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback. Geophys. Res. Lett.,34,L22504, doi:10.1029/2007GL031474.
    [17]Easterling, D. R., P. Jamason, D. Bowman, P. Y. Hughes, and E. H. Mason,1997:Daily snowdepth measurements from 195 stations in the United States. Dataset Documentation ORNL/CDIAC-95, NDP-059,23 pp. [Available from Carbon Dioxide InformationAnalysis Center, Oak Ridge National Laboratory, Oak Ridge.TN.]
    [18]Matson, M., Ropelewski, C.F. and Varnadore, M.S. (1986):An Atlas of Satellite-derived Northern Hemispheric Snow Cover Frequency. NOAA Atlas NOAA/NESDIS/NWS,74 p.
    [19]Frei A, Robinson DA, Hughes MG (1999) North American snow extent:1900-1994. Int J Climatol 19:1517-1534
    [20]Barry, R.G. and Armstrong, R.L.1987. Snow cover data management:The role of WDC-A for Glaciology. Hydrol. Sci. J.32:281-295
    [21]Iwasaki, T.1991. Year-to-Year Variation of Snow Cover Area in the Northern Hemisphere. Journal of the Meteorological Society of Japan.69:209-17
    [22]Kripalani, R. H., and A. Kulkarni,1999:Climatology and variability of historical Soviet snow depth data:Some new perspectives in snow-Indian monsoon teleconnections. Climate Dyn., 15,475-489.
    [23]Ye H, Bao Z (2001):Lagged teleconnections between snow depth in northern Eurasia, rainfall in Southeast Asia and sea-surface temperatures over the tropical Pacific Ocean. International Journal of Climatology,21(13),1607
    [24]David S.GutZler Interannual Variability of wintertime Snow Cover across the Northem Hemisphere. Journal Climate [J] 1992,5(12):1441-1447
    [25]翟盘茂、周琴芳,北半球雪盖变化与我国夏季降水,应用气象学报。1997,8,230~235
    [26]杨修群,张琳娜.1988—1998年北半球积雪时空变化特征分析[J].大气科学,2001,25(6):757—766
    [27]郑益群,钱永甫,苗曼倩等.青藏高原积雪对中国夏季风气候的影响明.大气科学,2000,24(6):761—774
    [28]柯长青,李培基用EOF方法研究青藏高原积雪深度分布与变化[J].冰川冻土,1998a,20(1):64—67.
    [29]李培基.高亚洲积雪分布[J].冰川冻土,1995,17(4):291—298.
    [30]柯长青,李培基.青藏高原积雪分布与变化特征[J].地理学报,1998b,53(3):209—215.
    [31]韦志刚,吕世华.青藏高原积雪的分布特征及其对地面反照率的影响[J].高原气象,1995,14(1):67—73.
    [32]韦志刚,黄荣辉,陈文.青藏高原地面站积雪的空间分布和年代际变化特征[J].大气科学,2002,26(4):496—508
    [33]董文杰,韦志刚,范丽军.青藏高原东部牧区雪灾的气候特征分析[J].高原气象,2001,20(4):402—406
    [34]马丽娟.近50年青藏高原积雪的时空变化特征及其与大气环流因子的关系[D].中国科学院研究生院博士学位论文,2008.
    [35]王澄海,王芝兰,崔洋.40余年来中国地区季节性积雪的空间分布及年际变化规律[J].冰川冻土,2009a,31(2):301—310.
    [36]王澄海,吴永萍,崔洋.CMIP研究计划的进展及其在中国地区的检验和应用前景[J].地球科学进展,2009b,24(5):461—46.
    [37]王芝兰.中国地区积雪的年际变化特征及其未来40年的可能变化,兰州大学硕士学位论文2011.
    [38]Blanford H. F. On the connection of the Himalayan snow fall with dry winds and seasons of drought in India. Proceedings of the Royal Society of London,1884,37:3-22..
    [39]Walker G T. Correlation in seasonal variations of weather II [J].Memo.India.Meteor.DePt., 1910,21:22-45.
    [40]Robock A, Mu M, Vinnikov K and Robinson D(2003):Land surface conditions over Eurasia and Indian summer monsoon rainfall. Geophysical Research Letters,108(D4),4131
    [41]Kripalani R H, Kulkarni A, Sabade S S.2003. Western Himalayan snow cover and Indian monsoon rainfall:A reexamination with INS AT and NCEP/NCAR data [J]. Theor. Appl. Climatol.,74(1-2):1-18.
    [42]Wu, R., and B. P. Kirtman,2007:Observed relationship of spring and summer East Asian rainfall with winter and spring Eurasian snow. J. Climate,20,1285-1304.
    [43]陈烈庭,阎志新(1979):青藏高原冬春季积雪对大气环流和我国南方汛期降水的影响。见:中长期水文气象预报文集(第一集),北京,水利电力出版社,145—148。
    [44]Yang Song, Xu Lizhang (1994):Linkage between Eurasian winter snow cover and regional Chinese summer rainfall J. International Journal of Climatology,14,39-750.
    [45]Chen, L.-T, and Z.-X. Yan,1979:Impact of Himalayan winter -spring snow cover on atmospheric circulation and southern China rainfall in the rainy season (in Chinese). Collected Papers on Medium- and Long-Term Hydrological and Meteorological Forecasts,Yangtze River Regulating Office, Ed., Vol.1, Wa-ter Conservancy and Power Press,185-194.
    [46]Chen, L.-T, and Z.-X. Yan,1981:A statistical study of the impact of Hima-layan winter-spring snow cover anomalies on the early sum-mer monsoon (in Chinese). Collected Papers on Medium-and Long-Term Hydrological and Meteorological Forecasts, Yangtze River Regulating Office, Ed., Vol.2, Water Conser-vancy and Power Press,133-141.
    [47]Guo, Q.-Y., and J.-J. Wang,1986:The snow cover on Tibetan Plateau and its effect on the monsoon over East Asia (in Chinese).Plateau Meteor.,5,116-124.
    [48]Chen, L.-T,1991:Lag association between snow cover over Qing-hai-Xizang Plateau and monsoon rainfall in south China ap-plied to long-range weather forecasting. Proc. ICTP/WMO Int. Technical Conf. on Long-Range Weather Forecasting Re-search, Trieste, Italy, WMO, WMO Tech. Doc.395,39-43.
    [49]Wei, Z.-G., and S.-W. Luo,1994:Influence of snow cover in west-ern China on precipitation in the flood period in China (in Chinese).Plateau Meteor.,14,347-354.
    [50]Xu, G.-C, S. Li, and B. Hong,1994:The influence of the abnor-mal snow cover over the Qinghai-Tibet Plateau on Chinese precipitation and atmospheric circulation (in Chinese).Quart. J. Appl. Meteor.,5,62-67.
    [51]Chen, L.-T., and R. Wu,2000:Interannual and decadal variations of snow cover over Qinghai-Xizang Plateau and their relation-ships to summer monsoon rainfall in China. Adv. Atmos. Sci.,17,18-30.
    [52]Wu, T.-W., and Z.-A. Qian,2000:Further analyses of the linkage between winter and spring snow depth anomaly over Qing-hai-Xizang Plateau and summer rainfall of eastern China (in Chinese).Acta Meteor. Sin.,58,570-581.
    [53]Wu, T.-W., and Z.-A. Qian,2003:The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall:An ob-servational investigation. J. Climate,16, 2038-2051.
    [54]Zhang, Y., T. Li, and B. Wang,2004:Decadal change of the spring snow depth over the Tibetan Plateau:The associated circu-lation and influence on the East Asian summer monsoon. J.Climate,17,2780-2793.
    [55]陈海山,孙照渤.欧亚积雪异常分布对冬季大气环流的影响Ⅰ:观测研究.大气科学,2003,27(3):304~316
    [56]陈海山,孙照渤,朱伟军.欧亚积雪异常分布对冬季大气环流的影响Ⅱ:数值模拟.大气科学,2003,27(5):847-860
    [57]杨琨,武炳义.欧亚大陆积雪与亚洲季风关系研究进展[J].气象科技.2009(03)
    [58]李震坤,武炳义,朱伟军.春季欧亚积雪异常影响中国夏季降水的数值试验[J].气候变化研究进展,2009,5(4):196~201
    [59]Yang,S.,1996:ENSO-snow-monsoon associations and seasonal-interannual predictions. Int. J. Climatol.,16,125-134
    [60]Sankar-Rao, M., K.-M. Lau, and S. Yang,1996:On the relation ship between Eurasian snow cover and the Asian summer monsoon.Int. J. Climatol.,16,605-616
    [61]Fasullo, J.,2004:A stratified diagnosis of the Indian monsoon-Eurasian snow cover relationship. J. Climate,17,1110-1122.
    [62]Dash, S. K., G. P. Singh, M. S. Shekhar, and A. D. Vernekar,2005:Response of the Indian summer monsoon circulation and rainfall to seasonal snow depth anomaly over Eurasia-Climate Dyn.,24,1-10.
    [63]Khandekar, M. L.,1991:Eurasian snow cover, Indian monsoon and El Ni ft o/Southern Oscillation-A synthesis. Atmos.-Ocean,29,636-647.
    [64]李培基.青藏高原雪灾时空分布特征[C].中国气象局气象服务与气候司编.牧区雪灾的分析研究.北京:气象出版社,1998,15—18.
    [65]潘维玉,余志豪.青藏高原东部积雪日数特征的分析[J].气象科学,1998,18(1):48—55
    [66]Watanabe, M., and T. Nitta (1998), Relative impacts of snow and sea surface temperature anomalies on an extreme phase in the winter atmospheric circulation, J. Clim.,11,2837-2857.
    [67]Watanabe, M., and T. Nitta (1999), Decadal changes in the atmospheric circulation and associated surface climate variations in the Northern Hemisphere winter, J. Clim.,12,494-510.
    [68]Cohen, J. L., and K. Saito (2003), Eurasian snow cover, more skillful in predicting U.S. winter climate than the NAO/AO?, Geophys. Res. Lett.,30 (23),2190, doi:10.1029/2003GL018053.
    [69]Gong, G., D. Entekhabi, and J. Cohen (2003a), Relative i mpacts of Siberian and North American snow anomalies on the winter Arctic Oscillation,Geophys. Res. Lett.,30 (16), 1848, doi:10.1029/2003GL017749.
    [70]Gong, G., D. Entekhabi, and J. Cohen (2003b), Modeled Northern Hemisphere winter climate response to realitic Siberian snow anomalies,J. Clim.,16,3917-3931.
    [71]Saunders, M. A., B. D. Qian, and B. Lloyd-Hughes (2003), Summer snow extent heralding of the winter North Atlantic Oscillation,Geophys.Res.Lett.,30 (7),1378, doi:10.1029/2002 GL016832..
    [72]Bamzai, A. S. (2003), Relati onship between snow cover variability and Arctic Oscillation on a hierarchy of time scales,Int. J. Climatol.,23,131-142, doi:10.1002/joc.854.
    [73]Schaefer, A., A. S. Denning, and O. Leonard (2004), The winter Arctic Oscillation and the timing of snowmelt i n Europe, Geophys. Res. Lett.,31, L22205, doi:10.1029/2004GL021035.
    [74]张天宇,陈海山,孙照渤.欧亚秋季雪盖与北半球冬季大气环流的联系[J].地理学报,2007,62(7):728~741
    [75]Allen, Robert J., Charles S. Zender,2011:Forcing of the Arctic Oscillation by Eurasian Snow Cover. J. Climate,24,6528-6539.
    [76]陈泮勤.2003.地球系统科学的发展与展望.地球科学进展,18,23-34.
    [77]Singer SF.2008. Nature, Not Human Activity, Rules the Climate:Summary for Policymakers of the Report of the Nongovernmental International Panel on Climate Change, The Heartland Institute, Chicago, IL
    [78]Plimer IR.2009. Climate change, a geologist's view, Materials World,17,38-39.
    [79]Spencer R.2008. Climate Confusion:How Global Warming Leads to Bad Science, Pandering politicians and Misguided Policies that Hurt the Poor, Encounter Books
    [80]Schlesinger ME and Ramankutty N.1994. An oscillation in the global climate system of period 65-70 years. Nature,367,723-726.
    [81]Mantua NJ, Hare SR, Zhang Y, et al.1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc.,78,1069-1079
    [82]符淙斌,安芷生.2002.我国北方干旱化研究——面向国家需求的全球变化科学问题.地学前缘,9(02):271-275
    [83]王绍武,赵宗慈.1995.未来50年中国气候变化趋势的初步研究.应用气象学报,6,333-342
    [84]罗云峰,周秀骥,李维亮,1998大气气溶胶辐射强迫及气候效应的研究现状.地球科学进展.13(6),572-581
    [85]赵宗慈,丁一汇,徐影等.2003.人类活动对20世纪中国西北地区气候变化影响检测和21世纪预测.气候与环境研究,8,26-34.
    [86]赵宗慈,王绍武,徐影等.2005.近百年我国地表气温趋势变化的可能原因.气候与环境研究,10,808-817.
    [87]周天军,赵宗慈.2006.20世纪中国气候变暖的归因分析.气候变化研究进展,2,28-31.
    [88]Zhou TJ, Yu RC.2006. Twentieth-Century Surface Air Temperature over China and the Globe Simulated by Coupled Climate Models, Journal of Climate,19,5843-5858.
    [89]石广玉,王喜红,张立盛等.2002.人类活动对气候影响的研究Ⅱ.对东亚和中国气候变化的影响.气候与环境研究,7(2):255-266
    [90]Robinson D A., K F Dewey and R Heim Jr. Global snow cover monitoring:an update. Bulletin of the American Meteorological Society,1993,74,1689-1696
    [91]Kalnay E.Kanamitsu M, Kistler R, et al. The NCEPP NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc.,1996,77:437-471
    [92]Hansen, J., M. Sato, P. Kharecha, K. von Schuckmann,2011. Earth's energy imbalance and implications. Atmos. Chem.Phys.,11,13421-13449, doi:0.5194/acp-11-13421-2011
    [93]Langlois A., A. Royer, E. Fillol, A. Frigon and R. Laprise (2004). Evaluation of the snow cover variation in the Canadian Regional Climate Model over eastern Canada using passive microwave satellite data. Hydrological Processes, no 18, p.1127-1138
    [94]Brown, R., and Mote, P.2009. The response of Northern Hemisphere snow cover to a changing climate. Journal of Climate.22:2124-2145
    [95]马丽娟,罗勇,秦大河.CMIP3模式对未来50a欧亚大陆雪水当量的预估[J].冰川冻土,2011,V33(4):707-720
    [96]汪方,丁一汇.不同排放情景下模拟的21世纪东亚积雪面积变化趋势[J].高原气象,2011,V30(4):869-877
    [97]李培基.新疆积雪对全球变暖的响应[J].气象学报,2001,59(4):491-501
    [98]郭艳君,翟盘茂,李威.NOAA卫星遥感与常规观测中国积雪的对比研究[J].冰川冻土,2004,26(6):755-760
    [99]Zhao, Zijiang Zhou, Jiping Liu. Variability of Tibetan spring snow and its associations with the hemispheric extratropical circulation and East Asian summer monsoon rainfall:an observational investigation [J]. J Climate,2007,20:3942-3955
    [100]Brutel-Vuilmet C, Menegoz M, Krinner G. An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models [J]. The Cryosphere Discuss,2012,6:3317-3348
    [101]钱卓蕾.耦合模式对冬春季节南、北极涛动的季节气候预测能力研究。气象学报,0577-66192012702-0222-35.
    [102]Stoner, A. M. K., K. Hayhoe, and D. J. Wuebbles,2009:Assessing General Circulation Model Simulations of Atmospheric Teleconnection Patterns. Journal of Climate,22, 4348-4372.
    [103]Zhu, Y., and H. Wang,2010:The Arctic and Antarctic Oscillations in the IPCC AR4 Coupled Models. Acta Meteorologica Sinica,24,176-188.
    [104]辛晓歌,周天军,宇如聪.气候系统模式对北极涛动的模拟.地球物理学报,2008,51(2):337~351
    [105]Cohen, J., and D. Entekhabi,1999:Eurasian snow cover variability and Northern Hemisphere climate predictability. Geo-phys. Res. Lett.,26,345-348.
    [106]Gong, G., D. Entekhabi, and J. Cohen (2002), A large-ensemble model study of the wintertime AO-NAO and the role of interannual snow perturbations, J. Climate,15,3488-3499
    [107]Saito, K., and J. Cohen,2003:The potential role of snow cover in forcing interannual variability of the major Northern Hemi-sphere mode. Geophys. Res. Lett.,30,1302, doi:10.1029/2002GL016341.
    [108]Cohen, J., and M. Barlow (2005), The NAO, the AO, and global warming:How closely related?, J. Climate,18 (21),4498-4513.
    [109]Saito, K., J. Cohen, and D. Entekhabi (2001), Evolution of atmospheric response to early-season Eurasian snow cover anomalies, Mon. Weather Rev.,129(11),2746-2760.
    [110]Cohen, J., M. Barlow, P. J. Kushner, and K. Saito (2007), Stratosphere-tro posphe re coupli ng and link s with Eurasian land surface variability, J. Climate,20 (21),5335-5343.
    [111]Ye, H. (2001), Quasi-biennial and quasi-decadal variations in snow accumulation over northern Eurasia and their connections to the Atlantic and Pacific oceans, J. Clim.,14, 4573-4584
    [112]Barnett, T. P., and Coauthors,2008:Human-induced changes in the hydrology of the western United States. Science,319,1080-1083, doi:10.1126/science.1152538
    [113]Gillett, N. P., F. W. Zwiers, A. J. Weaver, and P. A. Stott (2003), Detection of human influence on sea-level pressure, Nature,422,292-294.
    [114]Gillett, N. P., and P. A. Stott (2009), Attribution of anthropogenic influence on seasonal sea level pressure, Geophys.Res. Lett.,36, L 23709, doi:10.1029/2009GL041269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700