生物质与煤混燃动态沉积结渣特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质是一种清洁的可再生能源,将其与煤混燃可实现生物质的大规模、高效利用,但由于生物质中富含大量碱金属,易导致燃料在混燃过程中产生固相沉积和腐蚀等问题。本文采用理论与实践相结合的方法,通过SEM、XRD和EPMA等先进测试手段对生物质与煤混燃过程中固相沉积特性进行了深入的研究。
     通过分析生物质与煤混燃成灰的灰成分,灰中各物质含量均随着生物质含量的增加呈非线性变化。随着生物质的含量的增加,碱金属K、Na,碱土金属Mg、Ca含量增加,K由最低的2%增至最高的18%,而Na由1%增至6%,这与生物质中碱金属和碱土金属含量高有关;Si的含量在灰成分中稳定在50%~60%之间,生物质的混合比例,反应温度,反应时间对Si的含量的没有较大的影响。Al也是灰中另一个重要的元素,其含量仅次于Si的含量,并且Al含量是随着生物质含量的增高而降低,Al含量由最大的20%降至8%。
     利用XRD分析得出,生物质与煤混燃过程中,碱金属及碱土金属对积灰结渣的贡献较大,其中以钾长石、钠长石、硫酸钠和钙长石为主,而且前三种物质本身就具有较强的粘性,这几种物质都有较低的熔点,能够使沉积物在较低的温度就呈现熔融状态。
     通过EPMA的分析发现,Si,Al和Ca是沉积物的主要元素,不同的混合比例或者不同反应时间的条件下,对其在沉积物中的含量影响不大。Si和Al有着相似的分布,可见在沉积过程中铝硅酸盐和Fe元素都起了重要的作用。钾长石在沉积物的内部同样存在,使沉积物的结构更加稳定。稳定的Ca的化合物大部分在沉积物的内部。在沉积物表面形成的钾长石和硫酸钠的粘性使沉积物更容易富集。
Biomass is a kind of clean and renewable energy source, with the coal mixed combustion can realize large-scale and high-efficiency use of biological mass, but because biomass is rich in alkali metal, it is easily lead to produce solid phase deposition and corrosion problems during the mixed fuel combustion process. A method of theory combining with practice is adopted in this paper, For getting in-depth study about solid phase depositionary characteristics during the process of biomass and coal mixed combustion, advanced test method is used, such as SEM、XRD and EPMA.
     Through the analysis of ash contents in the dust generated during coal combustion with biomass, the results show that every material content in the dusts are increase with the increased content of biomass presenting as nonlinear changes. Along with the increase of biological mass content, alkali metal of K, Na and alkaline metal Mg, Ca content increase, K in 2%~18%, and Na in 1%~6%, it is In relation to high content of alkali metal and alkaline metal in the biomass;the content of Si in the ash is more stable, it is in 50%~60%, the biomass mixture ratio, reaction temperature and reaction time don’t have a major influence to Si content. Al is another important element in the ashes, Its content is only second to Si content, Al become 20%~8% and it’s content is decreased as biomass content adding.
     XRD analysis reached some conclusions that alkali metal and alkaline metal have a significant contribution to fouling and slagging during the process of biomass and coal mixed combustion, potassium feldspar, albite, sodium sulfate and calcium feldspar have a primarily position, and the first three kind of materials itself have strong viscosity and lower melting point, these features make deposition appearing molten state in the lower temperature.
     EPMA analysis discovered Si, Al and Ca is the key elements of depositions, in the situation of different mixture proportion or different reaction time, the effect on the main elements content in the deposition would be modest. Si and Al have similar distribution, it is visible that aluminosilicate and Fe elements play an important role during the process of deposition. Potassium feldspar exist in the interior of the deposition, it make the structure of the deposition more stable. Most of stable Ca compounds is in the interior of the depositions. The viscosity of Potassium feldspar and sodium sulfate formed in the depositions surface make depositions to concentrate more easily.
引文
[1]中华人民共和国国家统计局.2007年国民经济和社会发展统计公报[Z].2008-02-28.
    [2]周庆凡,朱又红.从世界统计数据看中国能源进展[J].中国能源, 2005, 27 (11):40-42.
    [3]韩伟.生物质能发电:激情与理性的平衡[J].电力设备, 2007, 8 (4):101-104.
    [4]中华人民共和国环境保护部.2006年中国环境状况公报[Z].2007-06-19.
    [5]阴秀丽,吴创之,徐冰燕,等.生物质气化对减少CO2排放的作用[J].太阳能学报, 2000, 21(1):44-44.
    [6]周应华.我国发展生物质能的思路与政策[J].中国热带农业, 2006, (5):7-8.
    [7] http://www.istis.sh.cn/list/list.aspx?id=6484.
    [8] http://www.gov.cn/jrzg/2007-01/26/content_508505.htm.
    [9]张建安,刘德华.生物质能源利用技术[M].北京:化学工业出版社, 2009.
    [10]王大中.21世纪中国能源科技发展展望[M].北京:清华大学出版社, 2007.
    [11]王久臣,戴林,田宜水,等.中国生物质能产业发展进展及趋势分析[J].农业工程学报, 2007, 23(9):276-282.
    [12] LIN W, SONG W.Power Production from biomass in Denmarkl[J].Journal chemistry and technology, 2005, 33(6):650-655.
    [13] IEA.Energy Policies of IEA Countries-Denmark 2002 Review[J].2002.
    [14] AUTHORIYT DE.Technology data for electricity and heat generating Plant[J].2004.
    [15] BENGT H.Cofiring of biomass-evaluation of fuel procurement and handling in selected existing plants and exchange of information (COFIRING) - Part2 [A].in THE ANALYSIS REPORT OF PLANT NO12:Link?Ping of Sweden[R].Jyv?kyl?, Finland, 2001.
    [16] RUTH B.Cofiring of biomass- evaluation of fuel procurement and handling in selected existing plants and exchange of information(COFIRING)-Part2[A].in THE ANALYSIS REPORT OF PLANT NO4:Kraftwerk Schwandorf of Germany[R].Jyv/skyl/i, Finland, 2001.
    [17] ARI K, NYLUND M.Biomass and coal co-combustion in utility seale-operating experience of Alholmens Krflft[A].in 18th International Conference on Fluidized Bed Combustion, Toronto[C].Canada.2005.
    [18]马爱玲.生物质与煤混合燃烧特性的研究[D].河南:河南理工大学硕士学位论文.2010.
    [19] Saxena R C, Adhikarid K, Goyalh B.Biomass-based energy fuel through biochemical routes:A review[J].Renewable and sutainable Energy Review, 2009, 13(1):167-178.
    [20]李宝霞,张济字.煤灰渣熔融特性的研究进展[J].现代化工, 2005, 25(5):22-26.
    [21]邓芙蓉.利用TG-DSC、SEM等多种手段研究煤灰的融融特性.浙江:浙江大学硕士学位论文.2005.
    [22]张堃,黄镇宇,修洪雨,等.煤灰中化学成分对熔融和结渣特性影响的探讨[J].热力发电, 2005, 12:27-43.
    [23]龚树生,陈丽梅.由煤灰成分推算其熔融性的多元线性回归式研究[J].煤质技术, 1998, 5:23-26.
    [24]郝丽芬,李东雄,勒智平等.灰成分与灰熔融关系的研究[J].电力学报, 2006, 21(3):294-296.
    [25]张德祥,龙永华,高晋生等.煤灰中矿物的化学组成与灰熔融性的关系[J].华东理工大学学报, 2003, 29(6):590-594.
    [26]石喜光,郑立刚,周昊.基于广义回归神经网络与遗传算法的煤灰熔点优化[J].浙江大学学报(工学版).2005, 39(8):1189-1192.
    [27]王晓岚,那峙雄.基于燃料特性的秸秆积灰结渣.国电科技环保集团有限公司,北京, 2008.
    [28]杨建国,邓芙蓉,赵虹,等.煤灰熔融过程中的矿物演变及其对灰熔点的影响[J].中国电机工程学报, 2006, 26(17):122-126.
    [29] Peter Arendt Jensen, Flemming J.Frandsen, et al.SEM Investigation of Superheater Deposits from Biomass- Fired Boilers[J].Energy&Fuels, 2004, 18 :378-384.
    [30] Vassilev S V, Kunihiro K.Influence of mineral and chemical composition of coal ashes on their fusibility[J].Fuel Proeessing Technology, 1995, 45(l):4-27.
    [31] Saimir A.Lolja, Hajri Haxhi, Rolanda Dhimitri, et al.Correlation between ash fusion temperatures and chemical composition in albanian coal ashes[J].Fuel, 2002, 81(17):2257-2261.
    [32] L.E.Fryda, K.D.Panopoulos, E.Kakaras.Agglomeration in fluidised bed gasification of biomass[J].Powder Technology, 2007, 179:108-121.
    [33] Weigang Lin, Kim Dam-Johansen, Flemming Frandsen.Agglomeration in bio-fuel fired fluided bed combustors[ J].Chemical Engineering Joural, 2003, 96:171- 185.
    [34] M.Zevenhoven- Onderwater.The ash chemistry in fluidized bed gasification of biomass fuels[J].Fuel, 2001, 80(10):1503-1512.
    [35] Ayhan Demirbas.Potential applications of renewable energy sources biomass combustion problems in boiler power systems and combustion related environmental issues[J].Progress in Energy and Combustion Science, 2005, 31:171-192.
    [36] Martti Aho, Jaani Silvennoinen.Preventing chlorine deposition on heat transfer surfaces with aluminium-silicon rich biomass residue and additive[J].Fuel, 2004, 83:1299-1305.
    [37]李平,徐浩泉.蔗糠燃料特性与煤粉混烧技术的研究[J].工业锅炉, 2001, (1):31-33.
    [38]盛昌栋,张军.煤粉锅炉共燃生物质发电技术的特点和优势[J].热力发电, 2006, 35(3):8- 11.
    [39]闵凡飞,张明旭.生物质与不同变质程度煤混合燃烧特性的研究[J].中国矿业大学学报, 2005, 34(2):236-241.
    [40]董信光,李荣玉,刘志超等.生物质与煤混燃的灰分特性分析[J].中国电机工程学报.2009, 29(26):118-124.
    [41]肖军,段著春,庄新国,王华.生物质与煤共燃研究(I)生物质的低温热解[J].煤炭转化, 2003, 26(l):61-66.
    [42]蒋恩臣,何光设.稻壳、锯末成型燃料低温热解特性实验研究[J].农业工程学报, 2007, 23(1):188-191.
    [43]宁新宇,李诗媛,吕清刚等.秸秆类生物质与石煤在流化床中的混烧与黏结机理[J].中国电机工程学报, 2008, 28(29):105-110.
    [44]徐靖,余春江,秦建光等.麦草木素与煤混烧灰熔融特性[J].浙江大学学报:工学版, 2007, 41(7);1186-1190.
    [45] M Sami, K Annamalai, M Wooldridge.Co-firing of Coal and Biomass Fuel Blends [J].Progress in Energy and Combustion Science, 2001, 27(2):171-214.
    [46] P.Grammelis et al.Thermal exploitation of wastes with lignites for energy produetion[J].Journal of the Air&Waste Management Association, 2003, 53(11):1301-1311.
    [47] Marek Pronobis.Evaluation of the influence of biomasseo-combustion on Boiler furnace slagging by means of fusibility correlations[J].Biomass and Bioenergy, 2005, 28:375-383.
    [48] MischaTheis, Bengt-Johan Skrifvars, Maria Zevenhoven, et al.Fouling tendency of ash resulting from burning mixtures of biofuels.Part2.DePosit chemistryl[J].Fuel, 2006, 85:1992-2000.
    [49] PeterThy, Bryan M Jenkins, Charles E Lesher, et al.Compositional constraints on slag for mation and potassium volatilization from rice straw blended wood fuel[J].Fuel Processing Technology, 2006, 87:383-408.
    [50] Heije Mietinen Westberg, Madeleine Bystroem, Bo Leekner.Distribution of Potassium, chlorine, and sulfur between solid and vapor phases during combustion of wood chips and coal[J].Energy&Fuels, 2003, 17(1):18-28.
    [51] Xiaolin Wei, Christian Lopez, Thore von Puttkamer.Assessment of Chlorine-Alkali-Mineral Interactions during Co-Combustion of Coal and Straw[J].Energy&Fuels, 2002, 16:1095-1108.
    [52] YANG JIANGUO, DENG FURONG, ZHAO HONG.Mineral converseon and mi-crostructure change in themelting process of shenmu coal ash [J].Asia -Pac.J. Chem.Eng, 2007(2):165-170.
    [53]尚琳琳,程世庆,张海清.生物质与煤共热解特性研究[J].太阳能学报, 2006, 27(8):852-855.
    [54] Ville Hayrinen, MarttiAho, RolfHernberg.Demonstration of plasma excited atomic resonance line spectroscopy for on-line measurement of alkali metals in a 20kW bubbling fuidized bed[J].Fuel, 2004, 83:791-797.
    [55] Allen L Robinson, Helle Junker, Larry L Baxter.Pilot-Scale Investigation of the Influence of Coal-Biomass Cofiring on Ash Deposition[J].Energy&Fuels, 2002, 16:343-355.
    [56] MischaTheis, Bengt-JohanSkrifvars, MikkoHupa, et al.Fouling tendency of ash resulting from burning mixtures of biofuels.Part1:Depositionrates[J].Fuel, 2006, 85:1125-1130.
    [57] Bengt-Johan Skrifvars, Tor Laure’n, Mikko HupaM.Ash behavior in a pulverized wood fired boiler—a case study[J].Fuel, 2004, 83:1371–1379.
    [58] Roper B, Kipshagen F-J.Operrational experience with sewage sludge and waste wood co-combustion in the Berrenrath power plant[J].VGB Power Tech, 2003, 8:60-64.
    [59] Aho M, Ferrer E.Importance of coal ash composition in protecting the boiler against Chlorine deposition during combustion of chlorine-rich boimass[J].Fuel, 2005, 84:201-212.
    [60] Philip C W Kwong, Christopher Y H Chao, J H Wang.Co-combustion performance of coal with rice husks and bamboo[J].Atmospheric Environment, 2007, 41:7462-7472.
    [61]郎芳,马晓茜,王晶晶.秸秆灰特性的研究[J].可再生能源, 2007, 25(4):25-28.
    [62]段菁春,肖军,王杰林.生物质与煤共燃研究[J].电站系统工程, 2004, 20(1):1-4.
    [63] J Bai, W Li, B Li.Characterization of low-temperature under reducing atmosphere[J].Fuel, 2008, 87(4-5):583-591.
    [64] Omer Gul, Leslier, Rudnick, et al.Effect of the reaction temperature and fuel treatment on theDeposite Formation of Jet Fuels[J].Energy and Fuels, 2008, 2(1):433-439.
    [65]徐婧.生物质燃烧过程中碱金属析出的实验研究[D].浙江:浙江大学硕士学位论文.2006.
    [66] A.Kazagic, I.Smajevic.Experimental investigation of ash behavior and emissions during combustion of Bosnian coal and biomass [J].Energy, 2007, 32(10):2006-2016.
    [67] B.X.Shen, T.Mi, D.C.Liu, B.Feng, Q.Yao, Franz Winter.N2O emission under fluidized bed combustion condition[J].Fuel Processing Technology, 2003, 84:13-21.
    [68] Hou-Peng Wan, Ying-His Chang, Wen-Cheng Chien et al.Emissions during co-firing of RDF-5 with bituminous coal, paper sludge and waste tires in a commereial cireulating fluidized bed co-generation boiler [J].Fuel, 2008, 87:761-767.
    [69]孟韵,张军营,钟秦.燃煤过程中微量元素砷和硒形态转化的热力学平衡模拟[J].环境污染治理技术与设备, 2002, 3(9): 1-5.
    [70]李季,杨学民,林伟刚.城市生活垃圾焚烧体系化学热力学平衡分析[J].燃料化学学报, 2003, 31(6): 584-588.
    [71]崔海琴,吴志斌.煤气化体系热力学平衡分析[J].煤, 2009, 18(2): 34-36.
    [72]高光华,童景山.化工热力学[M].北京:清华大学出版社, 1995.
    [73]刘小伟,徐明厚,于敦喜,等.燃煤过程中元素Na和Fe在可吸入颗粒物中的形态与分布[J].动力工程, 2005, 25(5): 719-723.
    [74]杜建华,胡雪蛟,刘翔.最小能量函数法求解多元相平衡[J].大连理工大学学报, 2001, 41(s1): s1-s4.
    [75]吕仲明,钟用禄,李长佶,等.燃煤过程中重金属形态的热力平衡分析[J].江西电力, 2003, 26(2): 8-11.
    [76]兰泽全,曹欣玉,饶甦等.电子探针分析炉内沾污结渣动态过程[J].化工学报, 2005, 56(1):24-29.
    [77] Christina G.Vassileva, Stanislav V.Vassilev.Behaviour of inorganic matter during heating of Bulgarian coals.Lighnites.Fuel Processing Technology, 2006, 86:1297-1333.
    [78]郭治青.燃煤矿物转化及结渣特性研究[D].武汉:华中科技大学硕士论文.2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700