煤中挥发性微量元素Hg、As、Pb燃烧固化的热力学模拟与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤燃烧所造成的大气污染给人类健康带来了极大的危害,特别是亚微米量级颗粒形式存在的重金属及其化合物因为其相当大的毒性而备受人类关注。因而燃煤过程中痕量元素的排放控制研究也成为治理燃煤污染中一个新的前沿领域。
     本文以煤中易挥发元素Hg、As、Pb为研究对象,以焦作无烟煤和平顶山烟煤为原煤样品,通过热力学平衡模拟分析及实验室燃烧试验相结合的方法对其在添加添加剂前后迁移转化、富集行为及添加剂机理进行了研究,为进一步研究控制煤中重金属污染奠定了基础。
     (1)本文首先应用了FactSage模拟分析了Hg、As、Pb等挥发性元素在燃烧中的迁移转化及形态分布,考虑了硫,氯元素对其形态分布的影响。模拟结果表明在氧化性气氛下产物固相范围会更宽一些:单质汞是Hg的热力学稳定形式;砷元素在温度升高到700K以后全部转化为气相砷的氧化物;Pb在850K之前以固态PbCO_3与Pb_3O_4,在高温阶段主要以气态PbO存在。氧化性气氛下硫、氯元素与Pb有着很强的结合性,随着Cl/S比的升高,PbCl_4存在的温度范围越宽;氯元素对的As的平衡分布基本没什么影响,硫元素在还原性低温气氛与As有着很强的结合性;对于Hg元素,随着S/Cl比的升高,单质汞的温度范围变宽,增强了单质汞的排放。
     (2)再次应用了FactSage模拟分析了Hg、As、Pb等挥发性元素在氧化性气氛下加入添加剂之后燃烧时的迁移转化及形态分布。结果表明Al_2O_3与SiO_2对Pb的挥发都有抑制作用,而Al_2O_3在400~1100K效果更好,同时硫、氯元素对添加剂的吸附效果影响很大,加入一定的含钠矿物有助于达到一个更好的吸附效果;而任何添加剂对Hg的形态分布的影响都不大;钙质添加剂使砷元素形态在400~1300K发生了一定的变化,主要以砷的固相物质存在,其中在750~1200K之间生成是砷酸钙,而Ca/S比增大,砷酸钙作为固相的温度范围越宽,Ca/S=10时达到最大。
     (3)采用高温管式电炉在设定温度下进行煤粉燃烧试验,燃烧气氛为氧化性气氛,将底灰应用先进的微波消解技术进行样品预处理,应用ICP-MS及原子荧光光谱仪等测试手段,分析了加入添加剂前后Hg、As、Pb元素在底灰中的含量分布。结果表明:Hg元素极易挥发,从化学角度讲添加剂对Hg的控制没有作用,这与模拟结果相符;Pb元素有在底灰中富集的趋势,并随温度的升高,其富集趋势减小;四种添加剂对Pb、As的吸附效果随温度、煤种、添加剂种类的不同而不同。模拟结果与实验结果在对重金属控制温度上存在差异。
     (4)结合模拟研究与试验研究,从化学吸附机理来看,添加剂与煤自身存在着一些的化学活性位,它们与痕量元素发生化学反应,从而生成不易分解的物质而固定在灰中。
Air pollution caused by coal combustion brings great harm on human health, especially the heavy metals and their compounds in the form of submicron particles are caught much attention, as they have relatively high toxicity. Therefore, the research on emission control of trace elements in coal combustion has been a new frontier field.
     In this paper, volatile elements in coal such as Hg, As, Pb are selected as research object, Jiaozuo anthracite and Pingdingshan bituminous as raw coal samples, thermodynamic equilibrium simulation analysis combined with combustion test in laboratory is used to research migration-transformation, enrichment behavior and absorption mechanism of trace elements before and after the additives are added. It lays foundation for pollution control on trace elements in coal in the further study.
     (1)The FactSage software was firstly applied to simulate migration-transformation and distribution of the volatile elements Hg, As and Pb in coal combustion, the effect of S and Cl on distribution was taken into consideration. Simulation result shows that solid phase of products maybe a little wider under oxidizing atmosphere: Elemental mercury is the thermodynamically stable form of mercury; arsenic transforms into gaseous oxide of arsenic totally when temperature rises to 700K; prior to 850K, the forms of Pb are solid PbCO_3 and Pb_3O_4, while at high temperature gaseous the main form is PbO. Under oxidizing atmosphere, element S and Cl have strong combination with Pb, with the increase of the ration of Cl/S, the temperature range of PbCl_4 becomes wider. The effect of element Cl on the balance distribution of As is little, element S has strong combination with As; as for Hg, with the increase of S/Cl, the temperature of elemental Hg becomes wider, too, which indicates that emission of elemental Hg is enhanced.
     (2)The Factsage was also applied to simulate migration-transformation and distribution of Hg, As and Pb in combustion after additives were added under oxidizing atmosphere. The result shows that Al_2O_3 and SiO_2 can inhibit the volatilization of Pb, at the temperature 400~1100K, the effect of Al_2O_3 is even better, at the same time, Cl and S have great influence on absorption effect of additives, and adding some sodium minerals can help to reach a better absorption effect. However, any additive has little influence on distribution of Hg. Additives of calcium make the distribution of As change in certain extent at 400~1300K, mainly occurring in the form of solid As(at 750~1200K, arsenic calcium). As the Ca/S ratio increases, the temperature range of arsenic calcium becomes wider, and when Ca/S=10 reaches to the maximum.
     (3)High-temperature tube furnace was applied to burn pulverized coal samples at the given temperature under oxidizing atmosphere. Advanced microwave digestion method was used to treat bottom ash; ICP-MS and AFS were applied to analyze the content distribution of Hg, As, Pb in bottom ash before and after the additives were added. The result shows that Hg volatilizes very easily, additives has no control on Hg form the perspective of chemistry, which accords with simulation result; Pb and As have enrichment trend in bottom ash, and with the increase of temperature, the trend becomes less. The absorption effect of four additives is different as the difference of temperature, coal and additive type. There are some differences between simulation and experiment in heavy metal control temperature.
     (4)Combined with simulation study and experimental research, from the perspective of chemical absorption mechanism, additives and coal chemical itself have some active sites, which react with trace elements to produce the materials that not easily break down, then fix in the ashes.
引文
[1]姚强,陈超.洁净煤技术[M].北京:化学工业出版社,2006.
    [2]徐明厚,郑楚光,冯荣等.煤燃烧过程中痕量元素排放的研究现状[J].中国电机工程学报,2001,21(10):33-34.
    [3]伊连庆,关新玉.电厂燃煤过程中重金属污染及其控制技术研究[J].电力环境保护,2005,21(3):31-32
    [4]Finkelman R B. Trace and Minor Elements in Coal [J]. Organic Geochemistry. New York: Plenum press,1993,593-607.
    [5]冯新斌等.贵州省煤中挥发性核半挥发性微量元素分布规律的初步研究[J],环境化学,1998,17(2):149-153.
    [6] Rosa,M.T.et al,Emission of volatile organic compounds from coal combustion[J].Fuel,1999,78(13):1527-1538
    [7] Vassilev,S.V.etal,Contents,modes of occurrence and behavior of chlorine and bromine in combustion wastes from coal—fired power stations[J].Fuel,2000,79(8):923-937.
    [8]l张建平等.煤及其燃烧产物中砷的分布特征[J].环境科学研究,1999,12(1):27-29.
    [9]李建新.垃圾焚烧过程重金属污染物迁移机理及稳定化处理技术研究[D].浙江大学2004,6.
    [10]任德贻,赵峰华,代世峰等.煤的微量元素地球化学[M].北京:科学出版社,2006.
    [11]王泉海.煤燃烧过程中汞排放及其控制的试验及机理研究[D].华中科技大学,2006.
    [12]任德贻,赵峰华,代世峰等.煤的微量元素地球化学[M].北京:科学出版社,2006.
    [13]Finkelman R B.Modes of occurrence of environmentally-sensitive trace elements of coals[J].Environmental Aspects of Trace Elements of Coal,Dordrecht:Kluwer Academic Pubishers.1995,24-50.
    [14] Finkelman R B. Modes of occurrence of potentially hazardous elements in coa:level of comfidence[J].Fuel Processing Technology,1994,39(1~3):21-34.
    [15] Ruch R R,Gluskoter H J,Kennedy E J.Mercury content of llinois coals,State Geol Surv Environ Geol Notes No.43:1~15.
    [16] Finkelman R B.Modes of occurrence of Trace elements in coal[J]. US Geol Surv Open-File Rep,1981,81-99.
    [17]Pickhardt W.Trace elements in minerals of German bituminous coals[J].Inernational Joural of Coal Geology,1989,58(4):261-268.
    [18]周义平.老厂矿区煤中汞的成因类型和赋存状态[J].煤田地质与勘探,1994,22(3):17.21.
    [19]郑楚光,徐明厚,张军营.燃煤痕量元素的排放与控制[M].武汉:湖北科学技术出版社,2002.
    [20]冯新斌,洪业汤.密闭溶样两次金汞齐冷原子吸收光谱法测定煤中微量汞[J].分析测试学报,1998,17(2):41-43.
    [21]张军营.煤中潜在有害微量元素富集规律及其污染性抑制研究[D].中国矿业大学,1999.
    [22]钟丽萍,曹晏,李文英,潘伟平.燃煤电厂污染控制单元对汞释放的控制作用[J].燃煤化学学报,2010,38(2):642:641.
    [23]张军营,任德贻,许德伟.黔西南煤层主要伴生矿物中汞的的分布特征[J].地质评价,1999,45(5):539-542.
    [24]周义平.云南煤中某些微量元素和有毒元素的研究[J].云南科技,3(4):2-8.
    [25]赵峰华.煤中有害微量元素分布赋存机制及燃煤产物淋虑实验研究[D].中国矿业大学,1997.
    [26]冯新斌,洪业汤,倪建宇等.贵州煤中汞的分布、赋存状态及对环境的影响[J].煤田地质与勘探,1998,26(2):12-14.
    [27]张军营,任德贻,许德伟.煤中汞及其对环境的影响[J].煤炭转化,环境科学进展,1999,7(3):100-104.
    [28]周义平.云南某些煤中砷的分布及控制因素[J].煤田地质与勘探,1983,11(3):2-8.
    [29]Huffman G P,Huggins F E.Narresh S.Speciation of arsenic and chromium in coal and combustion ash by XAFS Spectrosopy[J]。Fuel processing Technology,1994,39:47-62.
    [30]丁振华,郑宝山.张杰.黔西南高砷煤中砷存在形式的初步研究[J].中国科学(D) ,1999,29(5):42l-425.
    [31]郭欣,郑楚光,刘迎晖.煤中汞、砷、硒赋存形态的研究[J],工程热物理学报,200l,22(6):763-766.
    [33]冯新斌,洪业汤,洪冰等煤中汞的赋存状态研究[J].矿物岩石地球化学通报,2001,20(2):77-78.
    [35] Koller A,Huggins F E,Palmer C A,et al.Mode of occurrence of arsebic in four US coals[J].Fuel Process Tech,2000,63:167-178.
    [36]陈萍,旷红伟,唐修义.煤中砷的分布和赋存规律研究[J].煤炭学报,2002,27(3):259-263.
    [37]Finkelman R B.Modes of occurrence of environmentally-sensitive trace elements of coal[J].Enviromental Aspects of Trace Elements of Coal.2005(5):24-50.
    [38]李生盛,任德贻.准格尔矿区主采煤层中铅和硒的异常高值与成因研究[J].中国矿业大学学报,2006,35(5):613-615.
    [39]王运泉,任德贻.煤中微量元素研究的进展。煤田地质与勘探,22(4):16-22.
    [40]White R N,Smith J V.Analysis of iron sulfides form UK coal by synchrotron radiation X-rayfluorescence[J].1989,6(23):1480-1486.
    [41]张军营,任德贻.煤中有机态微量元素与煤级关系[J],煤田地质与勘探,2000,28(6):11-12.
    [42]赵峰华.煤中有害微量元素分布赋存机制及燃烧产物淋虑试验研究[D].中国矿业大学,1997.
    [43]许德伟,杨居荣.沈北煤田煤中铬、镍等有害元素的分布赋存机制及其环境影响[D],中国矿业大学(北京校区),1999.
    [44]张晓逵.山西、河南部分煤中重金属元素的含量及其赋存形态研究[D].河南理工大学,2010.
    [45] Frandsen F, Kim D J, Rasmussen P. Trace elements from combustion and gasification of coal: an equilibrium approach[J]. Prog Energy Combust Sci, 1994,20(3): 115-138.
    [46] Bool L E, Helble J J. A laboratory study of the partitioning of trace elements during pulverized coal combustion[J]. Energy & Fuels, 1995, 9(4): 880-887.
    [47]Owens T M,Wu C Y,Biswas P. An equilibrium analysis for reaction of metal compounds with sorbents in high temperature systems[J]. Chem Eng Comm, 1995,133(1): 31-35.
    [48]Durlak S K, Biswas, P, Shi J CH. Equilibrium analysis of the affect of temperature,moisture and sodium content on heavy metal emissions from municipal solid waste incinerators[J]. Journal of Hazardous Materials, 1997, 9(56):1-20.
    [49]Leena A A, Flemming J F, Erkkik K H. Trace metal emissions from the estonian oil shale fired power plant[J]. Fuel Processing Techno logy, 1998, 57(1): 1-24).
    [50]刘迎晖,郑楚光,游小清,郭欣.燃煤过程中易挥发有毒微量元素的相互作用[J].燃烧科学与技术,2001, 7(4):243-247.
    [51]吕仲明.燃煤过程中重金属形态的热力平衡分析[J].江西电力,2003,26(2) 8~10.
    [52]孟韵.煤燃烧过程中有害痕量元素形态分布的化学热力学平衡分析[J].燃煤化学学报,2005, 33(1):30-33.
    [53]王泉海,邱建荣,温存.氧燃烧方式下痕量元素形态转化的试验和模拟研究[J].工程热物理学报,2006年,27(增刊2),199-202.
    [54]蔡铭,徐明厚,乔瑜等.燃煤烟气中痕量元素的形态及其分析方法[J],热力发电,2004,11-13.
    [55]邱建荣,王泉海,邱建荣,李凡,刘迎晖.煤燃烧过程中矿物质形态分布特性[J].煤炭转化,2002,25(1),33-35.
    [56]Chen J R,Martys N,Chao E C T.Synchrotron radiation determination of elemental concentrations in coal[J].Nucl Instrum Methods Phys Res Sect,1984,B231(1-3),241-245.
    [57]张智慧,胡俊玲,曾汉才,程俊峰,陈泽俊,刘晶,陆晓华.用固体吸附剂控制燃煤重金属排放及其对SO2、NOx的影响[J].燃料化学学报,1998,26(6),486-489.
    [58]秦攀.煤燃烧重金属生成规律的研究[D].浙江大学,2005.
    [59]刘晶,郑楚光,曾汉才,张军营,陆晓华.固体吸附剂控制燃煤重金属排放的实验研究[J].环境科学,2003, 24(5),24-26.
    [60]许绿丝,程俊峰,曾汉才.燃烧飞灰对痕量重金属吸附脱除的研究[J].热力发电,2004.
    [61]王立剐,陈昌.飞灰残炭对零价汞蒸气的吸附特性[J].北京科技大学报,2004,26(4):353-356.
    [62]吕仲明,钟用禄等.燃煤过程中重金属形态的热力学平衡分析[J].江西电力,2006,26(2):8-10.
    [63]崔海琴,吴志斌.煤气化体系热力学平衡分析[J].煤.2009,18(2):34-35.
    [64]王泉海.煤燃烧过程中汞排放及其控制的试验及机理研究[D].华中科技大学,2006.
    [65]李耀拉.煤焦化痕量元素的迁移转化与热力学形态的模拟研究[D],武汉科技大学,2009.
    [66] Clemens A H,Damiano L F,Gong D,et al.Partirioning bebaviour of some toxic volatile elements during stoker and fluidized bed combustion of alkaline sub-bituminous coa[J]l.Fuel,1999,78:1379-1385.
    [67]伊连庆,关新玉..燃煤电厂重金属污染与控制[J].热力发电,2006,30-31
    [68]曾汉才,喻秋梅,陆晓华等。用浮选法和固体吸附剂控制燃煤中重金属排放的研究[J].热力发电,1997,5:24-27.
    [69]Garcia AB,Martinez—Tarazona MR.Removal oftl'ace elements from Spanish coals by flotation[J].CSIS,Apdo,73,33080一O-,iedo.Spain。
    [70]欧阳中华.曾汉才,陆晓华等.煤燃烧产生的细微粒子中重金属元素富集性的试验研究[J].燃煤科学与技术.1996,2(2),112-114.
    [71]施正伦,骆传泱,周劲松等.石煤流化床燃烧重金属排放特性验研究[J].煤炭学报,2001,26(2):209-212.
    [72]陈奕善.国外火电厂烟气净化技术的发展[J].华东电力,1997,(6):46-49.
    [73]杨瑞.莫金汉.赵荣义.Ti02/丝光沸石光催化降解甲苯特性研究[J].自然科学进展,2005.15(8):981-986。
    [74]张浩,任宝山,宋宝俊等.空气中微量苯的光催化降解研究[J]..河北工业大学学报,2006,35(5);115一118.
    [75]朱昕吴,陆永琪,朱天乐等.面02薄膜气相光催化氧化低浓度三氯甲烷和三氯乙烯的研究[J].环境污染治理技术与设备,2003,4(3):26-30.
    [76]郭欣.煤燃烧过程中汞、砷、硒的排放与控制研究[D].华中科技大学,2005.
    [77]赵文宽.仪器分析[M].高等教育出版社,2000.
    [78]周贤定.赣中地区煤中砷含量的变化规律初探[J].中国煤田地质, 1991, 3(3):39-44.
    [79] Fan L S-Jiang P,Agnihgri R,Mahuli S K,Zhang J.Dispersion and Ultra-fast reaction of calcium-based sorbant powders for S02 and air toxics removal in coal combustion[J].Chemical Engineering Science.1999.54:55—85
    [80] Linak W P, Srivastava R K. Sorbent capture of nickel, lead and cadmium in a laboratory swirl flame incinerator[J]. Combustion and Flame, 1995, 100(1-2):241-250.
    [81] Uberoi M, Shadman F. Aluminosilicates as potential absorbents for controlling metal emissions[J]. Acs Symposium Series. 1993, 515:214-222.
    [82] Uberoi M, Shadman F. Sorbents for removal of lead compounds from hot flue-gases[J]. AIChE Journal, 1990, 36(2):307-309.
    [83] Nraigu J Q, Pacyna J M. Quantitative assessment of worldwide concentration of air, water, and soil by trace metals[J]. Nature, 1988, 333(6169):134-139.
    [84] Kevin C G, Christopher J Z. Mercury transformations in coal combustion flue gas.Fuel Processing Technology, 2000, 66(6):289-310.
    [85]王泉海.煤燃烧过程中汞排放及其控制的试验及机理研究(D).华中科技大学,2006
    [86]王泉海,邱建荣,吴昊.煤燃烧过程中汞释放的研究现状[J].热能动力工程2002, l17(6):547-550.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700