沸石微囊反应器合成与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,微囊反应器已发展成为材料科学的研究热点,在化学、生物学、药物学等许多自然科学领域中都具有优良的应用价值。其核心思想在于构建一个由分子识别的囊膜以及含有活性物种的囊内空腔组成的具有类似于生物体的细胞结构。具有规整的微孔结构,丰富可调的表面性质,巨大的表面积等诸多优点的沸石纳米材料,在择形催化、吸附分离、传感等许多领域已有着非常广泛的应用。沸石微囊反应器是通过纳米组装技术以及特定的合成方法将纳米沸石材料形成微囊反应器。该类型材料在保持微囊反应器的独特性能的同时,兼具沸石的多重性质,包括:(1)沸石囊壁规整微孔对产物/反应物/反应中间体的择形性,可以选择性地屏蔽或者释放特定的反应物和生成物,从而改变囊内化学物种的平衡,实现催化反应的高选择性;(2)沸石囊壁分子筛分效应,保护囊内微环境及活性物种,不仅防止囊内催化活性物种或者催化活性中间体泄露,同时阻碍外界毒物进入,在囊内形成独特的适合催化反应的微环境;(3)反应区间的分隔作用:利用完整沸石囊壁,可以将多步反应分离在不同的区域,从而避免各反应物种、中间体以及催化剂等的相互作用,防止不同类型反应间的相互干扰,实现多步反应同一体系中的顺利完成:(4)多步反应的有效协同催化:通过囊内活性物种和囊壁的相互配合,实现囊内催化反应与囊壁的二次催化反应的区域协同,从而完成多步反应催化剂的一体化;进而具有独特的囊内微环境及囊壁的保护效应,以及高的热稳定性,高的水热稳定性以及丰富的表面修饰性质等优点,在药物可控释放,化学催化以及生物反应器领域有巨大的开发潜力。
     然而,目前该材料的研究存在合成方法昂贵、形貌难以控制、生长过程机理不明确,真正实际应用较少等问题,而且关于进一步修饰以及功能化沸石微囊反应器的领域仍然存在空白。这些都严重限制了沸石微囊反应器的进一步发展和应用开发。因此,有效简化沸石微囊反应器的合成方法,精确控制沸石微囊反应器的形貌,深入研究沸石微囊反应器的形成机制,广泛拓展沸石微囊反应器的应用范围,仔细探索沸石微囊反应器的功能化意义,是进一步完善该材料从合成到应用的关键,也更加为微囊反应器的开发提供足够的选择资源和经验。
     本论文针对沸石微囊反应器这一课题的研究现状和面临的挑战,重点研究了沸石空心微囊反应器的合成、催化应用以及深度功能化。讨论了沸石微囊反应器的新方法合成以及表征,通过对合成规律的细致考察,提出了新的生长机理。在该机理基础上,通过对活性催化物种的有效封装入囊(如Pt@s1),将沸石微囊反应器应用在一系列具有实际意义的催化反应中。最后,通过进一步多重修饰,实现沸石微囊反应器的深度功能化。在上述工作中,既拓展了沸石微囊反应器的合成方法,丰富了现有的合成理论和机理,还成功利用该微囊反应器的独有优势催化精细有机反应以及生物手性分子分离反应。这些材料在催化中都表现出突出的性能,为多功能催化剂材料的设计合成提供了新的思路。本论文对所开展的研究工作将分为六个章节进行讨论:
     第二章讨论了无模板法制备沸石空心微囊及其详细表征。利用介孔氧化硅小球(MSSs)作为模板,在其外表面包裹一层正电性聚电解质,在简单的NaOH体系中,采用低温水热法,合成出silicalite-1沸石空心微囊(HSMs),方法操作简单,成本低廉。另外,采用水热过程中样品的形貌演化情况,对空心微囊的形成机理进行了详细的研究,发现在合成过程中,随着体系碱度提高,模板氧化硅核溶解驱动力增大,当外层的晶种交联生长与核内氧化硅溶解达到匹配时,可以形成良好的空心沸石微囊。
     第三章探索了沸石空心微囊的生长机理。细致考察了不同实验条件对沸石空心微囊生长的影响,如反应温度、体系碱度以及有机结构导向剂等,优化了实验条件,提炼出规律。在此基础上,通过综合分析之后提出了“生长-溶解速度匹配”机理,即只有当合理控制实验条件,保证外层的沸石silicalite-1晶种的生长速度与内层的氧化硅模板的溶解速度相匹配,才可以得到完美的沸石空心微囊。同时,对该微囊的合成体系进行拓展,在不同的合成系统中,也发现同样的规律,验证了所提机理。
     第四章主要介绍了一种以介孔氧化硅小球为模板进行预植入贵金属,获得封装有纳米贵金属的沸石空心微囊反应器Pt@S1的制备方法,以及该微囊反应器在多步可控精细有机反应的应用。在有机中,重要中间体腙是合成多种有机物的前驱体,其合成必需经过酮中含有的羰基基团与肼作用,缩合得到。而目前酮的工业来源主要是醇的选择性氧化。如果可将这两步反应成功偶合,使之有序的进行,即仅在一个反应过程中由醇合成腙,不仅可以更有效的应用反应原料,提高反应效率,还可以减少两个独立的反应过程中涉及的产物分离、产物转移等所导致的一系列耗损。贵金属Pt参与的醇氧化反应,所得产物具有很高的选择性以及附加值,但是Pt的催化活性易受含S(苯并噻吩)、含N物质(苯并噻唑,苯肼)等的影响。在本章的研究中,我们通过沸石微囊的筛分作用保护Pt的活性,成功的实现了多步反应集约化,将Pt@S1成功应用在醇氧化成酮,酮与苯肼缩合成腙的多步有序反应中。通过沸石壳层完整的催化剂与沸石壳层破碎的微囊化催化剂以及传统的商品化负载型催化剂的研究比较,发现沸石壳的存在与否直接影响了催化剂在反应中的表现。只有具有完整沸石壳的微囊化贵金属催化剂具有良好的反应物选择性,抗毒物性能和重复使用性。
     第五章讨论的工作是将封装有贵金属的沸石微囊反应器成功拓展应用在生物手性胺分子的动态动力学拆分中。由于该反应本身涉及金属与酶的协同催化,是个多步反应,反应物、催化剂之间比较容易相互影响,通常具有较低的反应效率。在本章开发的沸石微囊反应器中,由于沸石囊壁的隔离作用,贵金属Pt与酶被分离在两个区域中,两步反应可以同时顺利进行。Pt催化剂可以表现出很好的加氢脱氢活性,而不会与大分子酶中含硫含氮物质结合,具有很高的转化率。此外,通过系列催化剂反应性能的比较,我们发现,沸石微囊的紧密保护作用不仅可以有效的防止活性催化物种的中毒,还可以巧妙的阻止副反应的发生,保证该反应具有很高的选择性。同时,由于具有分子筛分隔离作用,沸石壳层能有效地阻止活性物种的流失,从而保证了催化剂高的重复使用性,为生物手性胺的动态动力学拆分提供更多的催化剂选择。
     第六章在以上应用的基础上,研究了沸石微囊反应器的深度功能化。本章与第七章的工作均为具有进一步拓展性质的工作。在本章工作中,介绍了沸石微囊反应器介孔功能化的制备过程。我们在合成的全硅沸石空心微囊反应器的基础上,成功的进行了微囊内部介孔碳化以及微囊外壳介孔化修饰,并对各个功能化的沸石微囊反应器进行了详细表征。我们发现,控制蔗糖浓度,分散均匀的独立微囊可以在其内部成功形成碳化网络结构。而在微囊介孔化修饰中,体系的酸碱性对沸石微囊形貌的保持非常重要。此外,通过控制体系中硅源的含量可以调节沸石外部介孔层的厚度。这些功能化的微囊材料也为多功能一体化催化剂提供了更多参考与选择。
     第七章是对沸石微囊反应器的其他拓展研究。本章将之前silicalite-1沸石微囊反应器的合成方法以及机理拓展至其他沸石微囊反应器中,主要研究了含Al沸石微囊反应器及含Ti沸石微囊反应器的制备方法以及表征,进一步丰富了沸石微囊反应器的种类。由于具有不同的催化活性以及物化性质,不同类型的沸石微囊反应器可以适应不同催化反应的需求,可能在催化,光电材料等领域具有广泛的用途。
In recent years, the synthesis and applications of microcapsule reactor have attracted much attention in fields of physics, chemistry, material science, biology and so on. With regular microporous structure, adjustable surface properties, great surface area, nano-zeolite has a wide range of applications in shape-selecting catalysis, adsorption separation and many other fields. The zeolitic microcapsule reactor (ZMR) could keep the advantages of both nano-zeolite and microcapsule rector at the same time with the special micro-environment and the protective effect of zeolitic shell. In detail, the zeolite shell could contain the following characteristics:(1) the selectivity for the reactant/product/intermediate-complex, which then changes the equilibrium of the reaction and enhances the final selectivity of the desired product;(2) the screening effect of the molecules, which protects the activity of the active species inside the ZMR from poisoning and leaching outside;(3) the isolation effect of the multi-step reactions, which divides the reaction system into different regions and avoids the interaction of different reactants as well as catalysts;(4) the synergistic effect of various catalysts, which makes the multi-functional catalyst become possible. Correspondingly, it should have great development potential in various domains like the controllable drug release, the chemical and biological catalyst.
     However, there are still challenges in the urgent research of ZMR. Firstly, the present fabrication methods are expensive; secondly, it is difficult to control the morphology of ZMR precisely; thirdly, its formation mechanism is still not clear in the previous report, and finally, there are only a few practical applications of ZMR and rare reports about the deep functionalization of ZMR. These problems would limit the further modification and application of ZMR. Therefore, the research dealing with synthesis and growth mechanism of ZMR as well as designing other functional microcapsule has been expected to promote the development of such nano-materials.
     This dissertation focuses on the fabrication, application and functionalization of ZMR. A new method was originally developed and the formed hollow microcapsule was well characterized. New growth mechanisms were proposed on the basis of systematic study about their fabrication. Afterwards, the catalytic species were encapsulated into the ZMR (such as Pt@S1), and then applied in series of practical catalytic reactions. Finally, the ZMR was further modified with various functional methods. Besides, due to the facilities of the process, novel product structures and excellent performance of ZMR, the special material proposed in this work will open opportunities for the synthesizing and designing of functional microcapsules. The details of each chapter are listed below.
     In Chapter2, hollow silicalite-1microcapsules (HSMs) were fabricated through the mesoporous silica spheres template approach by hydrothermal method in a simple system containing only sodium hydroxide. The mechanism for this process was investigated. The formed microcapsule was well characterized. During the synthesis, the dissolution rate of mesoporous silica spheres was hastened with the increasing of the alkalinity in solution. When the rates of zeolite inter-growth and template dissolution were matched with each other, the perfect ZMR could be successfully obtained.
     In Chapter3, the detailed formation process of ZMR was investigated in the hydrothermal system. The effects of the starting gel composition together with the hydrothermal synthesis conditions such as alkalinity, tetra-propylammonium cation (TPA+) content, and temperature on the features of microcapsules were comprehensively discussed, and a related mechanism was presented. It is found that the matching of core dissolution rate (Red) and silicalite-1shell inter-growth rate (Rsi) is crucial for the formation of perfect ZMR. The excellent ZMR with dense inter-grown shell structure as well as perfect hollow center can be fabricated by controlling the relative rates of the dissolution of silica template core and the formation of zeolitic shell.
     In Chapter4, zeolitic microcapsule with active Pt nanoparticles encapsulated (Pt@S1) was fabricated firstly and then successfully explored in the controllable multistep reactions. So far, the most effective approaches for hydrazone preparation is based on the condensation of the N-H group in phenylhydrazine and the carbonyl group in ketone, and the ketone is industrially prepared by the selective oxidation of alcohol. If these two operations could be integrated into one reactor, i. e., synthesizing hydrazone directly from alcohol, the eco-efficiency and the value of the fabrication process would be significantly enhanced. However, the problem for achieving such goal relies on the fact that the platinum, known as a good catalyst for alcohol oxidation, would loss its activity by the strong interaction with N atoms in phenylhydrazine. Comparison between the commercial Pt/SiO2, the broken Pt@S1and the intact Pt@S1indicates that it is the microcapsule that ensures the successful tandem reaction. The zeolitic shell could not only protect the active site from poisoning by the molecular of big size but also enable the good reusability of Pt@S1. Besides, the catalyst could be easily dispersed and recollected, presenting variety functions in the catalytic domain.
     In Chapter5, the platinum-encapsulated ZMR catalyst is successfully employed in the dynamic kinetic resolution of amine and this kind of catalyst could avoid the disadvantages of the interaction between the metal and the enzyme. It is found that the existence of the silicalite-1shell not only effectively prevents the deactivation of both enzyme and Pt by isolating them in different regions of reaction system, but also significantly reduces the formation of by-products on the Pt nanoparticles within the confined space of ZMR. Such features of zeolitic shell should further promote the designing of various catalysts for multi-step reaction network.
     In Chapter6, the deep functionalization of ZMR was studied. This chapter and the following chapter are both extension works. In this chapter, the preparation process of the functionalized ZMR was discussed. At the external shell, the ZMR was successfully modified with mesoporous materials. While inside the ZMR, the mesoporous carbon network could also be successfully formed through the injection of sugar into the template. Each functionalized ZMR was well characterized.
     In Chapter7, the extend research for the ZMR was discussed. The synthesis method and the mechanism proposed before were explored to other kind of ZMR containing Al and Ti species. Because of their different catalytic activities and chemical properties, different types of ZMR can be adapted to meet various needs of different catalytic reaction. They will probably find wide applications in the construction of catalysis, photonic or electronic materials.
引文
[1]B. Samanta, X. C. Yang, Y. Ofir, M.-H. Park, D. Patra, S. S. Agasti, O. R. Miranda, Z.-H. Mo, V. M. Rotello, Angew. Chem. Int. Ed.,48 (2009) 5341
    [2]D. G. Shchukin, K. Kohler, H. Mohwald, G. B. Sukhorukov, Angew. Chem. Int. Ed.,44 (2005) 3310
    [3]J. Bai, S. Beyer, W. C. Mark, R. Rajagopalan, D. Trau, Angew. Chem. Int. Ed., 49(2010)5189
    [4]C. S. Peyratout, L. Dahne, Angew. Chem. Int. Ed.,43 (2004) 3762
    [5]W. Meier, Chem. Soc. Rev.,29 (2000) 295
    [6]O. Kreft, M. Prevot, H. Mohwald, G. B. Sukhorukov, Angew. Chem. Int. Ed.,46 (2007) 5605
    [7]J. Lee, J. C. Park, H. Song, Adv. Mater.,20 (2008) 1523
    [8]H. Song, R. M. Rioux, J. D. Hoefelmeyer, R. Komor, K. Niesz, M. Grass, P. Yang, G. A. Somorjai, J. Am. Chem. Soc.,128 (2006) 3027
    [9]吴骊珠(Wu L Z),张丽萍(Zhang L P),李红茹(Li H R),感光科学与光化学(Photographic science and photochemistry),18 (2000) 348
    [10]李巧霞(Li Q X),宋宝珍(Song B Z),仰振球(Yang Z Q),过程工程学报(The Chinese Journal of Process Engineering),6 (2006) 608
    [11]李洪波(Li H B),王常勇(Wang C Y),江红(Jiang H),解放军医学杂志(Medical Journal of Chinese People's Liberation Army),31 (2006) 83
    [12]V. Bisceglie, Ztschr. Krebsforsch,40 (1933) 122
    [13]T. M. S. Chang, Science,146 (1964) 524
    [14]G M. O'Shea, A. M. Sun, Am. Diabetes Assoc.,35 (1986) 943-946
    [15]薛毅珑(Xue Y L),王振福(Wang Z F),张莉(Zhang L), CN 134 5234, 2002
    [16]M. Lohr, F. Hummel, G. Faulmann, Cancer Chemotherapy and Pharmacology, 49(2002)S21
    [17]于炜婷(Yu W T),雄鹰(Xiong Y),刘袖洞(Liu X D),高等学校化学学报(Chemical Journal of Chinese universities),25 (2004)1381-1383
    [18]S. M. Dang, S. Gerecht-Nir, J. Chen, Stem Cells,22 (2004) 275
    [19]A. Prokop, D. J. Hunkeler, A. C. Powers, Adv. Polym. Sci.,136 (1998) 53
    [20]V. Marciano, A. Minore, V. T. Liveri, Colloid Polym. Sci.,278 (2000) 250
    [21]P. Calandra, M. Goffredi, V T. Liveri, Colloids and Surfaces A:Physicochem. Eng. Aspects,160(1999)9
    [22]P. Bagwerahul, C. Rhilarkartic, Langmuir,16 (2000) 905
    [23]M. Boutonnet, J. Kizling, P. Stenius, Colloids and Surfaces A:Physicochem. Eng. Aspects,5(1982)209
    [24]成国祥(Cheng G X),沈锋(Shen F),姚康德(Yao K D),化工进展(Chemical Industry and Engineering Progress),2 (1998) 39
    [25]C. F. Karayigitoglu, M. Tata, V. T. John, Colloids and Surfaces A:Physicochem. Eng. Aspects,82(1994) 151
    [26]K. J. Kurihara, J. Kizling, P. Stenius, J. Am. Chem. Soc.,105 (1983) 2574
    [27]P. Barnickel, A. Wokaun, W. Sager, J. Colloid Interf. Sci.,148 (1992) 80
    [28]吴宗斌(Wu Z B),王丽萍(Wang L P),洪广言(Hong G Y),,应用化学(Chinese Journal of Applied Chemistry),16(1999)9
    [29]Y. Z. Fu, X. D. Xiang, J. Dispersion Sci. Technol.,29 (2008) 861
    [30]J. Cheng, S. Pei, B. Yue, L. Qian, C. He, Y. Zhou, H. He, Microporous and Mesoporous Materials,115 (2008) 383
    [31]T. F. C. Salum, A. M. Baron, E. Zago, Biocatal Biotransfor,26 (2008) 197
    [32]A. A. Date, M. S. Nagarsenker, Int. J. Pharm.,355 (2008) 19
    [33]J. H. Chen, C. Y. Cheng, W. Y. Chiu, Eur. Polym. J., AA (2008) 3271
    [34]Y. F. Shi, C. L. Tu, Q. Zhu, Nanotechnology,19 (2008) 445609
    [35]G. Astray, A. Cid, L. Garcia-Rio, Prog. React. Kinet. Meek,33 (2008) 81
    [36]B. H. Tan, K. C. Tam, Adv. Colloid Interfac. Sci.,136 (2008) 25
    [37]S. Paria, Adv. Colloid Interf ac. Sci.,138 (2008) 24
    [38]C. H. Tung, J. Q. Guan, J. Am. Chem. Soc.,120 (1998) 11874
    [39]C. H. Tung, Z. Y. Yuan, L. Z. Wu, J. Org. Chem.,64 (1999) 5156
    [40]J. F. G. A. Johan, E. W. Meijer, M. M. de B. Ellen, J. Am. Chem. Soc.,117 (1995)4417
    [41]Van de Coevering Rob, A. P. Alfers, D. Johannes, J. Am. Chem. Soc.,128 (2006) 12700
    [42]P. Yang, W Zhang, Y. K. Du, J. Mol. Catal. A-Chem.,260 (2006) 4
    [43]L. S. Sun, D. V. Ca, J. A. Cox, J. Solid State Electrochem.,9 (2005) 816
    [44]S. L. Poe, L. M. Kobas, D. T. McQuade, J. Am. Chem. Soc.,129 (2007) 9216
    [45]Z. H. Yang, Z. F. Zhang, N. Z. Wu, Colloids and Surfaces A:Physicochem. Eng. Aspects,312(2008) 113
    [46]A. A. Antipov, G B. Sukhorukov, Y. A. Fedutik, Langmuir,18 (2002) 6687
    [47]D. H. Turkenburg, A. A. Antipov, M. B. Thathagar, Phys. Chem. Chem. Phys.,7 (2005) 2237
    [48]M. P. Krafft, L. Schieldknecht, P. Marie, Langmuir,17 (2001) 2872
    [49]C. Nardin, T. Hirt, J. Leukel, Langmuir,16 (2000) 1035
    [50]W. Meier, C. Nardin, M. Winterhalter, Angew. Chem. Int. Ed.,39 (2000) 4599
    [51]A. M. Granados, R. H. de Rossi, J. Org. Chem.,66 (2001) 1548
    [52]K. Surendra, N. S. Krishnaveni, Y. V. D. Nageswar, J. Org. Chem.,68 (2003) 4994
    [53]M. Pattabiraman, A. Natarajan, L. S. Kaanumalle, Org. Lett.,4 (2005) 529
    [54]N. S. Krishnaveni, K. Surendra, K. R. Rao, Chem. Commun.,5 (2005) 669
    [55]程志鹏(Cheng Z P),杨毅(Yang Y),刘小娣(Liu X D),现代化工(Modern Chemical Industry),26(2006) 18
    [56]A. Henglein, J. Phys. Chem. B,104 (2000) 2201
    [57]L. Y. Cao, L. M. Tong, P. Diao, Chem. Mater.,16 (2004) 3239
    [58]C. S. Ah, S. J. Kim, D. J. Jang, J. Phys. Chem. B,110 (2006) 5486
    [59]S. J. Cho, A. M. Shahin, G. J. Longy, Chem. Mater,18 (2006) 960
    [60]牟国俊(Mou G J),赵斌(Zhao B),无机化学学报(Chinese Journal of Inorganic Chemistry),20 (2004) 1055
    [61]T. J. Foley, C. E. Johnson, K. T. Higa, Chem. Mater,17 (2005) 4086
    [62]刘志杰(Liu Z J),赵斌(Zhao B),张宗涛(Zhang Z T),无机化学学报(Chinese Journal of Inorganic Chemistry),12 (1996) 30
    [63]熊晓东(Xiong X D),田彦文(Tian Y W),翟秀静(Qu X J),中国有色金属学报(The Chinese Journal of Nonferrous Metals),6 (1996) 42
    [64]O. C. Monteiro, A. C. C. Esteves, T. Trindade, Chem. Mater,14 (2002) 2900
    [65]C. S. Yang, Q. Liu, S. M. Kauzlarich, Chem. Mater,12 (2000) 983
    [66]刘飚(Liu B),官建国(Guan J G),王琦(Wang Q),功能材料(Journal of Functional Materials),36 (2005) 132
    [67]S. W. Keller, S. A. Johnson, E. S. Brigham, J. Am. Chem. Soc.,117 (1995) 12879
    [68]H. Shiho, N. Kawahashi, J. Colloid Interface Sci.,226 (2000) 91
    [69]T. Cassagneau, F. Caruso, Adv. Mater.,14 (2002) 732
    [70]J. Wu, F. P. Hu, X. D. Hu, Electrochimica Acta,53 (2008) 8341
    [71]W. M. Zhang, J. S. Hu, Y. G. Guo, Adv. Mater.,20 (2008) 1160
    [72]F. Li, Q. Q. Zou, Y. Y. Xia, Journal of Power Sources,177 (2008) 546
    [73]J. Chattopadhyay, H. R. Kim, S. B. Moon, International Journal Of Hydrogen Eenrgy,33 (2008) 3270
    [74]G. Chen, D. Xia, Z. R. Nie, Chem. Mater.,19 (2007) 1840
    [75]B. Sreedhar, P. Radhika, B. Neelima, Catal. Commun.,10 (2008) 39
    [76]S. H. Joo, J. Y. Park, P. D. Yang, Nat. Mater.,8 (2009) 126
    [77]S. Naito, K. Minoshima, T. Miyao, Top. Catal.,39 (2006) 131
    [78]M. A. Montenegro, I. L. Nunes, A. Z. Mercadante, J. Agr. Food Chem.,55 (2007) 323
    [79]G. J. de A. A. Soler-illia, C. Sanchez, B. Lebeau, J. Patarin, Chem. Rev.,102 (2002) 4093
    [80]C. S. Cundy, P. A. Cox, Chem. Rev.,103 (2003) 663
    [81]T. Wakihara, T. Okubo, Chem. Lett.,34 (2005) 276
    [82]程志林(Cheng Z L),晁自胜(Chao Z S),万惠霖(Wan H L),化学进展(Progress in Chemistry),16 (2004) 61
    [83]A. Dyer, Stud. Surf. Sci. Catal.,157 (2005) 181
    [84]M. J. Zamzow, B. R. Eichbaum, K. R. Sandgren, D. E. Shanks, Sep. Sci. Technol.,25 (1990) 1555
    [85]L. Tosheva, V. P. Valtdhev, Chem. Mater.,17 (2005) 2494
    [86]S. Mintova, S. Y. Mo, T. Bein, Chem. Mater.,13 (2001) 901
    [87]Z. B. Wang, A. Mitra, H. T. Wang, L. M. Huang, Y. S. Yan, Adv. Mater.,13 (2001) 1463
    [88]F. Xu, Y. J. Wang, X. D. Wang, Y. H. Zhang, Y. Tang, P. Y. Yang, Adv. Mater, 15(2003) 1751
    [89]Y. H. Zhang, X. Y. Wang, W. Shan, B. Y. Wu, H. Z. Fan, X. J. Yu, Y. Tang, P. Y. Yang, Angew. Chem. Int. Ed.,44 (2005) 615
    [90]陈立峰(Chen L F),史静(Shi J),张亚红(Zhang Y H),唐颐(Tang Y),化学进展(Progress in Chemistry),2012, in press.
    [91]L. D. Rollmann, N. J. Princeton, USP 4088605,1978
    [92]孔德金(Kong D J),童伟益(Tong W Y),郑均林(Zheng J L),化学通报(Chemistry On Line),4 (2008) 249
    [93]A. Lombard, A. Simon-Masseron, L. Rouleau, Microporous and Mesoporous Materials,129(2010)220
    [94]张强(Zhang Q),李春义(LiCY),山红红(Shan H H),高等学校化学学报(Chemical Journal of Chinese Universities),28 (2007) 2030
    [95]J. F. Charnell, J. Cryst. Growth,8 (1971) 291
    [96]F. Porcher, Y. Dusausoy, M. Souhassou, C. Lacomte, Mineral Mag.,64 (2000) 1
    [97]D. V. Vu, M. Miyamoto, N. Nishiyama, Y. Egashira, K. Ueyama, J. Catal.,243 (2006)389
    [98]M. Miyamoto, T. Kamei, N. Nishiyama, Y. Egashira, K. Ueyama, Adv. Mater., 17(2005) 1985
    [99]A. Goossens, B. H. Wouters, V. Buschmann, J. A. Martens, Adv. Mater.,11 (1999)561
    [100]D. J. Kong, J. L. Zheng, X. H. Yuan, Y. D. Wang, D. Y. Fang, Microporous and Mesoporous Materials,119 (2009) 91
    [101]E. Khan, E. P. Hu, Z. P. Lai, Microporous and Mesoporous Materials,118 (2009)210
    [102]L. Gora, B. Sulikowski, E. M. Serwicka, Applied Catalysis A:General,32 (2007)316
    [103]Y. Deng, C. Deng, D. Qi, C. Liu, J. Liu, X. Zhang, D. Zhao, Adv. Mater.,21 (2009)1377
    [104]S. Ikeda, K. Hirao, S. Ishino, Catalysis Today,117 (2006) 343
    [105]J. L. Zhou, X. F. Zhang, J. Zhang, Catalysis Communications,10 (2009) 1804
    [106]S. A. Talesh, S. Fatemi, M. Davoodpour, Separation Science and Technology, 46(2011) 1138
    [107]Y. Bouizi, L. Rouleau, V. P. Valtchev, Microporous and Mesoporous Materials, 91(2006)70
    [108]Y. Bouizi, I. Diaz, L. Rouleau, V. P. Valtchev, Adv. Funct. Mat.,15 (2005) 1955
    [109]Y. Bouizi, L. Rouleau, V. P. Valtchev, Chem. Mater.,18 (2006) 4959
    [110]Y. Bouizi, G. Majano, S. Mintova, V. P. Valtchev, J. Phys. Chem. C,111 (2007) 4535
    [111]E. Donath, G. B. Sukhorukov, F. Caruso, S. A. Davis, H. Mohwald, Angew. Chem., Int. Ed.37 (1998) 2202; (b) M. S. Fleming, T. K. Mandal, D. R. Walt. Chem. Mater.,13 (2001)2210
    [112](a) N. Kawahashi, H. J. Shiho, Mater. Chem.,10 (2000) 2294; (b) C. Graf, A. van Blaaderen, Langmuir,18 (2002) 524
    [113](a) F. Caruso, R. A. Caruso, H. Mohwald, Science,282 (1998) 1111; (b) Z. Zhong, Y. Yin, B. Gates, Y. Xia, Adv. Mater,12 (2000) 206; (c) I. Tissot, J. P. Reymond, F. Lefebvre, E. Bourgeat-Lami, Chem. Mater.,14 (2002) 1325
    [114]Y. Wang, A. S. Angelatos, F. Caruso, Chem. Mater.,20 (2008) 848
    [115]A. G. Dong, Y. J. Wang, Y. Tang, Chem. Mater.,14 (2002) 3217
    [116]A. G. Dong, Y. J. Wang, Y. Tang, Microporous and Mesoporous Materials,64 (2003) 69
    [117]A. G. Dong, N. Ren, W. L. Wang, Y. J. Wang, Y. H. Zhang, D. Wang, J. H. Hu, Z. Gao, Y. Tang, Adv. Funct. Mater,13 (2003) 943
    [118]J. Shi, N. Ren, Y. Tang, Microporous and Mesoporous Materials,132 (2010) 181
    [119]A. G. Dong, Y. J. Wang, Y. Tang, N. Ren, W. L. Yang, Z. Gao, Chem. Commun., (2002) 350
    [120]E. Khan, A. Rajendran, Z. P. Lai, Ind. Eng. Chem. Res.,49 (2010) 12423
    [121]童伟益(Tong W Y),刘志成(Liu Z),孔德金(Kong D J),高等学校化学学报(Chemical Journal of Chinese Universities),30 (2009) 959
    [122]W. W Ji, M. Li, C. F. Zeng, J. F. Yao, Microporous and Mesoporous Materials, 143(2007)189
    [123]张强(Zhang Q),崔秋凯(Cui Q K),李春义(LiCY),高等学校化学学报(Chemical Journal of Chinese Universities),30(2009) 1060
    [124]B. Chamnankida, T. Witoona, P. Kongkachuichay, Colloids and Surfaces A: Physicochem. Eng. Aspects,380 (2011) 319
    [125]J. M. Notestein, A. Katz, Chem. Eur. J.,12 (2006) 3954
    [126]C. Thieuleux, E. A. Quadrelli, J. M. Basset, J. Dobler, J. Sauer, Chem. Commun., (2004) 1729
    [127]Q. Jin, J. Bao, H. Sakiyama, Res. Chem. Intermed,37 (2011) 177
    [128]G. Yang, N. Tsubaki, J. Shamoto, Y. Yoneyama, Y. Zhang, J. Am. Chem. Soc., 132(2010)8129
    [129]N. Ren, Y. H. Yang, Y. H. Zhang, Q. R. Wang, Y. Tang, Journal of Catalysis, 246(2007)215
    [130]N. Ren, Y. H. Yang, J. Shen, Y. H. Zhang, H. L. Xu, Z. Gao, Y. Tang, Journal of Catalysis,251 (2007) 182
    [131]M. E. Davis, Acc. Chem. Res.,26 (1993) 111
    [132]J. S. Buchanan, Catalysis Today,55 (2000) 207
    [133]T. Kozo, W. F. Holderick, Applied Catalysis A:General,181 (1999) 399
    [134]Y. Kyesang, P. G. Smirniotis, Applied Catalysis A:General,227 (2002) 171
    [135]杨学萍(Yang X P),工业催化(Industrial Catalysis),11 (2003) 19
    [136]N. Nishiyama, M. Miyamoto, Y. Egashira, K. Ueyama, Chem. Commun., (2001) 1746
    [137]D. M.Chen, J. Wang, X. Q. Ren, Catal. Lett.,136 (2010) 65
    [138]D. V. Vu, M. Miyamoto, N. Nishiyama, Catal. Lett.,127 (2009) 233
    [139]Y. Fan, D. Lei, G. Shi, Catalysis Today,114 (2006) 388
    [140]J. J. Zheng, Q. H. Zeng, Y. Y. Zhang, Chem. Mater.,22 (2010) 6065
    [141]J. J. Zheng, X. W. Zhang, R. F. Li, J. Porous Mater.,16 (2009) 731
    [142]张哲(Zhang Z),宗保宁(Zong B N),催化学报(Chinese Journal of Catalysis),24(2003)856
    [143]陈立(Chen L),田爽(Tian S),侯鑫(Hou X),化工科技(Science and Technology in Chemical Industry),17 (2009) 23
    [144]N. Tsubaki, Y. Yoneyama, K. Michiki, Catalysis Communications,4 (2003) 108
    [145]J. J. He, Y. Yoneyama, B. L. Xu, Langmuir,21 (2005) 1699
    [146]J. J. He, Z. L. Liu, Y. Yoneyama, Chem. Eur. J,12 (2006) 8296
    [147]G. H. Yang, Y. S. Tan, Y. Z. Han, Catalysis Communications,9 (2008) 2520
    [148]G. H. Yang, J. J. He, Y. Yoneyama, N. Tsubaki, Res. Chem. Interned,34 (2008) 771
    [149]G. H. Yang, J. J. He, N. Tsubaki, Applied Catalysis A:General,3 (2007) 99
    [150]杨国辉(Yang G H),孙晓瑜(Sun X Y),椿范立(Tsubaki N),山东大学学报(Journal of Shandong University),39 (2009) 92
    [151]J. Bao, J. J. He, N. Tsubaki, Angew. Chem. Int. Ed,47 (2008) 353
    [152]G. H. Yang, M. Thongkam, T. Vitidsant, Catalysis Today,171 (2011) 229
    [153]X. G. Li, Y. Zhang, F. Z. Meng, Top Catal.,53 (2010) 608
    [154]高滋(Gao Z),何鸣远(He M Y),戴逸云(Dai Y Y),沸石催化与分离技术(Zeolite Catalysis and Seperation technique)北京:中国石化出版社(Beijing: Chinese Petrochemical Press),1999:1-34
    [155]M. Iwamoto, K. Yamaguchi, Y. Akutagawa, J. Phys. Chem.,88 (1984) 4195
    [156]Y. J. Wang, Y. Tang,14th International Zeolite Conference, (2004) 2027
    [157]A. Thijs, G. Peeters, E. F. Vansant, J. Chem. Soc. Tran.,79 (1983) 2835
    [158]M. Niwa, H. Itoh, S. Koto, Chem. Commun., (1982) 819
    [159]A. S. M. Chong, X. S. Zhao, J. Phys. Chem. B.,107 (2003) 12650
    [160](a) S. L. Burkett, S. D. Sims, S. Mann, Chem. Commun., (1996) 1367; (b) J. D. Macquaire, J. Chem. Soc. Commun., (1996) 1961
    [161]R. Richer, L. Mercier, Chem. Commun., (1998) 1775
    [162]X. Qian, J. Du, B. Li, M. Si, Y. Yang, Y. Hu, G. Niu, Y. Zhang, H. Xu, B. Tu, Y. Tang, D. Zhao, Chem. Sci.,2 (2011) 2006
    [1]F. Cucinotta, Z. Popovic, E. A. Weiss, G. M. Whitesides, L. De Cola, Adv. Mater.,21 (2009) 1142
    [2]D. S. Bhange, N. A. Pandya, R. K. Jha, V. Ramaswamy, Micropor. Mesopor. Mater.,113(2008)64
    [3]W. Chaikittisilp, M. E. Davis, T. Okubo, Chem. Mater.,19 (2007) 4120
    [4]D. J. Wang, Y. Tang, A. G. Dong, Y. H. Zhang, Acta Chim. Sinica,61 (2003) 1425
    [5]Y. J. Wang, Y. Tang, A. G. Dong, X. D. Wang, N. Ren, W. Shan, Z. Gao, Adv. Mater.,14(2002)994
    [6]T. Still, R. Sainidou, M. Retsch, U. Jonas, P. Spahn, G. P. Hellmann, G. Fytas, Nano. Lett.,8(2008)3194
    [7]H. L. Wee, Z. Wang, L. Tosheva, L. Itani, V. Valtchev, A. M. Doyle, S. Mintova, Micropor. Mesopor. Mater.,116 (2008) 22
    [8]Y. Bouizi, G. Majano, S. Mintova, V. Valtchev, J. Phys. Chem. C,111 (2007) 4535
    [9]C. S. Cundy, P. A.Cox, Chem. Rev.,103 (2003) 663
    [10]N. Ren, Y. H. Yang, Y. H. Zhang, Y. Tang, J. Catal.,246 (2007) 215
    [11]V. Valtchev, Chem. Mater.,14 (2002) 4371
    [12]H. Zou, S. S. Wu, J. Shen, Acta Chim. Sinica,67 (2009) 266
    [13]X. D. Wang, W. L. Yang, Y. Tang, J. Wang, S. K. Fu, Z. Gao, Chem. Commun., (2000)2161
    [14]A. G. Dong, Y. J. Wang, Y. Tang, N. Ren, Y. H. Zhang, Z. Gao, Chem. Lett., 32 (2003) 790
    [15]A. E. Persson, B. J. Schoeman, J. Sterte, J. E. Otterstedt, Zelites,14 (1994) 557
    [16]A. G. Dong, Y. J. Wang, D. J. Wang, W. L. Yang, Y. H. Zhang, N. Ren, Z. Gao, Y. Tang, Micropor. Mesopor. Mater.,64 (2003) 69
    [17]K. H. Gilbert, R. M. Baldwin, J. D. Way, Ind. Eng Chem. Res.,40 (2001) 4844
    [18]J. D. Rimer, D. G. Vlachos, R. F. Lobo, Langmuir,21 (2005) 8960
    [1](a)Y. Zhao, L. Jiang, Adv. Mater.,21 (2009) 3621; (b) X. W. (David) Lou, L. A. Archer, Z. Yang, Adv. Mater.,20 (2008) 3987
    [2](a) T. Still, R. Sainidou, M. Retsch, U. Jonas, P. Spahn, G. P. Hellmann, G. Fytas, Nano. Lett.,8 (2008) 3194; (b) Y. Bouizi, G. Majano, S. Mintova, V. Valtchev, J. Phys. Chem. C.111 (2007) 4535; (c) C. S. Cundy, P. A. Cox, Chem. Rev.,103 (2003) 663
    [3]H. L. Wee, Z. Wang, L. Tosheva, L. Itani, V. Valtchev, A. M. Doyle, S. Mintova, Micropor. Mesopor. Mater.,116 (2008) 22
    [4]F. Caruso, M. Spasova, V. Salgueirino-Maceira, L. M. Liz-Marzan, Adv. Mater., 13 (2001)1090
    [5]X. L. Xu, S. A. Asher, J. Am. Chem. Soc.,126 (2004) 7940
    [6]D. Chen, L. Li, F. Tang, S. Qi, Adv. Mater.,21 (2009) 3804
    [7]B. Samanta, X. C. Yang, Y. Ofir, M. H. Park, D. Patra, S. S. Agasti, O. R. Miranda, Z. H. Mo, V. M. Rotello, Angew. Chem. Int. Ed.,48 (2009) 5341
    [8]J. J. He, Y. Yoneyama, B. L. Xu, N. Nishiyama, N. Tsubaki, Langmuir,21 (2005)1699
    [9]R. Kanthasamy, K. Barquist, S. C. Larsen, Micropor. Mesopor. Mater.,113 (2008) 554
    [10]L. Han, J. Yao, D. Li, J. Ho, X. Zhang, C. H. (Charlie) Kong, Z. M. Zong, X. Y. Wei, H. Wang, J. Mater. Chem.,18 (2008) 3337
    [11]R. Akiyama, S. Kobayashi, Chem. Rev.,109 (2009) 594
    [12]V. Valtchev, Chem. Mater.,14 (2002) 4371
    [13]H. Kim, M. Lee, Y. Kim, J. Huh, H. Kim, M. Kim, T. Kim, V. N. Phan, Y. B. Lee, G. R. Yi, S. Haam, K. Lee, Angew. Chem. Int. Ed.,48 (2009) 5129
    [14]D. P. Serrano, J. Aguado, G. Morales, J. M. Rodriguez, A. Peral, M. Thommes, J. D. Epping, B. F. Chmelka, Chem. Mater.,21 (2009) 641
    [15]C. Xiong, D. Coutinho, K. J. B. Jr, Micropor. Mesopor. Mater.,86 (2005) 14
    [16]J. Cheng, S. Pei, B. Yue, L. Qian, C. He, Y. Zhou, H. He, Micropor. Mesopor. Mater.,115(2008)383
    [17]E. Donath, G. B. Sukhorukov, F. Caruso, S. A. Davis, H. Mcoohwald, Angew. Chem. Int. Ed.,37 (1998) 2202
    [18]F. Caruso, Chem. Eur. J.,6 (2000) 413
    [19]X. D. Wang, W. L. Yang, Y. Tang, J. Wang, S. K. Fu, Z. Gao, Chem. Commun., (2000)2161
    [20]A. G. Dong, Y. Wang, D. Wang, W. Yang, Y. Zhang, N. Ren, Z. Gao, Y. Tang, Micropor. Mesopor. Mater.,64 (2003) 69
    [21]N. Ren, Y. H. Yang, Y. H. Zhang, Y. Tang, J. Catal.,246 (2007) 215
    [22]N. Ren, Y. H. Yang, J. Shen, Y. H. Zhang, H. L. Xu, Z. Gao, Y. Tang, J. Catal., 251(2007)182
    [23]A. G. Dong, Y. Wang, Y. Tang, D. Wang, N. Ren, Y. Zhang, Z. Gao, Chem. Lett.,32 (2003) 790
    [24]A. E. Persson, B. J. Schoeman, J. Sterte, J. E. Otterstedt, Zelites,14 (1994) 557
    [25]A. G. Dong, N. Ren, W. L. Yang, Y. J. Wang, Y. H. Zhang, D. J. Wang, H. H. Hu, Z. Gao, Y. Tang, Adv. Fund. Mater.,13 (2003) 943
    [26]S. A. Shaurman, A. G. Okunev, A. F. Danilyuk, Y. I. Aristov, Colloid Journal, 4(2000) 502
    [27]J. Motuzas, A. Julbe, R. D. Noble, C. Guizard, Z. J. Beresnevicius, D. Cot, Micropor. Mesopor. Mater.,80 (2005) 73
    [1]L. M. Ambrosini, T. H. Lambert, ChemCatChem.,2 (2010) 1373
    [2]L. F. Tietze U. Beifuss, Angew. Chem. Int. Ed.,32 (1993) 131
    [3]E. Fernandez, A. Polo, A. Ruiz, C. Claver, S. Castillon, Chem. Commun., (1998) 1803
    [4]J. C. Wasilke, S. J. Obrey, R. T. Baker, G. C. Bazan, Chem. Rev.,105 (2005) 1001
    [5]Q. H. Zhang, W. P. Deng, Y. Wang, Chem. Commun., (2011) 9275
    [6]C. S. Peyratout, L. Dahne, Angew. Chem. Int. Ed.,43 (2004) 3762
    [7]A. N. Zelikin, Q. Li, F. Caruso, Angew. Chem. Int. Ed.,45 (2006) 7743
    [8]A. F. Faria, R. A. Mignone, M. A. Montenegro, A. Z. Mercadante, C. D. Borsarelli, J. Agric. Food Chem.,58 (2010) 8004
    [9]M. Zandi, S. A. Hashemi, P. Aminayi, J. Appl. Polym. Sci.,1 (2011) 586
    [10]A. Alexeev, R. Verberg, A. C. Balazs, Langmuir,23 (2007) 983
    [11]F. Liu, L. X. Wen, Z. Z. Li, W. Yu, H. Y. Sun, J. F. Chen, Mater. Res. Bull.,41 (2006)2268
    [12]B. Samanta, X. C. Yang, Y. Ofir, M. H. Park, D. Patra, S. S. Agasti, O. R. Miranda, Z. H. Mo, V. M. Rotello, Angew. Chem. Int. Ed.,48 (2009) 5341
    [13]Y. Zhao, L. Jiang, Adv. Mater.,21 (2009) 3621
    [14]A. Zabet-Khosousi, A. A. Dhirani, Chem. Rev.,108 (2008) 4072
    [15]H. F. Zhang, I. Hussain, M. Brust, M. F. Butler, S. P. Rannard, A. I. Cooper, Nat. Mater.,4 (2005) 787
    [16]A. Corma, Chem. Rev.,97 (1997) 2373
    [17]R. H. Baughman, A. A. Zakhidov, W A. de Heer, Science,297 (2002) 787
    [18]O. Kreft., A. G Skirtach, G B. Sukhorukov, H. Mohwald, Adv. Mater.,19 (2007) 3142
    [19]X. W. Lou, C. Yuan, L. A. Archer, Adv. Mater.,19 (2007) 3328
    [20]J. Wang, H. Zhang, X. Yang, S. Jiang, W. Lv, Z. Jiang, S. Z. Qiao, Adv. Funct. Mater,21 (2011)971
    [21]S. Ikeda, S. Ishino, T. Harada, N. Okamoto, T. Sakata, H. Mori, S. Kuwabata, T. Torimoto, M. Matsumura, Angew. Chem. Int. Ed.,45 (2006) 7063
    [22]J. Choi, H. Y. Yang, H. J. Kim, U. S. Son, Angew. Chem. Int. Ed.,49 (2010) 7718
    [23]K. Kamata, Y. Lu, Y. Xia, J. Am. Chem. Soc.,125 (2003) 2384
    [24]D. G Shchukin, G. B. Sukhorukov, H. Mohwald, Angew. Chem. Int. Ed.,42 (2003)4471
    [25]G. H. Yang, J. J. He, Y. Zhang, Y. Yoneyama, Y. S. Tan, Y. Z. Han, T. Vitidsant, N. Tsubaki, Energy Fuels.,22 (2008) 1463
    [26]N. Ren, Y. H. Yang, J. Shen, Y. H. Zhang, H. L. Xu, Z. Gao, Y. Tang, J. Catal., 251 (2007) 182
    [27]N. Ren, Y. H. Yang, Y. H. Zhang, Q. R. Wang, Y. Tang, J. Catal.,246 (2007) 215
    [28]X. Li, J. He, M. Meng, Y. Yoneyama, N. Tsubaki, J. Catal.,265 (2009) 26
    [29]G. Yang, N. Tsubaki, J. Shamoto, Y. Yoneyama, Y. Zhang, J. Am. Chem. Soc. 132(2010)8129
    [30]J. M. Keith, L. Gomez, J. Org. Chem.,71 (2006) 7113
    [31]R. M. Mohareb, K. A. El-Sharkawy, M. M. Hussein, H. M. El-Sehrawi, J. Pharm. Sci.& Res.,2 (2010) 185
    [32]R. Matunas, A. J. Lai, C. Lee, Tetrahedron,61 (2005) 6298
    [33]V. Lefebvre, T. Cailly, F. Fabis, S. Rault, J. Org. Chem.,75 (2010) 2730
    [34]T. Gehrmann, J. L. Fillol, S. A. Scholl, H. Wadepohl, L. H. Gade, Angew. Chem. Int. Ed.,50 (2011) 5757
    [35]S. Rollas, S. G. Kuciikgiizel, Molecules,12 (2007) 1910
    [36]N. P. Belskaya, W. Dehaen, V. A. Bakuleva, Special Issue Reviews and Accounts, i (2010) 275
    [37]R. M. Mohareb, D. H. Fleita, O. K. Sakka, Molecules,16 (2011) 16
    [38]A. Fajdek, A. Wroblewska, E. Milchert, Reac. Kinet. Mech. Cat.,103 (2011) 451
    [39]Y. H. Wang, H. Cong, F. F. Zhao, S. F. Xue, Z. Tao, Q. J. Zhu, G. Wei, Catal. Commun.,12(2011)1127
    [40]A. Bruggink, R. Schoevaart, T. Kieboom, Org. Process Res. Dev.,7 (2003) 622
    [41]J. R. Chang, S. L. Chang, T. B. Lin, J. Catal.,169 (1997) 338
    [42]Y. Govender, T. L. Riddin, M. Gericke, C. G. Whiteley, J. Nanopart. Res.,12 (2010)261
    [43]M. Wolter, A. Klapars, S. L. Buchwald, Org. Lett.,3 (2001) 23
    [1]T. C. Nugent, M. El-Shazlya, Adv. Synth. Catal.,352 (2010) 753
    [2]V. Farina, J. T. Reeves, C. H. Senanayake, J. J. Song, Chem. Rev.,106 (2006) 2734
    [3]Y. Kim, J. Park, M. J. Kim, Tetrahedron Lett.,51 (2010) 5581
    [4]D. Koszelewski, B. Grischek, S. M. Glueck, W. Kroutil, K. Faber, Chem.-Eur. J., 17(2011)378
    [5]M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. KeBeler, R. Sturmer, T. Zelinski, Angew. Chem. Int. Ed.,43 (2004) 788
    [6]C. Ma, X. L. Xu, P. Ai, S. M. Xie, Y. C. Lv, H. Q. Shan, L. M. Yuan, Chirality, 23(2011)379
    [7]Y. Ahn, S. B. Ko, M. J. Kim, J. Park, Coordin. Chem. Rev.,252 (2008) 647
    [8]A. Kamal, M. A. Azhar, T. Krishnaji, M. S. Malik, S. Azeeza, Coordin. Chem. Rev.,252 (2008) 569
    [9]M. Ito, T. Ootsuka, R. Watari, A. Shiibashi, A. Himizu, T. Ikariya, J. Am. Chem. Soc.,133(2011)4240
    [10]A. Parvulescu, J. Janssens, J. Vanderleyden, D. De Vos, Top. Catal.,53 (2010) 931
    [11]A. Parvulescu, D. De Vos, P. Jacobs, Chem. Commun., (2005) 5307
    [12]J. H. Lee, K. Han, M. J. Kim, J. Park, Eur. J. Org. Chem., (2010) 999
    [13]J. S. M. Samec, J. E. Backvall, P. G. Andersson, P. Brandt, Chem. Soc. Rev.,35 (2006) 237
    [14]A. N. Parvulescu, P. A. Jacobs, D. E. De Vos, Chem.-Eur. J.,13 (2007) 2034
    [15]H. P. Liang, H. M. Zhang, J. S. Hu, Y. G. Guo, L. J. Wan, C. L. Bai, Angew. Chem. Int. Ed,43(2004)1540
    [16]L. G Hutchins, R. E. Pincock, J. Org. Chem.,47 (1982) 607
    [17]E. J. Ebbers, G. J. A. Ariaans, J. P. M. Houbier, A. Bruggink, B. Zwanenburg, Tetrahedron,53 (1997) 9417
    [18]Y. Govender, T. L. Riddin, M. Gericke, C. G. Whiteley, J. Nanopart. Res.,12 (2010)261
    [19]B. Martin-Matute, J.-E. Backvall, Curr. Opin. Chem. Biol.,11 (2007) 226
    [20]A. G Dong, N. Ren, W. L. Yang, Y. J. Wang, Y. H. Zhang, D. J. Wang, H. H. Hu, Z. Gao, Y. Tang, Adv. Funct. Mater.,13 (2003) 943
    [21]M. Grun, C. Buchel, D. Kumar, K. Schumacher, B. Bidlingmaier, K. K. Unger, Stud. Surf. Sci. Catal.,128 (2000) 155
    [22]J. Shi, N. Ren, Y. H. Zhang, Y. Tang, Micropor. Mesopor. Mat.,132 (2010) 181
    [23]R. Li, W. Chen, H. Kobayashi, C. Ma, Green Chem.,12 (2010) 212
    [24]A. G. Dong, Y. J. Wang, D. J. Wang, W L. Yang, Y. H. Zhang, N. Ren, Z. Gao, Y. Tang, Micropor. Mesopor. Mat.,64 (2003) 69
    [25]R. Sturmer, Angew. Chem. Int. Ed.,36 (1997) 1173
    [26]F. A. Carey, Organic Chemistry (4th ed.), the McGraw-Hill Companies, United States of America,2000, p.673
    [27]A. Ganesan, B. D. Moore, S. M. Kelly, N. C. Price, O. J. Rolinski, D. J. S. Birch, I. R. Dunkin, P. J. Halling, Chemphyschem.,10 (2009) 1492
    [28]M. A. Andrade, P. Chacon, J. J. Merelo, F. Moran, Protein Engineering,6 (1993)383
    [29]J. R. Chang, S. L. Chang, T. B. Lin, J. Catal.,169 (1997) 338
    [1]A. Corma, Chem. Rev.,97 (1997) 2373
    [2]M. E. Davis, Nature,417 (2002) 813
    [3]D. Trong On, S. Kaliaguine, J. Am. Chem. Soc,.125 (2003) 618
    [4]G. J. de A. A. Soler-illia, C. Sanchez, B. Lebeau, J. Patarin, Chem. Rev.,102 (2002)4093
    [5]T. O. Do, A. Nossov, M. A. Springuel-Huet, C. Schneider, J. L. Bretherton, C. A. Fyfe, S. Kaliaguine, J. Am. Chem. Soc.,126 (2004) 14324
    [6]C. Galeano, R. Gttel, M. Paul, P. Arnal, A. H. Lu, F. Schth, Chem. Eur. J.,17 (2011)8434
    [7]H. R. Zhang, J. Chen, L. Shi, J. Am. Chem. Soc.,127 (2005) 8916
    [8]J. Kim, J. E. Lee, J. Lee, J. H. Yu, B. C. Kim, K. An, Y. Hwang, C. H. Shin, J. G. Park, J. Kim, T. Hyeon, J. Am. Chem. Soc.,128 (2006) 688
    [9]S. H. Joo, J. Y. Park, C. K. Tsung, Y Yamada, P. D. Yang, G. A. Somorjai, Nat. Mater.,8 (2009) 126
    [10]Y. H. Deng, Y. Cai, Z. K. Sun, J. Liu, C. Liu, J. Wei, W. Li, C. Liu, Y. Wang, D. Y. Zhao, J. Am. Chem. Soc.,132 (2010) 8466
    [11]F. Schuth, W. Schmidt, Adv. Mater.,14 (2002) 629
    [12]Y Wan, D. Y. Zhao, Chem. Rev.,107 (2007) 2821
    [13]A. Vinu, V. Murugesan, W. Bohlmann, M. Hartmann, J. Phys. Chem. B,108 (2004) 11496
    [14]A. Vinu, J. Justus, C. Anand, D. P. Sawant, K. Ariga, T. Mori, P. Srinivasu, V. V. Balasubramanian, S. Velmathi, S. Alam, Microporous Mesoporous Mater,116 (2008) 108
    [15]Y. Deng, D. Qi, C. Deng, X. Zhang, D. Zhao, J. Am. Chem. Soc.,130 (2008) 28
    [16]Z. M. Wang, W. D. Wang, N. Coombs, N. Soheilnia, G. A. Ozin, Acs. Nano.,4 (2010) 7437
    [17]X. F. Qian, B. Li, Y. Y Hu, G X. Niu, D. Y. H. Zhang, R. C. Che, Y. Tang, D. S. Su, A. M. Asiri, D. Y. Zhao, Chem. Eur. J.,18 (2012) 931
    [18]J. S. Yu, S. B. Yoon, Y. J. Lee, K. B. Yoon, J. Phys. Chem. B,109 (2005) 7040
    [19]Y Han, P. Pitukmanorom, L. Zhao, J. Y. Ying, Small,7 (2011) 326
    [20]L. Xu, Y J. Le, H. H. Wu, Y. M. Liu, Z. D. Wang, Y. T. Zhang, J. J. Xu, H. G. Peng, P. Wu, J. Mater. Chem.,21 (2011) 10852
    [21]X. F. Qian, J. M. Du, B. Li, M. Si, Y. S. Yang, Y. Y. Hu, G. X. Niu, Y. H. Zhang, H. L. Xu, B. Tu, Y. Tang, D. Y. Zhao, Chem. Sci.,2 (2011) 2006
    [22]徐俊博(Xu J B)杨丽娜(Yang L N),亓玉台(QiYT),刘志华(Liu Z H),李越(Li Y),炭素(Carbon),2(2011)38
    [23]B. S. Yurum, Eng. Chem. Res.,44 (2005) 2893
    [24]W. John, E. Patrick, A. Edward, In Porosity in Carbon,253 (1995) 126
    [25]X. Feng, G. E. Fryxell, L. Q. Wang, Science,276 (1997) 923
    [26]S. H. Joo, S. J. Chol, L. Oh, Nature,412 (2001) 169
    [27]X. C. Xu, C. S. Song, J. M. Andrsen, Micropor. Mesopor. Mater,62 (2003) 29
    [28]H. Zhou, S. Zhu, I. Honma, Chemical Physics Letters,396 (2004) 252
    [29]S. R. Chen, Y P. Zhai, G. L. Xu, Y. X. Jiang, D. Y. Zhao, J. T. Li, L. Huang, S. G Sun, Electrochim. Acta,1 (2011) 185
    [30]陈明晖(Chen M H),贺春兰(He C L),张斌伟(Zhang B W),姜艳霞(Jiang Y X),陈声培(Chen S P),孙世刚(Sun S G),高等学校化学学报,(Chemical Journal of Chinese Universities),2 (2012) 331
    [1]B. J. Schoeman, J. Sterte, J. E. Otterstedt, Zeolites,14 (1994) 110
    [2]M. Tsapatsis, M. Lovallo, T. Okubo, M. E. Davis, Chem. Mater.,7 (1995) 1734.
    [3]B. J. Schoeman, J. Sterte, J. E. Otterstedt, Zeolites,14 (1994) 208
    [4]M. A. Camblor, A. Corma, A. Mifsud, J. Perez-Pariente, S. Valencia, Stud. Surf. Sci. Catal,105(1997)341
    [5]R. J. Argauer, G. R. Landolt, US 3 70 2886,1972
    [6](a) A. E. Persson, B. J. Schoeman, J. Sterte, J. E. Ottesstedt, Zeolites,14 (1994) 557; (b) A. E. Persson, B. J. Schoeman, J. Sterte, J. E. Ottesstedt, Zeolites,15 (1995) 611
    [7]T. Whittam, EP 54 386,1982; T. Whittam, EP 59 059,1982
    [8]M. P. Bernal, Micro. Meso. Mater.,60 (2003) 99
    [9]G. T. Kokotailo, S. L. Lawton, D. H. Olson, W. M. Meier, Nature,272 (1978) 437
    [10]刘旦初,多相催化原理复旦大学出版社,1997
    [11]N. Lauridant, T. J. G. Arnold, M. Soulard, H. Nouali, J.Patarin, D. Faye, Micro. Meso. Mater.,152(2012) 1
    [12]T. Willhammar, J. L. Sun, W. Wan, P. Oleynikov, D. L. Zhang, X. D. Zou, M. Moliner, J. Gonzalez, C. Martinez, F. Rey, A. Corma, Nature Chem.,4 (2012) 188
    [13]M. Taramasso, US 4410501 (1983)
    [14]T. Hayashi, K. Tanaka, M. Haruta, J. Catal.,178 (1998),566
    [15]J. Q. Chen, S. J. A. Halin, D. M. P. Ferrandez, J. C. Schouten, T. A. Nijhuis, J. Catal.,285(2012)324
    [16]X. Y. Yang, G. Tian, L. H. Chen, Y. Li, J. C. Rooke, Y. X. Wei, Z. M. Liu, Z. D eng, G. Van Tendeloo, B. L. Su, Chem.-Eur. J.,17 (2011) 14987
    [17]L. Cumaranatunge, W. N. Delgass, J. Catal.232 (2005) 38
    [18]A. G. Dong, Y. Wang, Y. Tang, D. Wang, N. Ren, Y. Zhang, Z. Gao, Chem. Lett.,32 (2003) 790
    [19]Q. Jin, J. Bao, H. Sakiyama, N. Tsubaki, Res. Chem. Intermed,37 (2011) 177
    [20]K. Ramasubramanian, B. Kama, L. C. Sarah, Micro. Meso. Mater.,113 (2008) 554
    [21]G. T. Kokotailo, S. L. Lawton, D. H. Olson, Nature,272 (1978) 437
    [22]A. G. Dong, Y. J. Wang, D. Wang, W. Yang, Y. Zhang, N. Ren, Z. Gao, Y. Tang, Micropor. Mesopor. Mat.,64 (2003) 69
    [23]E. Astorino, J. B. Peri, R. J. Willey, G. Busca, J. Catal.,157 (1995) 482

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700