以镁铝尖晶石为基础的酸碱一体化材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着催化裂化(FCC)加工原油含硫量的提高和环保法规对污染物排放的严格限制,减少催化裂化再生烟气中SO2的排放问题受到关注,其中添加2%-3%的镁铝尖晶石体系的硫转移剂是最为廉价且有效的手段。但由于镁铝尖晶石的偏碱性,其裂化性能甚至低于常规FCC催化剂的惰性载体如高岭土等粘土类。随着原油含硫量的逐年增加,势必要求增加硫转移剂的添加量才能满足日益严格的环保要求,因而必然会对FCC主催化剂产生稀释作用,进而影响FCC反应的转化深度及产物分布。
     因此,设想将镁铝尖晶石的碱性与分子筛的酸性结合制备以镁铝尖晶石为基础的酸碱一体化材料。这样可以在保证对主催化剂影响较小的情况下适当增加其添加量。本论文主要从两方面着手:一是将镁铝尖晶石与ZSM-5分子筛机械混合,制备既增产丙烯又可降低SO2排放的双功能助剂(以ZSM-5分子筛为活性组分,镁铝尖晶石为基质);二是借鉴微介孔复合材料的合成方法,采用在镁铝尖晶石介孔结构中附着分子筛的初级或次级结构单元的方法,使得合成的酸碱双功能镁铝尖晶石材料具有较高的裂化性能和一定的脱硫性能。另外,镁铝尖晶石的脱硫活性与比表面关系密切,比表面越高,越有利于尖晶石的脱硫。因此本论文还对高比表面镁铝比尖晶石的合成进行了探索。
     增产丙烯与烟气脱硫双功能助剂与酸碱双功能镁铝尖晶石材料的共同点是二者均将分子筛的酸性和镁铝尖晶石的碱性融合为一体,不同点在于前者添加至FCC主催化剂中是以牺牲汽油收率为代价使得丙烯和LPG收率提高,同时附加了脱硫功能;而后者可以在不影响主催化剂的裂化性能(尤其是汽油、柴油收率)的前提下适量提高添加量,保证较优的脱硫性能。
     研究发现增产丙烯与烟气脱硫双功能助剂的瓶颈问题在于:镁铝尖晶石与ZSM-5在焙烧和水热处理过程中发生相互作用,使得ZSM-5的结构和酸性发生变化进而使得ZSM-5增产丙烯的效果降低;同时镁铝尖晶石本身较高的HTC值和焦炭选择性也是造成双功能助剂增产丙烯效果降低的原因之一。对ZSM-5分子筛进行La、P改性,可提高其水热稳定性和酸性,进而改善双功能助剂的增产丙烯性能。对镁铝尖晶石进行P改性、用氯化铵或盐酸溶液处理镁铝尖晶石等方法,可改变ZSM-5分子筛的酸性并降低镁铝尖晶石的氢转移活性,改善双功能助剂的增产丙烯性能,同时不同程度地提高脱硫性能。
     将Y分子筛纳米簇溶液或ZSM-5分子筛母液和镁铝尖晶石混合后晶化,可以将分子筛的结构单元引入到尖晶石介孔结构中,使得尖晶石酸性和裂化重油性能大大提高,但脱硫性能明显降低;对含铈尖晶石采用ZSM-5分子筛母液在中性(pH=7)条件下改性,可以在保持氧化铈结构的同时引入分子筛的结构单元,使得裂化性能提高的同时保持较好的脱硫性能。
     在镁铝尖晶石中引入二价过渡金属Cu、Co或三价过渡金属Fe、Cr时,可以不同程度地提高尖晶石的脱硫活性和还原再生性能,也可以提高对重油的转化率,但是裂化VGO过程中会明显增大尖晶石的非选择性氢转移活性。
     对富镁或富铝的镁铝尖晶石采用适当的硝酸处理均可分别获得比表面高达301和311m2/g的较纯的镁铝尖晶石,但其水热稳定性均较差。
As the sulfur content in crude oil for fluid catalytic cracking (FCC) process is increased and the environmental legislation becomes more stringent, the removal of SOx from FCC units has been the subject of a considerable amount of attention over the past few years. To date, the least costly means is the addition of 2%~3% of sulfur-transfer agent which generally contains MgAl2O4. However, the stronger basic property for the spinel makes it to be less active for cracking hydrocarbons even compared with conventional inert matrices of FCC catalysts such as clays. Since the amount of sulfur-transfer agents required for effective SOx emission reduction is increased due to the increasing sulfur content in crude oil and the more stringent environmental regulations, there is no doubt that their dilution effect on FCC catalysts would be stronger.
     Therefore, an assumption of preparing the MgAl2O4-based materials which combine the basic property of MgAl2O4 with acidic property of zeolites was put forward. In this way, the addition amount of spinel would be increased without much affecting the catalytic performance of the FCC base catalyst. This paper mainly focused on two aspects. One way is physically mixing MgAl2O4 with ZSM-5 zeolite in order to obtain the bifunctional additives for enhancing propylene yield and removing SO2 in FCC units. For the bifunctional additives, ZSM-5 zeolite was employed as the active component and MgAl2O4 applied as matrix.
     The other method is to introduce the zeolitic building units into the mesopores of the spinel in light of the synthesis of meso-microporous zeolite. The obtained modified spinels with both basic and acidic sites would have much higher cracking ability compared to the parent spinel due to the improvement of Bronsted and Lewis acidity which can survive the severe hydrothermal treatment. Moreover, there would be still basic sites remained active for SO2 adsorption. Besides, the capacity of SO2 picking-up of MgAl2O4 is closely related to surface area. The increase in surface area can lead to the improvement in SO2 uptake capacity. So the synthesis of MgAl2O4 with high surface area was also explored in the paper.
     The common point of the bifunctional additive for enhancing propylene yield and removing SO2 and the modified spinel with both basic and acidic sites is that both combine the acidic property for the zeolite and the basic property for the spinel into a single particle. But there is big difference between the two kinds of materials. When the bifunctional additive is added into the FCC base catalyst, the propylene and LPG yield increase at the cost of gasoline yield, and the function of removing SO2 is also attached. While the introduction of a larger amount of modified spinel into the FCC system would guarantee the effective SO2 removal on the condition that it affects little the catalytic property of FCC catalyst (especially gasoline and diesiel oil yileds).
     As to the bifunctional additive for enhancing propylene yield and removing SO2, the bottleneck is that the existence of magnesium though in the form of stable spinel would interact with ZSM-5 during calcination and severe hydrothermal conditions, resulting in lower ZSM-5 activity. Moreover, the relatively higher HTC value and coke selectivity of MgAl2O4 also contribute to the lower ZSM-5 acitivity of the bifunctional additives for increasing propylene yield. However, the negative effect of Mg2+ could be counteracted by modification of ZSM-5 with both La and P, leading to the improvement of ZSM-5 hydrothermal stability and activity. On the other hand, modifying MgAl2O4 with P could not only inhibit the change in ZSM-5 acidity caused by the existence of MgAl2O4 but also largely decrease the hydrogen transfer activity of spinels, thereby boosting the ZSM-5 effectiveness in increasing propylene yield. And P doping also distinctly promoted the SO2 uptake capacity of bifunctional additives. What's more, pretreating MgAl2O4 with NH4Cl or HCl solutions or further exchanging bifunctional additives with amonium cations could also increase the ZSM-5 activity for increasing propylene yield and improve the DeSOx activity. The pretreatment of MgAl2O4 with NH4Cl or HCl solutions not only changed the ZSM-5 acidity and increased the weak acidic hydroxyl groups of additives, but also decreased the selective hydrogen transfer activity of spinels, which may both be responsible for the increase in ZSM-5 activity.
     Concerning the modified spinel with both acidic and basic sites, the structural building units of zeolite can be introduced into the mesopore of the spinel by employing the nanocluster solutions of zeolite Y or ZSM-5 mother solution. Compared to the parent spinel, the acidity and cracking ability of spinel were greatly increased, but the DeSOx activity was obviously decreased. When modifying the Ce/MgAl2O4 with ZSM-5 mother solution under neutral condition (pH=7), the building units of zeolite could be introduced into the spinel with the preservation of the CeO2 phase, obtaining the modified Ce/MgAl2O4 with both improved cracking ability and well remained DeSOx activity.
     The introduction of divalent transition metals Cu, Co or trivalent transition metals Fe, Cr into MgAl2O4 could improve the SO2 uptake capacity of the spinel and the reducibility of the sulfate formed during removal SO2 in different extents. Also it could increase the conversion of VGO cracking, but the non-selective hydrogen transfer activity (esp. coke selectivity) was evidently increased.
     Suitable treatment of Mg- or Al-rich magnesium-aluminate spinel prepared under acidic conditions with HNO3 solutions could obtain spinels with high surface areas of 301 and 311 m2/g, respectively. But the obtained spinels revealed poor hydrothermal stability.
引文
[1]Bhattacharyya A. A., Woltermann G. M., Yoo J. S., et al. Catalytic SOx Abatement:The role of magnesium aluminate spinel in the removal of SOx from fluid catalytic cracking (FCC) flue gas [J]. Industrial & Engineering Chemistry Research,1988,27:1356-1360.
    [2]Triantafillidis C. S., Evmiridis N. P. Performance of ZSM-5 as a fluid catalytic cracking catalyst additive:effect of the total number of acid sites and particle size [J]. Industrial & Engineering Chemistry Research,1999,38:916-927.
    [3]Li C. Yang C., Shan H. Maximizing propylene yield by two-stage riser catalytic cracking of heavy oil [J]. Industrial & Engineering Chemistry Research,2007,46:4914-4920.
    [4]den Hollander M. A., Wissink M., Makkee M., Moulijn J. A. Gasoline conversion: reactivity towards cracking with equilibrated FCC and ZSM-5 catalysts [J]. Applied Catalysis A: General,2002,223:85-102.
    [5]Guerzoni F. N., Abbot J. Cracking of an industrial feedstock over combinations of HZSM-5 and HY:the influence of H-ZSM-5 pretreatment [J]. Applied Catalysis A: General,1994,120(1):55-69.
    [6]Buchanan J. S. The chemistry of olefins production by ZSM-5 addition to catalytic cracking units [J]. Catalysis Today,2000,55:207-212.
    [7]den Hollander M. A., Wissink M., Makkee M., Moulijn J. A. Synergy effects of ZSM-5 addition in fluid catalytic cracking of hydro treated flashed distillate [J]. Applied Catalysis A: General,2002,223:103-119.
    [8]Elia M. F., Iglesias E., Martinez A., Perez Pascual M. A. Effect of operation conditions on the behaviour of ZSM-5 addition to a RE-USY FCC catalyst [J]. Applied Catalysis A: General,1991,73(2):195-216.
    [9]陈俊武.催化裂化工艺与工程[M].北京:中国石化出版社,2005:250.
    [10]Xinjin Zhao, Harding. R. H. ZSM-5 additive in fluid catalytic cracking.2. effect of hydrogen transfer characteristics of the base cracking catalysts and feedstocks [J]. Industrial & Engineering Chemistry Research,1999,38:3854-3859.
    [11]Wallenstein D., Harding R. H. The dependence of ZSM-5 additive performance on the hydrogen-transfer activity of the REUSY base catalyst in fluid catalytic cracking [J]. Applied Catalysis A: General,2001,214:11-29.
    [12]魏小波,刘丹禾,赫代军,等.催化裂化多产丙烯助剂LPI-1的工业应用[J].炼油技术与工程,2004,34(9):38-41.
    [13]魏小波,刘丹禾,赫代军,等.催化裂化多产丙烯助剂(LPI-1)对原料适应的研究[J].炼油技术与工程,2004,34(8):46-48.
    [14]孙慧聪,潘金亮,刘慧丽,等.催化裂化丙烯增浓助剂MPO31的工业应用[J].河南化工,2005,22(4):24-25.
    [15]毛安国,刘宪龙.提高催化裂化石油气中丙烯浓度助剂的工业应用浅析[J].炼油技术与化工,2004,34(11):27-30.
    [16]陆颖,罗勇,黄道培LOSA-1丙烯增产助剂的工业应用[J].石化技术与应用,2005,23(4):295-298.
    [17]刘天波,刘焕章,林春阳,等LOSA-1增产烯烃FCC助催化剂的开发及工业应用[J].工业催化,2005,13(12):30-32.
    [18]刘静翔,侯宝玉.催化裂化增产丙烯助剂LOSA-1的工业应用[J].中外能源,2006,11(1):73-77.
    [19]吴青,周通,何鸣元.催化裂化增产丙烯助剂OlefinsMax的应用试验[J].炼油技术与工程,2004,34(5):42-46.
    [20]NPRA AM-04-58[C].
    [21]凌伟光,李涛,王国志.增产丙烯助剂LTB-1在催化裂化装置上的应用[J].石化技术与应用,2009,27(2):139-142.
    [22]秦松,邹旭彪,张忠东.多产丙烯FCC催化剂助剂LCC-A性能和工业应用[J].工业催化,2005,13(9):10-14.
    [23]Rosinski. E., Plank. C., Schwartz. A. Catalytic cracking of hydrocarbons with mixture of ZSM-5 and other zeolites [P]. US 3758403,1973-09-11.
    [24]Carel Vogt E. T., Quinones A. R., O'Connor P. Catalyst composition with high efficiency for the production of light olefins [P]. US 6566293,2003-5-20.
    [25]Tsang C., Laurence N., Dai P. FCC process for producing enhanced yields of C4/C5 olefins [P]. US 5472594,1995-12-05.
    [26]Ziebarth M. S., Roberie T. G. High zeolite content and attrition resistant catalyst, methods for preparing the same and catalyzed processes therewith [P]. US 2002049133, 2002-04-25.
    [27]Zhao G., Teng J., Xie Z., et al. Effect of Phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene [J]. Journal of Catalysis,2007,248:29-37.
    [28]Kaeding W. W., Butter. S. A. Production of chemicals from methanol: Ⅰ. Low molecular weight olefins [J]. Journal of Catalysis,1980,61:155-164.
    [29]Vedrine J. C., Auroux A., Dejaifve P., et al. Catalytic and physical properties of phosphorus-modified ZSM-5 zeolite [J]. Journal of Catalysis,1982,73:147-160.
    [30]Vinek H., Rumplmayr G., Lercher J. A. Catalytic properties of post synthesis phosphorus-modified H-ZSM5 zeolites [J]. Journal of Catalysis,1989,115:291-300.
    [31]Zhuang J., Ma D., Yang G., Yan Z., Liu X., Han X., Bao X., Xie P., Liu Z. Solid-state MAS NMR studies on the hydrothermal stability of the zeolite catalysts for residual oil selective catalytic cracking [J]. Journal of Catalysis,2004,228:234-242.
    [32]Blasco T., Corma A., Martinez-Triguero J. Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition [J]. Journal of Catalysis,2006,237: 267-277.
    [33]Xue N., Chen X., Nie L., Guo X., Ding W., Chen Y., Gu M., Xie Z. Understanding the enhancement of catalytic performance for olefin cracking:Hydrothermally stable acids in P/HZSM-5. Journal of Catalysis,2007,248:20-28.
    [34]Shu Y., Ma D., Liu X., Han X., Xu Y., Bao X. An MAS NMR study on the Mo-modified phosphoric rare earth (HZRP-1) penta-sil zeolite catalyst [J]. Journal of Physical Chemistry B,2000,104:8245-8249.
    [35]Liu C., Deng Y., Pan Y., Gu Y., Qiao B., Gao X. Effect of ZSM-5 on the aromatization performance in cracking catalyst [J]. Journal of Molecular Catalysis A: Chemical,2004, 215:195-199.
    [36]Blanton Jr. W. A., Calif W. Sulfur oxides control in cracking catalyst [P]. US 4243556, 1981.
    [37]Wei Y., Liu Z., Wang G., Qi Y., Xu L., Xie P., He Y. Production of light olefins and aromatic hydrocarbons through catalytic cracking of naphtha at lowered temperature [J]. Studies in Surface Science and Catalysis,158,2005,1223-1230.
    [38]Luo Y. B., Ouyang Y., Shu X. T., He M. Y Metal-modified MFI zeolite for enhancing propylene selectivity in FCC process [J]. Studies in Surface Science and Catalysis,2007, 170:600-603.
    [39]Li X., Shen B., Xu C. Interaction of titaniumand iron oxidewith ZSM-5 to tune the catalytic cracking of hydrocarbons [J]. Applied Catalysis A: General,2010,375:222-229.
    [40]Zhao L., Shen B., Gao J., Xu C. Investigation on the mechanism of diffusion in mesopore structured ZSM-5 and improved heavy oil conversion [J]. Journal of Catalysis,2008,258: 228-234.
    [41]Lappas A. A., Triantafillidis C. S., Tsagrasouli Z. A., Tsiatouras V. A., Vasalos I. A. Evmiridis N. P. Development of new ZSM-5 catalyst-additives in the fluid catalytic cracking process for the maximization of gaseous alkenes yield [J]. Studies in Surface Science and Catalysis,2002,142:807-814.
    [42]罗一斌,李明罡,舒兴田,等.一种含磷和过渡金属的MFI结构分子筛[P].CN1465527,2004-01-07.
    [43]罗一斌,欧阳颖,舒兴田,等.一种含磷和金属组分的MFI结构分子筛及其应用[P].CN 1611299,2005-5-04.
    [44]Corma A., Gonzalez-Alfaro V., Orchilles A.V. The role of pore topology on the behaviour of FCC zeolite additives [J]. Applied Catalysis A: General,1999,187: 245-254.
    [45]Shi Z., Shi W. Cracking catalyst for the production of light olefins [P]. US 5380690, 1995-01-10.
    [46]Castaneda R., Corma A., Fornes V., et al. Direct synthesis of a 9×10 member ring zeolite (Al-ITQ-13):A highly shape-selective catalyst for catalytic cracking [J]. Journal of Catalysis,2006,238:79-87.
    [47]Corma A., Martinez-Triguero J., Valencia S., et al. IM-5:A highly thermal and hydrothermal shape-selective cracking zeolite [J]. Journal of Catalysis,2002,206: 125-133.
    [48]张强,陈艳红,李春义,等.双活性组分增产丙烯催化剂的实验研究[J].石油学报(石油加工),2007,23(3):101-106.
    [49]Costa A. F., Cerqueira H. S., Ferreira M. M., et al. BEA and MOR as additives for light olefins production [J]. Applied Catalysis A: General,2007,319:137-143.
    [50]朱仁发,李承烈.FCC再生烟气的脱硫助剂研究进展[J].化工进展,2003,11(1):47-51.
    [51]Lowell P. S., Schwitzgebel K., Parsons T. B. Selection of metal oxide for removing SO2 from flue gas [J]. Industrial & Engineering Chemistry Process Design and Development, 1971,10:384-390.
    [52]朱仁发,李承烈.FCC再生烟气的脱硫助剂研究进展[J].化工进展,2000,(3):22-26.
    [53]Annesser R. J., Balogh S. A. Catalytic Cracking [P]. US 3699037,1972-10-17.
    [54]Bertolacini R., Lehmann G., Wollaston E. Catalytic cracking with reduced emission of sulfur oxides [P]. US 3835031,1974-09-10.
    [55]Blanton Jr W. A, Flanders R. L. Process for removing sulphur from a gas [P]. US 4071436,1978-01-31.
    [56]Flanders R. L., Blanton W. A. Method for removing pollutants from catalyst regenerator flue gas [P]. US 4115250,1978-09-19.
    [57]Flanders R. L., Blanton W. A. Process for removing pollutants from catalyst regenerator flue gas [P].US 4115251,1978-09-19.
    [58]Dai P. E., Holst E. H. Control of SOx emission [P]. US 5021228,1991-06-04.
    [59]Bertolacini R. J, Hirschberg E. H, Modica F. S. Process for removing sulphur from a gas [P]. US 4381991,1983-05-03.
    [60]Lewis P. H., Dai E. P., Holst E. H. Control of SOx emission [P]. US 4626419, 1986-12-02.
    [61]Magnabosco L. M., Demmel E. J. Synthetic spinels and processes for making them [P]. US 5108979,1992-04-28.
    [62]Buchanan J. S., Mathias M. F., Sodomin J. F., Teitman G. J. Removing SOx, NOx and CO from flue gases [P]. US 5547648,1996-08-20.
    [63]Gwan K. SOx control compositions [P]. US 5288675,1994-02-22.
    [64]Mccauley J. R. Catalytic cracking with reduced emission of sulfur oxides [P]. US 6129833,2000-10-10.
    [65]Pereira H. B., Polato C. M. S., Monteiro J. L. F., Henriques C. A. Mn/Mg/Al-spinels as catalysts for SOx abatement. Influence of CeO2 incorporation and catalytic stability [J]. Catalysis Today,2010,149:309-315.
    [66]Yoo J. S., Bhattacharyya A. A., Radlowski C. A. De-SOx catalyst:The role of iron in iron mixed solid solution spinels, MgO·MgAl2-xFexO4 [J]. Industrial & Engineering Chemistry Research.1992,31:1252-1258.
    [67]罗珍.减少催化裂化SOx排放的硫转移助剂[J].炼油设计,2000,30(11):60-62.
    [68]NPRAAM-03-97 [C].
    [69]董亚娟,崔莉.助剂在FCC装置中的应用[J].黑龙江石油化工,1995,(3):5-9.
    [70]Magnabosco L. M., Denmel E. J. Paper presented at International Symposium on Advanced in Fluid Cracking Catalyst. Division of Petroleum Chemistry [C],1993.
    [71]NPRA-04-06 [C].
    [72]钱伯章.催化裂化硫转移助剂发展现状[J].天然气与石油,2003:66.
    [73]陈德胜,侯典国.催化裂化烟气SOx转移助剂的工业应用[J].石油炼制与化工2003,34(4):43.
    [74]李林波,周忠国,许金山,等.多功能催化裂化烟气硫转移剂的工业应用[J].石油炼制与化工,2001,(5):13-15.
    [75]冯明,杨彬.HL-9硫转移剂的工业应用[J].齐鲁石油化工,2002,10(1):16-18.
    [76]付燕生,任铎.LST-1液体硫转移助剂的研究[J].炼油设计,2000,30(9):5-8.
    [77]姚志强,武迎建.LT-8硫转移剂在Ⅱ套催化裂化装置的工业应用[J].江西石油化工2002,14(1):9-16.
    [78]姜瑞霞,谢在库,张成芳,陈庆龄.镁铝尖晶石的制备及在催化反应中的应用[J].工业催化,2003,11(1):47-51.
    [79]朱仁发,肖厚荣,李承烈.脱硫添加剂的酸法制备及性能研究[J].安徽大学学报(自然科学版),1999,23(2):85-89.
    [80]朱仁发,谭乐成,王金安,李承烈.调变组分对流化催化裂化助剂脱硫性能的影响[J].华东理工大学学报(自然科学版),2000,26(2):149-153.
    [81]Wang J. Chen L. Li C. Roles of cerium oxide and the reducibility and recoverability of the surface oxygen species in the CeO2/MgAlO4 catalysts [J]. Journal of Molecular Catalysis A: Chemical,1999,139:315-323.
    [82]Wang J., Li C. A study of surface and inner layer compositions of Mg-Fe-Al-O mixed spinel sulfur-transfer catalyst using Auger electron spectroscopy [J]. Materials Letters, 1997,32:223-227.
    [83]Wang J., Zhu Z., Li C.e. Pathway of the cycle between the oxidative adsorption of SO2 and the reductive decomposition of sulfate on the MgAl2-xFexO4 catalyst [J]. Journal of Molecular Catalysis A: Chemical,1999,139:31-41.
    [84]刘希尧,王淑菊,郭俐聪.氧化铝基表层镁铝尖晶石的研究:I.表层镁铝尖晶石的相结构、孔结构、表面酸性及负载把的化学状态[J].催化学报,1994,15(1):1-7.
    [85]王金安,李承烈,戴逸云,等.硫转移催化剂研究(I):组成、结构与吸硫活性关系[J].物理化学学报,1994,10(7):581-584.
    [86]马亚鲁.化学共沉淀法制备镁铝尖晶石粉末的研究[J].无机盐工业,1998,30(1):3-4.
    [87]Magnabosco L. M., Demmel E. J. Synthetic spinels and processes for making them [P]. US 5108979,1992-04-28.
    [88]钱明生,Awad A. N.,谭乐成.脱硫催化剂的酸法制备及性能研究[J].华东理工大学学报,1997,23(2):182-186.
    [89]朱其永,王凤武,褚道葆.由镁、铝醇盐配合物合成纳米粒子MgAl2O4尖晶石[J].无机化学学报,2007,23(7):1282-1287.
    [90]袁颖,张树人,游文南.铝单醇盐Sol-Gel法合成镁铝尖晶石纳米粉及烧结行为的研究[J].无机材料学报,2004,19(4):755-760.
    [91]Zhang H., Jia X., Liu Z., et al. The low temperature preparation of nanocrystalline MgAl2O4 spinel by citrate sol-gel process [J]. Materials Letters,2004,58:1625-1628.
    [92]Behera S. K., Barpanda P., Pratihar S. K., Bhattacharyya S. Synthesis of magnesium-aluminium spinel from autoignition of citrate-nitrate gel [J]. Materials Letters, 2004,58:1451-1455.
    [93]Alinejad B., Sarpoolaky H., Beitollahi A., et al. Synthesis and characterization of nanocrystalline MgAl2O4 spinel via sucrose process [J]. Materials Research Bulletin, 2008,43:1188-1194.
    [94]Guo J., Lou H., Zhao H., Wang X., Zheng X. Novel synthesis of high surface area MgAl2O4 spinel as catalyst support [J]. Materials Letters,2004,58:1920-1923.
    [95]Adak A. K., Saha S. K., Pramanik P. Synthesis and characterization of MgAl2O4 spinel by PVA evaporation technique [J]. Journal of Materials Science Letters,1997,16:234-235.
    [96]Li G., Sun Z., Chen C., Cui X., Ren R. Synthesis of nanocrystalline MgAl2O4 spinel powders by a novel chemical method [J]. Materials Letters,2007,61:3585-3588.
    [97]Prabhakaran K., Patil D. S., Dayal R., Gokhale N. M., Sharma S. C. Synthesis of nanocrystalline magnesium aluminate (MgAl2O4) spinel powder by the urea-formaldehyde polymer gel combustion route [J]. Materials Research Bulletin.2009, 44:613-618.
    [98]Giannakas A. E., Ladavos A. K., Armatas G. S., Pomonis P. J. Surface properties, textural features and catalytic performance for NO+CO abatement of spinels MAl2O4 (M=Mg, Co and Zn) developed by reverse and bicontinuous microemulsion method [J]. Applied Surface Science,2007,253:6969-6979.
    [99]陈清,沈本贤,凌昊.改性USY型FCC催化剂对硫转移性能的影响[J].华东理工大学学报(自然科学版),2004,30(6):326-330.
    [100]沈本贤,陈清.提高USY型FCC催化剂硫转移和催化裂化活性的研究[J].华东理工大学学报(自然科学版),2006,34(2):166-170.
    [101]Byrne J. W., Speronello B. K. Fluid catalytic cracking catalyst for cracking sulfur containing petroleum feedstocks and a process for using it [P]. US 4606813,1986-08-19.
    [102]卓润生.一种催化裂化催化剂及其制备方法[P].CN101190416,2008-06-04.
    [103]任彦瑾,施力.镁铝尖晶石的制备及其催化降烯烃性能研究[J].无机盐工,2008,40(1):17-19.
    [104]任彦瑾,施力.铈、铌改性镁铝尖晶石作为催化降烯烃助剂的研究[J].中国稀土学报,2008,26(1):1-5.
    [105]Liu Y., Zhang W., Pinnavaia T. J. Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds [J]. Journal of the American Chemical Society,2000, 122:8791-8792.
    [106]Liu Y., Zhang W., Pinnavaia T. J. Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite beta seeds [J]. Angewandte Chemie International Edition,2001,40(7):1255-1258.
    [107]Zhang Z., Han Y., Xiao F., Qiu S., Zhu L., Wang R., Yu Y., Zhang Z., Zou B., Wang Y., Sun H., Zhao D., Wei Y. Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures [J]. Journal of the American Chemical Society,2001,123(21):5014-5021.
    [108]Zhang Z., Han Y., Zhu L., Wang R., Yu Y., Qiu S., Zhao D., Xiao F. Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure [J]. Angewandte Chemie International Edition,2001,40 (7): 1258-1262.
    [109]Zhu L., Xiao F., Zhang Z., Sun Y., Han Y., Qiu S. High activity in catalytic cracking over stable mesoporous aluminosilicates [J]. Catalysis Today,2001,68:209-216.
    [110]李工,阚秋斌,吴通好,等.具有强酸位的六方和立方介孔硅铝分子筛合成及催化活性比较[J].高等学校化学学报,2002,23(6):1171-1173.
    [111]肖丰收,韩宇,裘式纶.介孔分子筛的酸性和水热稳定性[J].高等学校化学学报,2002,23(10):1847-1853.
    [112]Di Y., Yu Y., Sun Y., Yang X., Lin S., Zhang M., Li S., Xiao F. Synthesis, characterization, and catalytic properties of stable mesoporous aluminosilicates assembled from preformed zeolite L precursors [J]. Microporous and Mesoporous Materials,2003,62:221-228.
    [113]Liu Y., Pinnavaia T. J. Assembly of hydrothermally stable aluminosilicate foams and large-pore hexagonal mesostructures from zeolite seeds under strongly acidic conditions [J]. Chemistry Materials,2002,14:3-5.
    [114]Han Y, Xiao F., Wu S. A novel method for incorporation of heteroatoms into the framework of ordered mesoporous silica materials synthesized in strong acidic media [J]. Journal of Physical Chemistry B,2001,105:7963-7966.
    [115]Liu J., Zhang X., Han Y., Xiao F. Direct observation of nanorange ordered microporosity within mesoporous molecular sieves [J]. Chemistry Materials,2002,14(6): 2536-2540.
    [116]Han Y, Wu S, Sun Y, et al. Hydrothermally stable ordered hexagonal mesoporous aluminosilicates assembled from a triblock copolymer and preformed aluminosilicate precursors in strongly acidic media [J]. Chemistry Materials,2002,14(3):1144-1148.
    [117]Tan Q., Fan Y., Liu H., Song T., Shi G., Shen B., Bao X. Bimodal micro-Mesoporous aluminosilicates for heavy oil cracking:Porosity tuning and catalytic properties [J]. AIChE Journal,2008,54(7):1850-1859.
    [118]Wang S., Dou T., Li Y., et al. Synthesis, characterization, and catalytic properties of stable mesoporous molecular sieve MCM-41 prepared from zeolite mordenite [J]. Journal of Solid State Chemistry,2004,177:4800-4805.
    [119]Inagaki S., Ogura M., Inami T., et al. Synthesis of MCM-41-type mesoporous materials using filtrate of alkaline dissolution of ZSM-5 zeolite [J]. Microporous and Mesoporous Materials,2004,74:163-170.
    [120]Verhoef M. J., Kooyman P. J., van der Waal J. C., et al. Partial transformation of MCM-41 material into zeolites:formation of nanosized MFI type crystallites [J]. Chemistry Materials,2001,13(2):683-687.
    [121]Kloetstra K. R., Bekkum H., Jansen J. C. Mesoporous material containing framework tectosilicate by pore-wall recrystallization [J]. Chemical Communications,1997: 2281-2282.
    [122]Poladi R. H. P. R., Landry C. C. Synthesis, characterization, and catalytic properties of a microporous/mesoporous material, MMM-1. Journal of Solid State Chemistry,2002, 167:363-369.
    [123]Do T-O, Kaliaguine S. Large-Pore Mesoporous Materials with Semi- Crystalline Zeolitic Frameworks. Angewandte Chemie International Edition,2001,40(17): 3248-3251.
    [124]Do T-O, Lutic D., Kaliaguine S. An example of mesostructured zeolite material: UL-TS-1 [J]. Microporous and Mesoporous Materials,2001,44-45:435-444.
    [125]Do T-O, Kaliaguine S. Zeolite-coated mesostructured cellular silica foams. Journal of the American Chemical Society,2003,125:618-619.
    [126]Do T-O, Nossov A., Springuel-Huet M-A, Schneider C., Bretherton J. L., Fyfe C. A., Kaliaguine S. Zeolite nanoclusters coated onto the mesopore walls of SBA-15 [J]. Journal of the American Chemical Society,2004,126:14324-14325.
    [127]Do T-O, Kaliaguine S. Ultrastable and highly acidic, zeolite-coated mesoporous aluminosilicates [J]. Angewandte Chemie,2002,114(6):1078-1082.
    [128]Kloetstra K. R., Zandbergen H. W., Jansen J. C, van Bekkum H. Overgrowth of mesoporous MCM-41 on faujasite [J]. Microporous Materials,1996,6(5-6):287-293.
    [129]李玉平,李香兰,张瑛.一种制备MCM-41/Y分子筛复合材料的新方法[J].燃料化学学报,2002,30(2):162-166.
    [130]李福祥,吴岚,秦梦庚.中孔MCM-41分子筛在微孔沸石ZSM-5上附晶生长的研究[J].燃料化学学报,1998,26(2):102-107.
    [131]Guido Busca. Spectroscopic characterization of the acid properties of metal oxide catalysts [J]. Catalysis Today,1998,41:191-206.
    [132]Arandes J. M., Abajo I., Fernandez I., Azkoiti M. J., Bilbao J. Effect of HZSM-5 zeolite addition to a fluid catalytic cracking catalyst. Study in a laboratory reactor operating under industrial conditions [J]. Industrial & Engineering Chemistry Research, 2000,39:1917-1924.
    [133]Zhao X., Roberie T. G. ZSM-5 additive in fluid catalytic cracking 1 Effect of additive level and temperature on light olefins and gasoline olefins [J]. Industrial & Engineering Chemistry Research,1999,38:3847-3853.
    [134]Saberi A., Golestani-Fard F., Sarpoolaky H., Willert-Porada M., Gerdes T., Simon R. Chemical synthesis of nanocrystalline magnesium aluminate spinel via nitrate-citrate combustion route [J]. Journal of Alloys and Compound,2008,462:142-146.
    [135]李晓,谭乐成,李承烈.镁铝尖晶石作为催化裂化双功能助剂的研究[J].石油学报(石油加工),2001,17(3):57-61.
    [136]崔秋凯,冉晓丽,许孝玲,等.FCC镁铝尖晶石硫转移剂的脱硫效果及稳定性研究[J].石化技术与应用,2008,26(6):536-540.
    [137]Roncolatto R. E., Cardoso M. J. B., Lam Y. L. FCC SOx additives deactivation[J]. Industrial & Engineering Chemistry Research,2006,45:2646-2650.
    [138]Blanton J., William A. Sulfur oxides control in cracking catalyst [P]. US 4243556, 1981.
    [139]吴治国,张玉兰,韩崇家,等.几种固体酸催化剂表面酸性研究[J].华东理工大学学报,2000,26(2):144-148.
    [140]Jiang G., Zhang L., Zhao Z., et al. Highly effective P-modified HZSM-5 catalyst for the cracking of C4 alkanes to produce light olefins [J]. Applied Catalysis A: General, 2008,340(2):176-182.
    [141]Li Y-G, Xie W-H, Yong S. The acidity and catalytic behavior of Mg-ZSM-5 prepared via a solid-state reaction [J]. Applied Catalysis A: General,1997,150(2):231-242.
    [142]He M-Y The development of catalytic cracking catalysts:acidic property related catalytic performance [J]. Catalysis Today,2002,73:49-55.
    [143]Caeiro G., Magnoux P., Lopes J. M., Ribeiro F. R., Menezes S. M. C., Costa A. F., Cerqueira H. S. Stabilization effect of phosphorus on steamed H-MFI zeolites [J]. Applied Catalysis A: General,2006,314:160-171.
    [144]Olhero S. M., Ganesh I., Torres P. M. C., Ferreira J. M. F. Surface passivation of MgAl2O4 spinel powder by chemisorbing H3PO4 for easy aqueous processing [J]. Langmuir,2008,24:9525-9530.
    [145]Zamaro J. M., Miro E. E., Boix A. V., Martinez-Hernandez A., Fuentes G. A. In-zeolites prepared by oxidative solid state ion exchange (OSSIE):Surface species and structural characterization [J]. Microporous and Mesoporous Materials,2010,129:74-81.
    [146]Jiang G., Zhang L., Zhao Z., Zhou X., Duan A., Xu C., Gao J. Highly effective P-modified HZSM-5 catalyst for the cracking of C4 alkanes to produce light olefins [J]. Applied Catalysis A: General,2008,340:176-182.
    [147]Zhao G., Teng J., Xie Z., Jin W., Yang W., Chen Q., Tang Y., Zhao G., Teng J., Xie Z. Effect of phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene [J]. Journal of Catalysis,2007,248:29-37.
    [148]Damodaran K., Wiench J. W., Menezes S. M. C., Lam Y. L., Trebosc J., Amoureux J. P., Pruski M. Modification of H-ZSM-5 zeolites with phosphorus.2. Interaction between phosphorus and aluminum studied by solid-state NMR spectroscopy [J]. Microporous and Mesoporous Materials,2006,95:296-305.
    [149]Shu Y., Ma D., Liu X., Han X., Xu Y., Bao X. An MAS NMR study on the Mo-modified phosphoric rare earth (HZRP-1) penta-sil zeolite catalyst [J]. Journal of Physical Chemistry B,2000,104:8245-8249.
    [150]Y-J Lee, J M Kim, J W Bae, C-H Shin, K-W Jun. Yun-Jo Lee, Jung Mi Kim, Jong Wook Bae, Chae-Ho Shin, Ki-Won Jun. Phosphorus induced hydrothermal stability and enhanced catalytic activity of ZSM-5 in methanol to DME conversion [J]. Fuel,88 (2009)1915-1921.
    [151]B. Sulikowski, J. Find, H. G. Karge, D. Herein. Bogdan Sulikowski, Josef Find, Hellmut G. Karge, Daniel Herein. Solid-state ion exchange in zeolites:Part 8. Interaction of lanthanum (III) chloride with zeolites under anhydrous conditions [J]. Zeolites,19 (1997) 395-403.
    [152]Bocanegra S. A., Ballarini A. D., Scelza O. A., de Miguel S. R. The influence of the synthesis routes of MgAl2O4 on its properties and behavior as support of dehydrogenation catalysts [J]. Materials Chemistry and Physics,2008,111:534-541.
    [153]Phambu N. Characterization of aluminum hydroxide thin film on metallic aluminum powder. [J] Materials Letters,2003,57:2907-2913.
    [154]Wang G., Xu C., Gao J. Study of cracking FCC naphtha in a secondary riser of the FCC unit for maximum propylene production [J]. Fuel Processing Technology,2008,89: 864-873.
    [155]Liu C., Deng Y., Pan Y., Gu Y., Qiao B., Gao X. Effect of ZSM-5 on the aromatization performance in cracking catalyst [J]. Journal of Molecular Catalysis A: Chemical,2004,215:195-199.
    [156]Blanton Jr. W. A., Calif W. Sulfur oxides control in cracking catalyst [P]. US 4 243 556,1981.
    [157]魏飞,汤效平,周华群,Zeeshan Nawaz增产丙烯技术研究进展[J].石油化工2008,37(10):979-988.
    [158]Brett P. Goldhammer, Thomas W. Yeung催化裂化和其他非常规工艺生产丙烯技术进展[J].中外能源,2010,15(4):64-68.
    [159]季东,苏怡,刘涛,汪毅,张忠东,张海涛,高雄厚.ZSM-5沸石分子筛增产丙烯表面改性的研究进展[J].分子催化,2007,21(4):371-377.
    [160]Tantirungrotechai J., Chotmongkolsap P., Pohmakotr M. Synthesis, characterization, and activity in transesterification of mesoporous Mg-Al mixed-metal oxides [J]. Microporous and Mesoporous Materials,2010,128:41-47.
    [161]Diez V. K., Apesteguia C. R., Di Cosimo J. I. Effect of the chemical composition on the catalytic performance of MgyAlOx catalysts for alcohol elimination reactions [J]. Journal of Catalysis,2003,215:220-233.
    [162]Carlini C., Marchionna M., Noviello M., Galletti A. M. R., Sbrana G, Basiled F., Vaccari A. Guerbet condensation of methanol with n-propanol to isobutyl alcohol over heterogeneous bifunctional catalysts based on Mg-Al mixed oxides partially substituted by different metal components [J]. Journal of Molecular Catalysis A: Chemical,2005, 232:13-20.
    [163]Shen. J., Kobe. J. M., Chen. Y., Dumesic J. A. Synthesis and surface acid/base properties of magnesium-aluminum mixed oxides obtained from hydrotalcites [J]. Langmuir,1994,10:3902-3908.
    [164]Iglesla E., Barton D. G., Biscardi J. A., Gines, M. J. L., Soled, S. L. Bifunctional pathways in catalysis by solid acids and bases [J]. Catalysis Today,1997,38:339-360.
    [165]Wang L., Guo H., Qi W., Su S., Deng X., Liu J., Liu S. Sulfur transfer additive for catalytic cracking of hydrocarbons and a catalytic cracking process of hydrocarbons using the same [P]. US 20030121824A1,2003.
    [166]于杰,马波,张志智,凌凤香,张喜文.复合分子筛的合成及表征研究进展[J].化工进展,2007,26(11):1554-1558.
    [167]Tan Q., Bao X., Song T., Fan Y., Shi G., Shen B., Liu C., Gao X. Synthesis, characterization, and catalytic properties of hydrothermally stable macro-meso-micro-porous composite materials synthesized via in situ assembly of preformed zeolite Y nanoclusters on kaolin [J]. Journal of Catalysis,2007,251:69-79.
    [168]鞠雅娜,沈志虹,赵佳,赵俊桥,王秀林.杂原子(B、Ti、Fe)进入Y型分子筛骨架的表征[J].物理化学学报,2006,22(1):28-32.
    [169]刘宏海,陈恩波,马建泰,高雄厚.载体特性对催化裂化催化剂性能的影响[J].兰州大学学报(自然科学版),2007,43(3):86-89.
    [170]宋海涛,蒋文斌,达志坚.FCC催化剂基质的直链烃反应性能[J].石油学报(石油加工),2003,(3):14-19.
    [171]Rossi P. F., Busca G., Lorenzelli V., Saur O., Lavalley J-C. Microcalorimetric and FT-IR spectroscopic study of the adsorption of isopropyl alcohol and hexafluoroisopropyl alcohol on titanium dioxide [J]. Langmuir,1987,3:52-58.
    [172]Rossi P. F., Busca G., Lorenzelli V., Waqif M., Saw O., Lavalley J-C. Surface basicity of mixed oxides: Magnesium and zinc aluminates [J]. Langmuir,1991,7:2677-2681.
    [173]Hattori H. Solid base catalysts:generation of basic sites and application to organic synthesis [J]. Applied Catalysis A: General,2001,222:247-259.
    [174]郭文珪,辛勤,张惠,梁娟.ZSM-5型沸石的红外光谱结构分析[J].催化学报,1981,2(1):36-41.
    [175]de Morais B. A. H., Ramos F. S. O., Pinheiro T. B., Lima C. L., de Sousa F. F., Barros E. B. D., Filho J. M., de Oliveira A. S., de Souza J. R., Valentini A., Oliveira A. C. Mesoporous MAl2O4 (M=Cu, Ni, Fe or Mg) spinels:characterisation and application in the catalytic dehydrogenation of ethylbenzene in the presence of CO2 [J]. Applied Catalysis A: General,2010,382:148-157.
    [176]Valente J. S., Hernandez-Cortez J., Cantu M. S., Ferrat G, Lopez-Salinas E. Calcined layered double hydroxides Mg-Me-Al (Me:Cu, Fe, Ni, Zn) as bifunctional catalysts [J]. Catalysis Today,2010,150:340-345.
    [177]Centi G., Passarini N., Perathoner S., Riva A. Combined DeSOx/DeNOx reactions on a copper on alumina sorbent-catalyst.1. Mechanism of SO2 oxidation-adsorption [J]. Industrial & Engineering Chemistry Research,1992,31:1947-1955.
    [178]Centi G., Passarini N., Perathoner S., Riva A. Combined DeSOx/DeNOx reactions on a copper on alumina sorbent-catalyst.2. Kinetics of the DeSOx reaction [J]. Industrial & Engineering Chemistry Research,1992,31:1956-1963.
    [179]Centi G., Perathoner S. Behaviour of SOx-traps derived from ternary Cu/Mg/Al hydrotalcite materials [J]. Catalysis Today,2007,127:219-229.
    [180]Corma A., Palomares A. E., Rey F., Marquez F. Simultaneous catalytic removal of SOx and NOx with hydrotalcite-derived mixed oxides containing copper, and their possibilities to be used in FCC units [J]. Journal of Catalysis,1997,170:140-149.
    [181]Palomares A. E., Lopez-Nieto J. M., Lazaro F. J., Lopez A., Corma A. Reactivity in the removal of SO2 and NOx on Co/Mg/Al mixed oxides derived from hydrotalcites [J]. Applied Catalysis B:Environmental,1999,20:257-266.
    [182]Wen B., He M., Costello C. Simultaneous catalytic removal of NOx, SOx, and CO from FCC regenerator [J]. Energy & Fuels,2002,16:1048-1053.
    [183]Wang X., Yu Y., He H. Effect of Co addition to Pt/Ba/Al2O3 system for NOx storage and reduction [J]. Applied Catalysis B:Environmental,2010,100:19-30.
    [184]Kim G., Juskelis M. V. Catalytic reduction of SO3 Stored in SOX transfer catalysts—A temperature-programmed reaction study [J]. Studies in Surface Science and Catalysis, 1996,101:137-142.
    [185]Rodriguez J. A. Electronic and chemical properties of mixed-metal oxides: basic principles for the design of DeNOx and DeSOx catalysts [J]. Catalysis Today,2003,85 177-192.
    [186]Podworny J., Piotrowski J., Wojsa J. Investigations into the kinetics and mechanism of gas-solid state processes in MgO-MgR2O4 (R:Al, Cr, Fe) spinels-SO2-O2 system [J]. Ceramics International,2008,34:1587-1593.
    [187]Kang Y. C., Choi J. S., Park S. B. Preparation of high surface area MgAl2O4 particles from colloidal solution using filter expansion aerosol generator [J]. Journal of the European Ceramic Society,1998,18:641-646.
    [188]Wang J., Chen L., Limas-Ballesteros R., Montoya A., Dominguez J. M. Evaluation of crystalline structure and SO2 storage capacity of a series of composition-sensitive De-SO2 catalysts [J]. Journal of Molecular Catalysis A: Chemical,2003,194:181-193.
    [189]邹鲁.尖晶石型复合金属氧化物功能材料的制备、表征及其性能研究[D].北京化工大学,博士研究生学位论:2008.
    [190]Wang J., Li C. SO2 adsorption and thermal stability and reducibility of sulfates formed on the magnesium-aluminate spinel sulfur-transfer catalyst [J]. Applied Surface Science,2000,161:406-416.
    [191]耿姗.催化裂解多产丙烯催化剂研究[D].中国石油大学(华东),研究生学位论文:2010.
    [192]Bocanegra S. A., Ballarini A. D., Scelza O. A., de Miguel S. R. The influence of the synthesis routes of MgAl2O4 on its properties and behavior as support of dehydrogenation catalysts [J]. Chemistry and Physics,2008,111:534-541.
    [193]闻芳,杜洪兵,雷牧云,黄存新.镁铝尖晶石超细粉末的制备[J].现代技术陶瓷,2003,(3):3-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700