热等离子体重整CH_4-CO_2制合成气
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着世界性石油储量的日益减少,天然气这一高效、清洁、储量可观的能源越来越受到人们的重视。天然气的主要成分是甲烷,资源丰富。二氧化碳是含碳化合物的最终氧化产物,主要来源于化石燃料的燃烧和排放。二者同为温室气体,又是丰富的碳资源。因此,开辟以天然气(CH_4)和CO_2为原料替代石油资源的基本有机化工合成路线研究不仅关系到未来资源的配置,对环境保护也同样有重要意义。但是,甲烷和二氧化碳化学性质非常稳定,直接转化需要极为苛刻的条件。等离子体技术为这种转化提供了一条新的途径。
     等离子体是大量带电粒子组成的非凝聚系统,是物质存在的第四态,其基本组成成分是:电子、离子、原子、分子、光子和自由基。等离子体作为一种特殊的手段,在参与化学反应上受到人们的关注。应用在甲烷二氧化碳重整反应过程中的有冷等离子体和热等离子体两种,相对于冷等离子体而言,热等离子体技术具有高温、高焓、可控等优点,该技术在化工领域显示了其巨大的应用价值。本文重点研究热等离子体射流在甲烷二氧化碳重整中的应用。
     实验考察了原料气CH_4/CO_2摩尔比、输入功率、进气流量对原料转化率、产物选择性的影响。研究结果表明,热等离子体重整甲烷和二氧化碳制合成气具有处理量大、甲烷和二氧化碳转化率高、化学能效和热值产率高的特点。当CH_4/CO_2=1,进气流量为9.6m3/h,放电功率为3.4KW时,CH_4和CO_2的转化率为别为92%和88.3%,H_2、CO和C_2H_2的选择性分别为65.1%、66.2%和13.7%,化学能效值为59.8%。
     实验考察了在热等离子体条件下,甲烷单独裂解和二氧化碳单独裂解的规律,并与甲烷二氧化碳重整实验进行了对比研究,结果表明:在重整反应过程中,甲烷和二氧化碳具有相互促进作用。
     常压下,利用实验室制备的Ni-Ce/Al_2O_3催化剂,进行了热等离子单独重整与热等离子体催化耦合重整CH_4和CO_2制合成气的实验研究。实验中,催化剂被放置在等离子体反应区,催化剂床层由高温等离子射流气体加热。固定原料气配比V(CO_2)/V(CH_4) =1、等离子体工作载气流量0.8m3/h及放电功率3.5KW不变,考察了原料气总流量对原料转化率、产物选择性、化学能效和催化剂积碳速率的影响;并探讨了助剂Ce在重整反应中的作用。结果表明:随原料气总流量的增加,CH_4和CO_2转化率降低,H_2和CO选择性无明显变化,C_2H_2选择性和催化剂积碳速率增加。热等离子催化耦合重整比热等离子单独重整具有较高的原料转化率、H_2和CO选择性、化学能效值和较低的C_2H_2选择性。
     最后,利用ASPEN PLUS模拟软件,对热等离子重整甲烷和二氧化碳制合成气的实验过程进行了热力学模拟,发现模拟结果能够较好的和实验结果吻合。
     实验采用自然界存在丰富的CH_4和CO_2作为原料气,在友好的常温常压反应条件下,利用热等离子体技术重整制取合成气,这对开辟新的化工原料来源,减少温室气体排放,实现可持续发展战略具有重要的意义。
With the petroleum resources becoming increasingly exhausted, more and more attention has been focused on the exploitation of natural gas that is highly effective, clean and abundant worldwide. CH4 is a principal component of natural gas. Since both CH4 and CO_2 are major greenhouse gases and the plentiful sources of carbon. Therefore, how to utilize them is concerned not only to resource disposition in the future, but also to protection of the environment.
     Plasmas are defined as highly excited gases composed of electrons, ions, atoms, and molecules with different energetic states, which is the fourth state of matter. Plasma process offers a unique way to induce gas phase reaction, which is utilized in many chemical reactions. Depending on their energy level, temperature and electronic density, plasma state is usually classi?ed as a high temperature (or thermal) plasma and a cold (or non-thermal or non-equilibrium) plasma. Thermal plasma has many advantages such as high temperature, adjusted atmosphere and controllable magnetism etc. Thermal plasma with features of higher temperature and higher density of active particles could be more effective to implement the simultaneously conversion of methane and carbon dioxide. Compared with non-thermal plasma, thermal plasma enhanced methane conversion process could achieve higher conversions of reactants, as well as higher selectivity to the syngas.
     The effects of the molar ratio of CH_4/CO_2, total flux of feed gases and the plasma power were investigated. The results indicated that the reforming of CH_4 and CO_2 were performed by thermal plasma with a larger processing capacity, higher conversion of CH_4 and CO_2, and higher chemical energy efficiency and fuel production efficiency. When the molar ratio of CH_4/CO_2, the total flux of feed gases and the input electric power were CH_4/CO_2=1, 9.6m3/h and 3.4KW, respectively, the conversions of CH_4 and CO_2 were up to 92.2% and 88.3%. Under these optimal conditions, the other parameters were determined: the selectivies of H_2、CO and C2H_2 were also high to 66.2%、65.1% and 13.7%, and the chemical energy efficiency were 59.8%.
     Experiments of carbon dioxide decomposition, methane decomposition and carbon dioxide reforming of methane were investigated. The results show that the mutual promotion between carbon dioxide and methane in reforming process should be considered in order to obtain high conversion of CH_4 and CO_2.
     Experiments on synthesis gas preparation from reforming of methane by carbon dioxide with thermal plasma only and cooperation of thermal plasma with Ni-Ce/Al2O3 catalyst, which were packed in the post plasma zone, have been performed. No extra energy was needed to maintain the temperature of catalyst bed, the elevated temperature was maintained by the hot gases from plasma region. We investigated the effects of total flux on the conversions of reactants ,the selectivity of products, chemical energy efficiency and the catalyst coking rate; Besides, we discussed the role of Ce in the reforming reaction, when the molar ratio of CH_4 to CO_2, the nitrogen flow and the plasma power were 1/1, 0.8m3/h and 3.5KW. The results show that with the increase of total flux, the conversions of methane and carbon dioxide decreased gradually, the selectivity of H_2 and CO hardly changed except C2H_2, and the catalyst coking rate Rapidly increased. Respectively, Higher conversion of reactants, higher selectivity of H_2 and CO, higher chemical energy, and lower selectivity of C2H_2 of the process were achieved by plasma coupled with catalyst.
     Finally, the thermodynamic analysis of process of CO_2 reforming CH_4 to syngas by a thermal plasma was undertaken using the Aspen Plus simulation tool. It was found that the simulation results accord with the experiment results well.
     The experiments use CH_4 and CO_2 as stuff, which are very abundant in the nature, utilize thermal plasma reforming at normal temperature and pressure conversion of methane and carbon dioxide to syngas. It is important for providing a new source of chemical engineering raw material, reducing greenhouse gases exhaust, realizing the strategy of sustainable development.
引文
[1]石兴春,李吟天.中国天然气工业发展研究[M].石油工业出版社, 2002.
    [2]胡杰,朱博超,王建明.天然气化工技术及利用[M].化学工业出版社, 2006.
    [3]陈立春,菜春艳,周延洪.天然气制乙炔可行性探讨[J].聚氯乙烯, 2000, 2: 5-11.
    [4] Rostrup-Nielsen J R. Catalytic steam reforming catalysis science and technology (Anderson J R,Boudart M,eds), Springer, Berlin, 1984, 5:1.
    [5] D E Rider, M W Twigg. Catalysts handbook 2nd den(M Twigg,eds) wolfe, Publ, London, 1989, 12.
    [6] J T Richardson, S A Paripatyadar. Carbon dioxide reforming of methane with supported rhodium[J]. Applied Catalysis, 1990, 61(2): 293-309.
    [7]马腾才,胡希伟,陈银华.等离子体物理原理[M].中国科学技术大学出版社, 1988.
    [8] HermanV. Boeing. Plasma Seienee and Teehnology[M]. Cornell University Press. London.
    [9]李定,陈银华,马锦秀等.等离子体物理学[M].高等教育出版社, 2006.
    [10]印永嘉,姚天扬.化学原理[M].高等教育出版社, 2006.
    [11]赵青,刘述章,童洪辉.等离子体技术及应用[M].北京:国防工业出版社, 2009.
    [12] Ponomarev D, Pushkarev A, Remnev G. Proceeding of 17th International Symposium on Plasma Chemistry[C]. Toronto, Canada, 2005, 534-535.
    [13]赵华侨.等离子态化学与工艺[M].合肥:中国科学技术出版社, 1993.
    [14] Chen H C, Pfender E, Heberlein J. Improvement of Plasma Spraying Efficiency and Coating Quality[J]. Plasma Chemistry and Plasma Processing, 1997, 17( 1): 97-103.
    [15] Anass T, Angeles F , Recamales M, et al. Contribution to the study of avocado honeys by their mineral contents using inductively coupled plasma opticalemission spectrometry[J]. Food Chemistry, 2005, 92(2): 305-309.
    [16]田玉龙.电弧等离子体裂解甲烷制乙炔的研究[D].山西:太原理工大学, 2007.
    [17]吴越.气化和气体合成反应的热力学[M].中国工业出版社, 1965.
    [18] Stubl D R, Prophet H, JANAF. Themochemical Tables[M]. NSRDS-NBS 37, Washington D C, 1971.
    [19] Gadalla A M, Bower B. The role of catalyst support on the activity of nickel for reforming methane with CO_2[J]. Chemical Engineering Science, 1988, 43(11): 3049-3062.
    [20]张军旗,张劲松.正压、脉冲低温微波等离子体转化天然气的研究[D].中国科学院, 2002.
    [21]许根慧,姜恩永,盛京等.等离子体技术与应用[M].化学工业出版社, 2006.
    [22]兰天石,戴晓燕.热等离子体重整天然气和二氧化碳制合成气研究[D].四川大学, 2007
    [23]原丽军. CH_4—CO_2等离子体重整制合成气的研究[D].太原理工大学, 2007.
    [24] Zyn V I. Kinetic identification of a mechanism of complex plasma chemical reaction[J]. Plasma Chem. Plasma Proc. 1998, 18(3): 395
    [25]李明伟,刘昌俊,许根慧.冷等离子体作用下CH_4—CO_2转化制合成气[J].应用化学, 2000, 17(6): 593-597.
    [26]王彧婕,李洁,印永祥等.等离子体CH_4—CO_2重整制合成气动力学分析[J].天然气化工, 2007, 32(2): 26-31.
    [27] Martin Kraus, Walter Egli, Ken Ha(?)ner, et al. Investigation of mechanistic aspects of the catalytic CO_2 reforming of methane in a dielectric-barrier discharge using optical emission spectroscopy and kinetic modeling[J]. Phys. Chem. Chem. Phys. , 2002, 4, 668–675.
    [28]白玫瑰,陶旭梅,印永祥等.不同进气方式对热等离子体应用于CH_4—CO_2重整的影响[J].物理化学学报, 2009, 25(12): 2455-2460.
    [29] Zhou L. M. , Xue B. , Kogelschatz U. , et al. Nonequilibrium plasma reforming ofgreenhouse gases to synthesis gas[J]. Energy Fuels, 1998, 12(6): 1191-1199.
    [30] Malik M. A, Jiang X. Z. The CO_2 reforming of natural gas in a pulsed corona discharge reactor[J]. Plasma Chemistry and Plasma Processing, 1999, 19(4): 505-512.
    [31] Yao S. L. , Ouyang F. , Nakayama A. , et al. Oxidative coupling and reforming of methane with carbon dioxide using a high-frequency pulsed plasma[J]. Energy Fuels, 2000, 14, 910-914.
    [32]张军旗,杨永进,张劲松等.常压、脉冲微波强化丝光等离子体作用下甲烷与二氧化碳的反应研究[J].化学学报, 2002, 60(11): 1973-1980.
    [33] A. M. Ghorbanzadeh, R. Lotfalipour, S. Rezaei. Carbon dioxide reforming of methane at near room temperature in low energy pulsed plasma[J]. International Journal of Hydrogen Energy, 2009, 34: 293-298.
    [34] Qi Wang, Bin-Hang Yan, Yong Jin, et al. Investigation of dry reforming of methane in a dielectric barrier discharge reactor[J]. Plasma Chem Plasma Process, 2009, 29: 217–228
    [35] Daihong Li, Xiang Li, YongxiangYin, et al. CO_2 reforming of CH4 by atmospheric pressure glow Discharge plasma: A high conversion ability[J]. International Journal of Hydrogen Energy, 2009, 34: 308–313.
    [36] Xumei Tao, Meigui Bai, Yongxiang Yin, et al. CO_2 reforming of CH4 by binode thermal plasma[J]. International Journal of Hydrogen Energy, 2009, 34(23): 9373-9378.
    [37]兰天石,龙华丽,印永祥等.热等离子体重整天然气和二氧化碳制合成气实验研究[J].天然气工业, 2007, 27(5): 129-132.
    [38] B. H. Yan, Q. Wang, Y. Jin, et al. Dry reforming of methane with carbon dioxide using pulsed DC arc plasma at atmospheric pressure[J]. Plasma Chem Plasma Process, 2010, 30: 257–266.
    [39] Li M W, Liu C P, Tian Y L, et al. Effects of catalysts in carbon dioxide reforming ofmethane via corona plasma reactions[J]. Energy Fuels, 2006, 20(3): 1033-1038.
    [40] An-Jie Zhang, Ai-Min Zhu, Jun Guo, et al. Conversion of greenhouse gases into syngas via combined effects of discharge activation and catalysis[J]. Chemical Engineering Journal, 2010, 156: 601–606.
    [41] Qi Wang, Bin-Hang Yan, Yong Jin, et al. Dry reforming of methane in a dielectric barrier discharge reactor with Ni/Al2O3 Catalyst:Interaction of Catalyst and Plasma[J]. Energy Fuels, 2009, 23, 4196–4201.
    [42]齐凤伟,陶旭梅,印永祥等.热等离子体和催化剂协同作用重整甲烷和二氧化碳制备合成气[J].天然气化工, 2007, 32(5): 32-35.
    [43] Xumei Tao, Fengwei Qi, Yongxiang Yin, et al. CO_2 reforming of CH_4 by combination of thermal plasma and catalyst[J]. International Journal of Hydrogen Energy, 2008, 33: 1262-1265.
    [44] G.Petitpas, J. D. Rollier, A. Darmon, et al. A comparative study of non-thermal plasma assisted refoming technologies[J]. International Journal of Hydrogen Energy, 2007, 32: 2848-2867.
    [45]丁恩振,丁家亮.等离子体弧熔融裂解[M].北京:中国环境科学出版, 2009.
    [46]覃攀,戴晓雁,印永祥等.热等离子体射流温度与放电功率和气体流量的定标关系[J].核聚变与等离子体物理, 2008, 28(1): 94-96.
    [47]陶旭梅,代伟,戴晓燕等.等离子体射流裂解天然气制乙炔的实验[J].天然气工业, 2006, 26(4): 131-134.
    [48]郭春文.氮等离子体炬裂解天然气制乙炔乙烯的研究[D].四川:四川大学, 2002.
    [49]鲍卫仁,田玉龙,谢克昌等.电弧等离子体裂解甲烷制乙炔[J].化工学报, 2008, 59(2): 472-477.
    [50] Zhang Yue-ping, Yang Li, Wang Yu, et al. Plasma methane conversion in the presence of carbon dioxide using dielectric-barrier discharges[J]. Fuel Processing Technology, 2003, 83(1–3): 101–109.
    [51] Yang Li, Liu Chang-jun, Eliasson B, et al. Synthesis of oxygenates and higherhydrocarbons directly from methane and carbon dioxide using dielectric-barrier discharges: product distribution[J]. Energy Fuels, 2002, 16(4): 864–870.
    [52] Sobacchi MG, Saveliev AV, Fridman AA, et al. Experimental assessment of a combined plasma/catalytic system for hydrogen production via partial oxidation of hydrocarbon fuels[J]. International Journal of Hydrogen Energy, 2002: 635–642.
    [53] Ghorbanzadeh A. M, Lotfalipour R, Rezaei S. Carbon dioxide reforming of methane at near room temperature in low energy pulsed plasma[J]. International Journal of Hydrogen Energy, 2009: 635–642.
    [54] Fidalgo B, Dominguez A, Pis JJ, et al. Microwave-assisted dry reforming of methane[J]. International Journal of Hydrogen Energy,2008,33(15): 4337–4344.
    [55] Zhang Jun-Qi, Yang Yong-Jin, Zhang Jin-Song, et al. Study on the conversion of CH_4 and CO_2 using a pulsed microwave plasma under atmospheric pressure[J]. Acta Chimica Sinica,2002,60(11): 1973–1980.
    [56] Chen Qi, Dai Wei, Tao Xu-mei, et al. CO_2 reforming of CH_4 by atmospheric pressure abnormal glow plasma[J]. Plasma Science and Technology,2006,8(2): 181–184.
    [57] Bai Mei-gui, Tao Xu-Mei, Yin Yong-xiang, et al. Effect of different feeding modes on CO_2 reforming of CH_4 by thermal plasma[J]. Acta Physico-Chimica Sinica, 2009, 25(12): 2455-2460.
    [58] Cheng DG, Zhu XL, Ben YH, et al. Carbon dioxide reforming of methane over Ni/Al_2O_3 treated with glow discharge plasma[J]. catalysis today, 2006, 115(1-4): 205-210.
    [59] Hyung Keun Song, Jae-Wook Choi, Sung Hoon Yue, et al.Synthesis gas production via dielectric barrier discharge over Ni/γ-Al2O3 catalyst[J]. catalysis today, 2004, 89: 27-33.
    [60] W. D. Zhang, B. S. Liu, Y. L. Tian. CO_2 reforming of methane over Ni/Sm_2O_3-Cao catalyst prepared by a sol-gel technique[J]. Catalysis Communications, 2007, 8:661-667.
    [61]孙泉,李文英,谢克昌.甲烷/二氧化碳重整反应催化剂的制备及反应性能研究[J].燃料化学学报, 1996, 24(3): 219-224.
    [62]傅利勇,吕绍洁,谢卫国等.助剂对CH_4, CO_2和O_2制合成气反应催化剂性能的影响[J].燃料化学学报, 1999, 27(6): 511-516.
    [63] Nandini A. Pechimuthu, Kamal K. Pant, Subhash C. Dhingra. Deactivation Studies over Ni-K/CeO_2-Al_2O_3 Catalyst for Dry Reforming of Methane[J]. Industrial Engineering Chemistry Research, 2007, 46: 1731-1736.
    [64] Abolghasem Shamsi, Christopher D. Johnson. Effect of pressure on the carbon deposition route in CO_2 reforming of 13CH_4[J]. Catalysis Today, 2003, 84: 17–25.
    [65] Hu Y H, Ruckenstein E. Catalytic conversion of methane to synthesis gas by partial oxidation and CO_2 reforming[J]. Advances In Catalysis, 2004, 48: 297-345.
    [66] Ong'iro A, Ugursal V I l, Taweel A M, et al. Thermodynamic simulation and evaluation of a steam CHP plant using ASPEN Plus[J]. Applied Thermal ngineering, 1996, 16(3): 263-271
    [67] Sotudeh-Gharebaagh R, Legros R, Chaouki J, et al. Simulation of circulating fluidized bed reactors using ASPEN PLUS[J]. Fuel, 1998, 77(4): 327-337
    [68]林立. AspenPlus软件应用于煤气化的模拟[J].上海化工, 2006, 31(8): 10-13
    [69]郭继宁,邢春发,徐显明等.应用ASPEN PLUS模拟甲烷、二氧化碳制合成器反应[J].化工科技市场, 2008, 31(9): 36-37.
    [70]邢春发,崔秋凯,王凤荣等.应用ASPEN PLUS模拟天然气、空气、水蒸气制合成气反应[J].化工科技市场, 2008, 31(4): 22-23.
    [71]孙迎.甲烷联合重整三重整制合成气的热力学分析[D].太原理工大学, 2007.
    [72]张巍巍,陈雪莉,于遵宏等.基于ASPEN PLUS模拟生物质气流床气化工艺过程[J].太阳能学报, 2007, 28(12): 1360-1364.
    [73]汪洋,代正华,于遵宏等.运用Gibbs自由能最小化方法模拟气流床煤气化炉[J].煤炭转化, 2004, 27(4): 27-33.
    [74]陈猛,赵海波,郑楚光等.化学链重整制氢系统的ASPEN PLUS仿真[C].中国工程热物理学会——工程热力学与能源利用.
    [75]卢昶. ASPEN PLUS软件在大型聚丙烯装置的应用[D].天津:天津大学化工院,2009.
    [76]沈航.淤浆聚乙烯生产流程ASPEN建模[D].浙江大学化材学院, 2006.
    [77] Chan S H, Wang H M, Effect of natural gas composition on autothermal fuel reforming Products[J]. Fuel Processing Technology, 2000, 64: 221-239.
    [78] Perry R H, Green D W, Maloney J O, Perry,s Chemical Engineering,Handbook, McGraw-Hill, NewYork, 1999.
    [79] A.Oumgher, J. C. Legrand, A. M. Diamy, et al. Methane conversion by an dinitrogen microwave plasma[J]. Plasma Chem. Plasma Process. , 1994, 14(3): 229-249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700