ZSM-5分子筛催化剂的原位合成、改性及MTP反应性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丙烯传统的生产路线是石油原料的催化裂解。由于世界石油总量有限,国际原油价格不断上涨,导致丙烯生产成本不断升高,制约了丙烯工业的发展。甲醇制烯烃(MTP)技术是指以煤/天然气合成的甲醇为原料,生产低碳烯烃的化工技术。随着甲醇生产的日益规模化,成本日趋降低,甲醇制丙烯成为最有希望替代石油原料制烯烃的工艺路线。近年来,MTP技术成为学术和工业界研究的热点。MTP技术的关键之一在于催化剂的活性和选择性,其研究的重点集中在催化剂的制备和后处理。
     ZSM-5是目前发现的对甲醇转化制丙烯反应丙烯选择性最高的催化剂。分子筛催化反应性能与其物性密切相关,因此可以通过不同合成、改性方法对ZSM-5分子筛的形貌、孔结构、酸性质进行调控,从而提高其在MTP反应中的催化性能,本论文分别通过金属原位改性ZSM-5、基质(高岭土)原位晶化ZSM-5和低浓度表面活性剂原位晶化ZSM-5等三种不同方法得到ZSM-5分子筛,继而考察产物分子筛的物性结构及其MTP反应的催化反应性能。论文开展的研究工作和得到的主要结论如下:
     第一部分,系统研究了Cs、Ca、Mg、Fe、Zn、Ti、Ni七种不同金属元素对改性ZSM-5分子筛物性的影响,并获得了具有最佳MTP反应性能的金属杂原子改性ZSM-5。首先,采用Cs、Ca、Mg、Fe、Zn、Ti、Ni七种不同金属元素,在水热条件下原位合成ZSM-5分子筛。其次,对不同金属元素原位合成的ZSM-5催化剂进行MTP反应测评,结果显示,Ca-ZSM-5对丙烯选择性最高,Mg-ZSM-5次之,这可能与Ca-ZSM-5具有较多的B酸酸性位及较大的平均孔径尺寸有关。最后,以Fe-ZSM-5体系为例,比较了原位改性、离子交换改性和浸渍改性方法的金属负载量,结果表明,原位改性法金属元素进入分子筛的量最少,离子交换法次之,浸渍法对金属的负载量最多。
     第二部分,首次将高岭土原位合成分子筛技术应用于MTP反应,并得到了具有较高丙烯选择性的多功能ZSM-5分子筛催化剂。首先,分别在静态晶化和动态晶化条件下研究比较了基质原位合成ZSM-5分子筛晶型随反应时间的变化情况。由于动态搅拌加快了晶化体系的传质、传热过程,使得动态晶化条件下的晶相转化过程快于静态晶化条件下的晶相转化过程,且随着反应时间的增加,分子筛晶型由ZSM-5转晶为MOR,经历方沸石中间相。其次,针对动态晶化体系,进一步考察基质对产物分子筛物性的影响,并比较偏土、尖晶石两种基质原位合成ZSM-5的物性差别,以指导工业应用。分析结果表明,基质原位合成的ZSM-5晶粒尺寸小、中强B酸丰富,且形成微孔-介孔-大孔的多级孔道结构。最后,通过MTP反应考评ZSM-5晶粒的催化反应性能发现,基质原位合成ZSM-5可以显著提高MTP反应中丙烯的选择性,其中偏土原位合成ZSM-5增产丙烯效果更为明显,这与偏土、尖晶石合成的ZSM-5分子筛在形貌、孔分布和酸性质上存在的差异有关。
     第三部分,首次将低浓度表面活性剂(CTAB)原位合成ZSM-5应用于MTP反应,系统研究了CTAB加入量对产物ZSM-5物性及MTP反应性能的影响。通过表征分析可知,加入表面活性剂后,产物ZSM-5分子筛的结晶度与参比ZSM-5分子筛相比有所降低,并形成小晶粒结构,比表面积增大。与此同时,系统考察CTAB占总投料量质量分数分别为0.5%、1.8%、4.2%时对产物ZSM-5的物性变化及MTP反应性能的影响,结果表明,按总投料量质量分数的0.5%及4.2%加入表面活性剂原位合成的ZSM-5分子筛的中强B酸量显著增加。对CTAB原位合成的ZSM-5分子筛进行MTP反应性能测试,按总投料量的4.2%加入CTAB,产物分子筛最有利于MTP反应丙烯的生成,并能够提高ZSM-5分子筛的稳定性,有效抑制氢转移反应。
Propylene is traditionally produced by petroleum cracking. However, due to the rising price of petroleum caused by its scarce resources, the development of propylene industry is highly restricted. Methanol to propylene (MTP) technology refers to a new method that based on coal /natural gas for producing propylene. With the increasing scale and lower cost of methanol production, MTP is the most promising technology that would substitute the traditional oil route for producing propylene. Thus, MTP has been received intensive study in recent years in both academic and industry fields. One of the key points in methanol to propylene technology is the activity and selectivity of catalyst, which makes the synthesis and post-processing of catalyst an important part.
     ZSM-5 has the highest propylene selectivity compared with other catalysts in methanol to propylene process. Former researches indicated that the catalyst's catalytic performance is closely related to its physical property. Therefore, the catalytic activity of ZSM-5 in MTP reaction can be enhanced by adjusting its morphology, pore structure and acid property by different synthesis and modification methods. The research of this paper examined the physical properties of in-situ synthesis of ZSM-5 in three different systems—ZSM-5 made by metal elements incorporation, ZSM-5 made from matrix and ZSM-5 made from surfactant. Their catalytic activities in methanol to propylene process were also tested. The main research work and conclusions of the paper are as follows:
     The first part systematicly examined the effects of Cs、Ca、Mg、Fe、Zn、Ti、Ni bringing on the properties of product ZSM-5 and the metallic element modified ZSM-5 with the best MTP performance was obtained. First, Cs, Ca, Mg, Fe, Zn, Ti, and Ni etc. seven different metal elements were used hydrothermal in-situ synthesis of ZSM-5. Secondly, ZSM-5 zeolites made by different metal elements incorporation were tested by MTP reaction for their catalytic performance. The results showed that: Ca-ZSM-5 had the highest propylene selectivity, which may relate to its more B-acid sites and larger average pore size. Finally, the comparison among in-situ modification method, ion exchange modification method and impregnation modification method were made toward Fe-ZSM-5 system. It showed that catalyst treated by in-situ modification method contained minimal amount of metal elements, then followed by ion exchange modification method. Impregnation modification method loaded most content of metal elements.
     In the second part, the kaolin in-situ synthesis technology was used in MTP reaction for the first time. Multi-functional ZSM-5 zeolite catalyst with high propylene selectivity was obtained. Firstly, changes of matrix in-situ synthesis of ZSM-5 crystal structure with the reaction time were compared under both static and dynamic reaction conditions. It was found that the crystal phase transformation process under dynamic reaction condition was much faster than that under static reaction condition. This might caused by the speeding up of the mass and heat transfer process from dynamic mixing in dynamic reaction condition. And in the crystallization process, ZSM-5 crystal was first formed and then transformed into MOR crystal with analcime as mid-phase. Then, the effect of matrix bringing on the physical properties was further examined, and the difference between metakaolin and spinel in-situ synthesis of ZSM-5 zeolites was investigated for industry application. The results showed that matrix in-situ synthesis of ZSM-5 had small crystal size. Besides, they exhibited a gradient pore distribution and increased medium BrOnsted acid sites. By conducting MTP reaction, both metakaolin co-synthesis ZSM-5 and spinel co-synthesis ZSM-5 exhibited high selectivity for propylene. Metakaolin co-synthesis ZSM-5 showed better catalytic activity toward MTP reaction which might owning to its unique morphology、pore structure and acid properties.
     The third part of the paper applied low concentration of surfactant (CTAB) to in-situ synthesis of ZSM-5 for the first time, and systematicly investigated the effects of both the properties and MTP reaction performances of ZSM-5 zeolite made by different CTAB amount. Through the characteristic analysis, it was found that after adding surfactant in the synthesis system, the crystallinity of the product zeolites decreased when compared with that of regular ZSM-5. Besides, smaller crystal size and larger specific surface area were also formed. For the acid property, samples with surfactant accounting for 0.5% and 4.2% mass fraction of total investment has more B acid sites. By conducting methanol to propylene reaction, the product zeolite with surfactant account for 4.2% mass fraction of total investment might greatly enhance propylene yield、strengthen product zeolite stability and resist hydrogen transfer reaction efficiently.
引文
[1]曹湘红.重视甲醇制乙烯丙烯的技术开发大力开拓天然气新用途[J].当代石油石化,2004,12(12):1-6.
    [2]崔飞,张璐璐,李建青,肖钢,王晓梅,张秀成.改性HZSM-5催化剂用于MTP反应的研究.天然气化工,33(4):13-16.
    [3]沈雪松,张陆曼,曾义红,李彩云,陈大胜.甲醇制丙烯技术研究进展[J].上海化工,2009,34(9):29-31.
    [4]何海军,韩金兰,王乃计,肖翠微,范玮,苗鹏.Lurgi MTP工艺的技术经济分析[J].煤质技术,2006,(3):45-47.
    [5]Higman,Chistopher.Verfahren zum Erzeugen von Ethylen,Propylen und wahlweise auch Butenisomeren aus methanol und/oder dimethylether.Germany,DE:98108843.8,1998.
    [6]Hack Markus.Method for producing propylene from methanol.Germany,DE:10027159.6,2001.
    [7]Lurgi AG,Verfahren zur Herstellung von C2-bis C4-olefinen aus einem oxygenate undwasserdampf enthaltenden einsatzstrom.Germany,DE:102005015923.0,2004.
    [8]Rothaeme M,Holtmann H D.Methanol to propylene MTP-Lurgis way[J].Erdol Erdgas Kohle,2002,(5):234-237.
    [9]Van den Berg J P,Wolthuizen J P,Van den Berg J P,Wolthuizen J P,van Hooff J H C.Proceedings 5th International Zeolite Conference(Ed.Rees L V),London,1980.649
    [10]Salvador P,Kladnig W.J.Surface reactivity of zeolite type HY and type Na-Y with methanol [J].Chem.Soc.Faraday Trans.,1977,73:1153-1168.
    [11]Ono Y,Moil T.Mechanism of methanol conversion into hydrocarbons over ZSM-5 zeolite[J].Chem.Soc.Faraday Trans.,1981,77:2209-2221.
    [12]Zatorski W,Krzyzanowski S,Conversion of methanol to hydrocarbons over natural mordenite.Acta Phys.Chem.,1977,24:347.
    [13]Dahl I M,Kolboe S.On the reaction mechanism for propene formation in the MTO reaction over SAPO-34[J].Catal.Letter,1993,20(3-4):3299-3336.
    [14]Dahl I M,Kolboe S.On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34.1:isotopic labelling studies of the CO-reaction of ethene and methanol[J].J. Catal.,1994,149(2):458-464.
    [15]Dahl I M,Kolboe S.On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34,2:isotopic labelling studies of the co-reaction of propene and methanol[J].J.Catal.,1996,161(1):304-309.
    [16]Pu S B,Inui T.Influence of crystallite size on catalytic performance of HZSM-5 prepared by different methods in 2,7-dimethylnaphthalene isomerization[J].Zeolites,1996,17(4):334-339.
    [17]Suzuki I,Namba S,Yashima T,Determination of external surface area of ZSM-5 type zeoltie [J].J.Catal.,1983,81,81(2):485-488.
    [18]Dejaifve P,Vodrine J C,Bolis V,Derquane E G.Reaction pathways to the conversion of methanol and olefins on HZSM-5 zeolite[J].J.Catal.,1980,63(2):331-345.
    [19]Ruthven D M.Diffuse in Zeolite Mlecular Sieves.Holand,Elsevier,Amsterdam:2007,1-168.
    [20]Gilson J P,Derouane E G.On the external and intracrystalline surface catalytic activity of pentasil zeolites[J].J.Catal.,1984,88(22):538-541.
    [21]Kastinko J A.Preprints of Symposia of Am.Chem.Soc.Las Vegas,1982,27(2):48-51.
    [22]Philip K,Maher,Julius Scherzer,Baltimore.Method of preparing microcrystalline faujasite-sype zeoltie.USA,US:3516786,1968.
    [23]陈国周.小晶粒NaY分子筛合成探索[硕士论文].厦门:厦门大学,2001,1-98.
    [24]王锋,贾鑫龙,胡津仙,任杰,李永旺,孙予罕.形貌,晶粒大小不同的ZSM-5分子筛的表征及催化性能的研究[J].分子催化,2003,17(2):141-145.
    [25]张玲玲,李凤艳,赵天波,王岳.纳米与非纳米ZSM-5分子筛的表征及催化性能[J].石油化工高等学校学报,2007,20(1):31-34.
    [26]滕加伟,赵国良,谢在库,陈庆龄.ZSM-5分子筛晶粒尺寸对C4烯烃催化裂解制丙烯的影响[J].催化学报,2004,25(8):602-606.
    [27]Moller K P,Bohringer W,Schnitzler A E,Steen E Van,Oconnor C T.The use of a jet loop reactor to study the effect of crystal size and the co-feeding of olefins and water on the conversion of methnol over HZSM-5[J].Micro.Meso.Mater.,1999,29(1):127-144.
    [28]李北芦,梁娟,孙金凤,李宏愿,刘宝祥.在改性ZSM-5沸石上从甲醇合成低碳烯烃[J].催化学报,1983,4(3):248-251.
    [29]Prinz D,Riekert L.Formation of ethene and propene from methanol on zeolite ZSM-5.1:Investigation of rate and selectivity in a batch reactor[J].Appl Catal,1988,37(1):139-154.
    [30]温鹏宇,梅长松,刘红星,杨为民,陈庆龄.甲醇分压和ZSM-5晶粒大小对甲醇制丙烯的影响[J].化学反应工程与工艺,2007,23(6):481-486.
    [31]梁娟,赵素琴,李宏愿,等.沸石催化剂上甲醇转化为低碳烯烃选择性的研究[J].石油化工,1983,12(9):531-538.
    [32]Shiralkar V P,Joshi P N,Eapen M J,Rao B S.Synthesis of ZSM-5 with variable crystallite size and its influence on physicochemical properties[J].Zeolites,1991,11(5):511-516.
    [33]Chen N Y,Carwood W E,Dwyer F G.Shape selective catalysis in industrial applications[M].Florida:CRC Press.1996,1-304.
    [34]Buchanan J S.The chemistry of olefins production by ZSM-5 addition to catalytic cracking units[J].Catal.Today,2000,55(3):207-212.
    [35]Derouane E G,Gabelica Z.A novel effect of shape selectivity molecular traffic control in zeolite ZSM-5[J].J.Catal.,1980,65(2):486-489.
    [36]杨一青,庞新梅,刘从华,王宝杰,刘超伟.一种催化新材料的孔结构与反应性能关联研究[J].工业催化,2008,16(5):31-34.
    [37]Jacobsen Claus J H,Madsen C,Houzvicka J,Schmidt I,Carlsson A.Mesoporous zeolite single crystals[J].J.Am.Chem.Soc.,2000,122(29):7116-7117.
    [38]Kloetstra K R,Zandbergen H W,Jansen J C,Bekkum H.Overgrowth of mesoporous MCM-41 on faujasite[J].Microporous Mater.,1996,6(5):287-291.
    [39]任亮,毛以朝,聂红.分子筛孔结构和酸性对正癸烷加氢裂化反应性能的影响[J].石油炼制与化工,2009,40(3):7-11.
    [40]朱华元,何鸣元,张信,宋家庆.正己烷在几种不同分子筛上的氢转移反应[J].石油炼制与化工,2001,32(9):39-42.
    [41]齐国祯.甲醇制烯烃(MTO)反应过程研究[硕士学位论文].上海:华东理工大学,2006,1-121.
    [42]陈连璋.沸石分子筛催化.大连:大连理工大学出版社,1990,1-323.
    [43]张进,肖国.ZSM-5型分子筛的表面酸性与催化活性[J].分子催化,2002,16(4):307-311.
    [44]朱向学,张士博,钱新华,牛雄雷,宋月芹,刘盛林,徐龙伢.水蒸气处理对ZSM-5酸性 及其催化丁烯裂解性能的影响[J].催化学报,2004,25(7):571-576.
    [45]Roldan R,Romero F J,Jimenez-Sanchidrian C,Marinas J M,Gomez J E Influence of acidity and pore geometry on the product distribution in the hydroisomerization of light paraffins on zeolites[J].Appl.Catal.,2005,288(1/2):104-115.
    [46]Hassan A,Ahmed S,Ali M A,Hamid H,Inui T.A comparison betweenβ-and USY-zeolite -based hydrocracking catalysts[J].Appl.Catal.,2001,220(1/2):59-68.
    [47]Zhang W M,Smirniotis P G.Effect of zeolite structure and acid on product selectivity and reaction mechanism for n-octane hydroisomerization and hydrocracking[J].J.Catal.,1999,182(2):400-416.
    [48]Chang C D,Silvestri A J.The conversion of methanol and other o-compounds to hydrocarbons over zeolite catalysts[J].J.Catal.,1977,47(2):249-259.
    [49]Camara L D T,Rajagopal K,Arandad A G.The effects of pore structure on catalyst deactivation by coke formation[J].Stud.Surf.Sci.Catal.,2001,139(1):61-68.
    [50]孙书红,王宁生,闰伟建.ZSM-5沸石合成与该行技术进展[J].工业催化,2007,15(6):6-9.
    [51]王坤院,王祥生.纳米ZSM-5分子筛研究进展[J].工业催化,2008,16(2):1-7.
    [52]马广伟,许中强,张慧宁,杨静波,葛学贵,彭继荣.不同条件下合成的ZSM-5分子筛的SEM研究[J].硅酸盐学报,2005,33(2):181-185.
    [53]刘明,项寿鹤.不同形貌和晶粒大小ZSM-5分子筛合成的研究[J].石油学报(石油加工),2001,17(2):24-29.
    [54]王荧光,桂建舟,张晓彤,孙兆林.纳米ZSM-5分子筛的合成与表征[J].光谱实验室,2005,22(2):225-229.
    [55]Schmidt I,Madsen C,Jacobsen C J H.Confined Space Synthesis:A novel route to nanosized zeolite[J].Inorg.Chem.,2000,39(11):2279-2283.
    [56]Verduijn J P.Zeolites and processes for theirmanufacture.Belgium,BE:EP0753482.1997.
    [57]Grieken R V,Sotelo J L,Menendez J M,Melero J A.Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5[J].Micro.Meso.Mater.,2000,39(1-2):135-147.
    [58]Song W,Justice R E,Jones C A,Grassian V H,Larsen S C.Synthesis,characterization,and adsorption properties of nanocrystalline ZSM-5[J].Langmuir,2004,20(19):8301-8306.
    [59]Reding G,Maurer T,Kraushaar-Czarnetzki B.Comparing synthesis routes to nano crystalline zeolite ZSM-5[J].Micro.Meso.Mater.,2003,57(1):83-92.
    [60]Mobil oil corporation.Small crystal ZSM-5 as a catalyst.USA,US:5240892,1993.
    [61]刘洪涛,鲍晓军,魏伟胜,石冈.中微孔复合分子筛的合成研究开发进展[J].化工进展,2002,21(12):889-893.
    [62]张强,崔秋凯,李春义,山红红,杨朝合.两阶段晶化合成复合分子筛[J].高等学校化学学报,2009,30(6):1060-1065.
    [63]Huang L M,Guo W P,Deng P,Xue Z Y,Li Q Z.Investigation of synthesizing MCM-41/ZSM-5 composites[J].J.Phys.Chem.B,2000,104(13):2817-2823.
    [64]Kloetstra K R,Zandbergen H W,Jansen J C,Bekkum H V.Overgrowth of mesoporous MCM-41 on faufasite[J].Microporous Mater.,1996,6(5-6):287-293.
    [65]Liu Y,Zhang W Z,Pinnavaia T J.Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds.[J].J.Am.Chem.Soc.,2000,122(36):8791-8792.
    [66]Zhao T S,Takemoto T,Tsubaki N.Direct synthesis of propylene and light olefins from dimethyl ether catalyzed by modified H-ZSM-5[J].Catal.Commun.,2006,7(9):647-650.
    [67]Shaikh R A,Hedge S G,Behlekar A A,Rao B S.Enhancement of acidity and paraselectivity by the silynation in pentasil zeolite[J].Catal.Today,1999,49(1-3):201-209.
    [68]陈松.金属原位改性 ZSM-5分子筛的合成及其形貌特征[J].石油学报(石油加工),2009,26(A02):116-119.
    [69]张铨昌,杨华蕊,韩成.天然沸石离子交换性能及其应用.北京:科学出版社,1986,1-268.
    [70]Jacobs P A,Martens J A.Synthesis of high silica aluminosilicate zeolite.New York:Elsevier,1987,1-390.
    [71]Argauer R J,Landolt G R.Crystalline zeolite ZSM-5 and method of preparing the same.USA,US:3702886.1972.
    [72]许春慧,彭勇,肖强,张富民,钟依均,朱伟东.硅酸为硅源合成丝光沸石晶体[Jz].石油学报(石油加工),2008,24(B10):295-298.
    [73]张飞,姜健准,张明森,杨元一.ZSM-5分子筛的合成及影响因素探讨[J].中国化工学会石油化工学术年会,2005.
    [74]徐如人,庞文琴,于吉红,霍启升,陈接胜.分子筛与多孔材料化学.北京:科学出版社, 2004.1-742.
    [75]孙长勇,宋一兵,叶飞.Fe-ZSM-5杂原子分子筛的合成与表征[J].光谱实验室,2003,20(3):448-451.
    [76]Szostak.R,Thomas T.L.Reassessment of zeolite and molecular sieve framework infrared vibrations[J].J.Catal.,1986,101(2):549-552.
    [77]杜红宾,周群,周凤岐,庞文琴.Cu-ZSM-5型分子筛的合成与结构表征[J].物理化学学报,1994,10(7):635-638.
    [78]Ione K G,Vostrikova L A,Mastikhin V M.Synthesis of crystalline metal silicates having zeolite structure and study of their catalytic properties[J].J.Mol.Catal.,1985,31(33):355-370.
    [79]Flanigen E M,Patton R L,Wilson S T.Structure,synthetic and physicochemical concepts in aluminophosphate molecular sieves[J].Stud.Surf.Sci.Catal.,1988,28:103.
    [80]陈松.原位晶化材料合成及加氢裂化催化应用研究[博士论文].杭州:浙江大学,2006,1-150.
    [81]吴铁轮.我国高岭土行业现状及发展前景[J].中国非金属矿工业导刊,2001(4):3-5.
    [82]Feng H,Li C Y,Shan H H.Effect of calcination temperature of kaolin microspheres on the in situ synthesis of ZSM-5[J].Catal.Lett.,2009,129(1-2):71-78.
    [83]Thomson J G,Cuff C.Crystal structure of kaolinite:dimethyldulfoxide intercalate[J].Clays Clay Miner.,1985,33(6):490-500.
    [84]Uwins P J R,Mackinnow I D R,Thompson J G,Yago A J E.Kaolinite:NMF intercalates[J].
    Clays Clay Miner.,1993,41(6):707-717.
    [85]Henisch H K,Dennis J,Hanoka J 1.Crystal growth in gels[J].Phys.Chem.Solids,1965,26
    (3):493-496.
    [86]Mahir A,Cigdem H,Zurriye Y,Halil G.The effect of alkali concentration and solid/liquid
    ration on the hydrothermal synthesis of zeolite NaA from natural kaolinite[J].Micro.Meso.
    Mater.,2005,86(1-3):176-184.
    [87]Imbert F E,Moreno C,Montero A.Venezuelan natural alumosilicates as a feedstock on the
    synthesis of zeolite A[J].Zeolites,1994,14(5):374-378.
    [88]Murat M,Amokrane A,Baastide J P,Montanaro L.Synthesis of zeolites from thermally activated kaolinite some observations on nucleation and growth[J].Clay Mine.,1992,27(1): 119-130.
    [89]Lovat V C R,Chandrasekhar S.Formation of zeolite from the system Na_2O-Al_2O_3-H_2O in alkaline medium(PH>10)[J].Zeolites,1993,13(7):524-533.
    [90]彭霞辉,龙怀中,覃文庆.高岭土选别-漂白-合成生产NaA型沸石的研究[J].中国矿业,1996,5(27):47-50.
    [91]高俊,乔淑萍,简丽,高智,崔秀兰.高岭土焙烧条件对合成4A沸石的影响[J].无机盐工业,1998,30(6):12-13.
    [92]赵经贵,霍丽华,张斌,刘宝珠,陈鹏刚.高岭土碱焙烧熟料活性组份及所合成的4A 石结构与形态[J].黑龙江大学自然科学学报,1999,16(1):90-92.
    [93]刘宝珠,霍丽华,张斌.以高岭土为原料合成4A分子筛的SEM晶体形态研究[J].黑龙江大学自然科学学报,1997,14(3):73-75.
    [94]Chandrasekhar S,Pramada P N.Investigation on the synthesis of zeolite NaX from kerala kaolin[J].Journal of Porous Mater.,1999,6(4):283-297.
    [95]Dight L B,Lawrence B D,David C,Bogert,Mark A,Leskowicz.High zeolite content FCC catalysts and method for making same from microspheres composer of a mixture of calcined kaolin clays.EP:369629,1990.
    [96]刘娟娟,姜成,张忠东,汪毅,张海涛,高雄厚.高岭土的改性及其用于合成分子筛的国内研究进展[J].中外能源,2008,13(5):87-93.
    [97]孙书红,王智峰,马建泰.高岭土合成沸石分子筛的研究进展[J].分子催化,2007,21(2):186-192.
    [98]Feng H,Li C Y,Shan H H.In-situ synthesis and catalytic activity of ZSM-5 zeolite[J].Appl.Clay Sci.,2009,42(3-4):439-445.
    [99]郑淑琴,常小平,高雄厚,索继栓.高岭土原位晶化体系中焙烧微球特性研究[J].非金属矿,2002,25(6):5-7.
    [100]Beck J S,Vartuli J C,Roth,Leonowicz M E,Kresge C T,Schmitt C T,Chu W,Olson D H,Sheppard E W.A new family of mesoporous molecular sieves prepared with liquid crystal templates[J].J.Am.Chem.Soc.,1992,114(27):10834-10843.
    [101]Kresge C T,Leonowicz M E,Roth W J,Vartuli J C,Beck J S.Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J].Nature,1992,359(22):710-712.
    [102]刘雷,张高勇,董晋湘.表面活性剂在介孔分子筛合成中的应用[J].精细石油化工,2004,(2):4-8.
    [103]Cheng C F,Lan Z H,Klinowski J.The role of surfactant micells in the synthesis of the mesoporous molecular Sieves MCM-41[J].Langmuir,1995,11(7):2815-2819.
    [104]Huang L M,Guo W P,Deng P,Xue Z,Li Q.Investigation of synthesizing MCM-41/ZSM-5composites[J].J.Phys.Chem.,2000,104(13):2817-2823.
    [105]Firouzi A,Atef F,Oertli A G,Stucky G D,Chmelka B F.Alkaline lyotropic silicate-surfactant liquid crystals[J].J.Am.Chem.Soc.,1997,119(15):3596-3610.
    [106]刘希尧.工业催化剂分析测试表证.北京:烃加工出版社,1990,1-418.
    [107]Malinowski S,Szczepanska S.Studies on solid catalysts with a basic character I[J].J.Catal.,1962,2(4):310-314.
    [108]刘希尧.工业催化剂分析测试表征[M].北京:烃加工出版社,1990.
    [109]胡浩,叶丽萍,应卫勇,等.甲醇制烯烃反应机理和动力学研究进展[J].工业催化,2008,16(3):18-23.
    [110]Chang C D,Silvestri A J.The conversion of methanol and other o-compounds to hydrocarbons over zeolite catalysts[J].J.Catal.,1977,47(2):249-259.
    [111]Camara L D T,RajagopalL K,Arandad A G.The effects of pore structure on catalyst deactivation by coke formation[J].Stud.Surf.Sci.Catal.,2001,139(1):61-68.
    [112]齐国祯,谢在库,钟思青,张成芳,陈庆龄.甲醇制烯烃反应副产物的生成规律分析[J].石油与天然气化工,2006,35(1):5-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700