尖晶石型复合氧化物的制备、表征及作为催化裂化环保助剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
催化裂化过程中产生的SO_x、NO_x和CO不仅会造成酸雨、光化学烟雾等诸多环境问题,而且会加剧设备腐蚀而影响催化裂化装置的长期安全运转。在诸多控制催化裂化烟气SO_x、NO_x和CO排放的方法中,助剂技术在经济、环保等方面有着独特的优势。研发能够同时消除催化裂化烟气SO_x、NO_x和CO的多功能助剂有着重要意义。
     首先采用酸法制备了具有尖晶石结构的MgAlCeFe复合氧化物硫转移剂,通过XRD、BET、FT-IR等分析方法对催化剂进行表征,利用固定床微型反应器和DTU-2A热分析仪评价催化剂的SO_x氧化吸附性能和还原再生性能,探讨了元素组成、制备过程和外部环境等因素对硫转移剂结构和性能的影响规律。富镁型镁铝尖晶石具有强吸附SO_x和还原性好的特性,是优异的SO_x吸附材料;氧化铈是促进SO_2氧化生成SO_3的活性组分;铁的主要作用是提高了硫转移剂的还原再生速率。活性组分之间的协同或竞争效应使硫转移剂中各组分的含量存在最优值。有机聚合物聚乙二醇可有效地增大硫转移剂的比表面积、孔容和孔径并促进活性组分的分散,优化了硫转移剂的内部结构,添加10%分子量为2000聚乙二醇的样品性能最佳。在650℃~750℃温度范围内,温度对硫转移剂SO_x饱和吸附容量的影响不明显。氧气对硫转移剂催化性能的发挥起着重要作用,在0~5%浓度范围内,硫转移剂SO_x氧化吸附性能对反应体系中氧气含量的变化是很敏感的。氢气和低碳烃类是促进硫转移剂还原再生的主要活性介质,氢气对硫酸盐的还原分解性能要明显优于丙烷等低碳烃类。温度升高促进了稳定硫酸盐和体相硫酸盐的还原分解从而提高了硫转移剂的再生速率。
     采用喷雾干燥成型技术生产的SFTS-1工业硫转移剂具有良好的SO_x氧化吸附性能和还原再生性能。提升管循环流化床实验表明:加入系统藏量2.5%的硫转移剂可使再生烟气中SO2的浓度降低89%。青岛石化工业试验表明:硫转移剂可有效降低催化裂化再生烟气SO_x的排放,当助剂加入量占系统藏量2.5%时,烟气中SO_x的脱除率达64.4%,且助剂的活性具有良好的稳定性;助剂的使用对催化裂化产品质量和产物分布没有不利影响,不影响催化裂化装置的正常稳定运转和产品的后续加工。
     同时消除催化裂化烟气SO_x、NO_x和CO多功能助剂的研究主要基于以下两种思路:向硫转移剂中添加具有NO还原和CO氧化催化功能的活性组分;研发可高效催化NO还原和CO氧化的助剂,与硫转移剂混合使用。向硫转移剂中添加10%氧化铜的催化剂具有最佳的同时消除SO_x、NO_x和CO的综合性能。催化剂NO还原反应的活性与反应体系中氧气浓度密切相关,当O_2/CO浓度比小于0.5时,催化活性良好,当O_2/CO浓度比大于0.5时,催化剂活性大大降低。镁铝尖晶石负载的具有类钙钛矿结构La_(2-x)Sr_xCoO_4复合氧化物催化剂能高效地催化NO还原和CO氧化反应,其中x=0.8样品的活性最佳,催化剂具有良好的水热稳定性,但抗SO_2中毒性能差。
Fluid catalytic cracking (FCC) unit is one of the major emission sources of SO_x, NO_x and CO in the oil refineries. Sulfer and nitrogen oxides, kown as the acid rain precursors, are harmful to our environments. They may also cause serious corrosion to the equipments of FCC regenerating systems and have an important effect on the safety, reliability and lifetime of FCC units. The addition of suitable additive to the FCC units is considered to be the most practical and economical option to reduce SO_x, NO_x and CO emissions.
     MgAlCeFe spinel type mixed oxides are prepared by acid method, characterized by XRD, BET, FT-IR techniques and evaluated as SO_x transfer additive. The effect of active components and preparation methods on the structure and SO_x removal activity of the additive is discussed. Moreover, the performance of SO_x removal is investigated at different reaction conditions. The MgAl spinel type mixed oxide is proven to be an excellent material for SO_x transfer additive due to its SO_x adsorption activity and reducibility of the formed sulfates. Cerium is the main active component for the oxidation of SO_2 to SO_3. Ferrum plays an essential role in the regeneration step. The content of different active components in the additive has an optimal value due to their competitive and synergistic effect. The BET surface area, pore volume and pore diameter of the additive can be improved significantly through addition of macromolecular organic material PEG. The aditive shows optimum SO_x oxidation adsorption and regeneration performance after adding 10% PEG2000. Reaction temperature has no significant influence on the SO_x uptake capacity when the temperature changes between 650℃and 750℃. The additive exhibits better SO_x adsorption performance in the presence of oxygen and the activity is very sensitive to the changes of oxygen concentration. The reduction rate of the additive is strongly influenced by the reductive mediators and the regeneration of the sulfated additive is much more efficient with hydrogen. The stable and bulk sulfate species can only be decomposed at higher reduction temperature and the additive shows better regeneration performance.
     SFTS-1 SO_x transfer additive produced by spray drying technique has a good SO_x adsorption and regeneration performance. The additive is evaluated on the riser circulating fluidized bed unit and the results shows that more than 89% SO_2 is removed after adding 2.5% additive. The commercial test result shows that the utilization of SO_x transfer additive in the FCC unit can reduce the emissions of SO_2 in flue gas. When the additive makes up 2.5% of the catalyst inventory, the removal efficiency of SO2 reaches 64.4% and the additive exhibits high activity and stability. The addition of SO_x transfer additive to FCC system has no significant influence on the qualities of main products, production distribution and normal operation of the FCC units.
     The multi-functional additive which can remove SO_x, NO_x and CO is studied on the basis of SO_x transfer additive. Copper is proven to be an active component for NO reduction and CO oxidation and the additive shows optimal performance for simultaneous removal of SO_x, NO_x and CO by introducing 10% CuO to the SO_x transfer additive. The additive shows excellent hydrothermal stability and good resistence to SO_2 posioning. The relative content of oxygen and carbon monoxide has a great influence on the NO reduction activity. The additive shows high NO reduction activity when n(O_2)/n(CO)<0.5 and the activity declines greatly when n(O_2)/n(CO)>0.5. MgAl_2O_4-supported La_(2-x)Sr_xCoO_4 mixed oxide catalyst has a good catalytic performance for NO reduction an CO oxidation and optimum catalytic activity could be obtained when x=0.8. But the catalytic activity is greatly decreased with exposure of the catalyst to atmosphere containing 0.02% SO2.
引文
[1]山红红,李春义,钮根林,杨朝合,张建芳.流化催化裂化技术研究进展[J].石油大学学报, 2005, 29(6): 135~150.
    [2]杜泉盛,刘忠杰.利用助剂法降低催化裂化再生烟气SO_x排放[J].石油化工环境保护, 2001, 4(10): 40~45.
    [3]李林波,许金山,梁颖杰.催化裂化烟气硫转移剂的研究进展[J].齐鲁石油化工, 2003, 31(3): 237~239.
    [4]杨一青,庞新梅,刘从华.催化裂化烟气硫转移助剂的研究进展[J].炼油与化工, 2008, 3(19): 1~4.
    [5] Xinjin Zhao, Peters A W, Weatherbee G W. Nitrogen Chemistry and NO_x Control in Fluid Catalytic Cracking Regenerator[J]. Ind. Eng. Chem. Res., 1997, 36(2): 4535~4542.
    [6]李军令,花小兵,吴永强.催化装置再生烟气中氮氧化物的产生与控制[J].石油化工环境保护, 2005, 28(1): 34~39.
    [7]焦云,朱建华,齐文义. FCC过程中NO_x形成机理及其脱除技术,石油与天然气化工, 2002, 31(6): 306~310.
    [8]刘有成,陈华,柳云骐.催化裂化再生设备应力腐蚀开裂规律的研究[J].石油化工腐蚀与防, 2004, 21(1): 12~16.
    [9]刘忠林,林大泉.催化裂化装置排放的二氧化硫问题及对策[J].石油炼制与化工, 1999, 30(3): 44~48.
    [10]杨秀霞,董家谋.控制催化裂化装置烟气中硫化物排放的技术[J].石化技术, 2001, 8(2): 126~130.
    [11]王一男.烟气脱硫技术在催化裂化中的应用[J].化工时刊, 2005, 19(12): 38~40.
    [12]毕铁成, NO_x污染控制技术选择[J].石油化工环境保护, 2005, 28(3): 55~60.
    [13]齐天义,丁全福,郝代军.降低催化裂化再生烟气中污染物助剂的研究进展[J].炼油技术与化工, 2008, 38(6): 53~57.
    [14] Jin S Yoo, John A. Karch. Catalytic SO_x Abatement: The role of magnesium aluminate spinel in the removal of SO_x from fluid catalytic cracking (FCC) flue gas [J]. Ind. Eng. Chem. Res., 1988, 27(8): 1356~1360.
    [15] Lowell P S, Schwitzgebel K, Parsons T B. Selection of metal oxide for removing SO2from flue gas[J]. Ind. Eng. Chem. Process. Des. Dev., 1971, 10 (3): 384~390.
    [16] Vasalos A.Catalytic cracking with reduced emission of noxious gases[P]. USP4153534. 1976-5-8.
    [17] Vasalos A, Ford W D. Catalytic cracking with reduced emission of noxious gases[P]. USP4153535, 1976-12-8.
    [18] Baron. K, Wu. A H, Krenzke. L D. Advance flue gas desulfurization technology[J]. Preprint In Symon Adv in Catal Cracking. ACS, Div Pet Chem, 1983, 934~643.
    [19] Fetterolf M L. Catalytic activity of transition metal ions in anoxide matrix[J]. Inorg Chem., 1981, 20(3): 1011~1022.
    [20] Blanton J, William A. Jaffe, Joseph. Sulfur oxides control in catalytic cracking[P]. USP4166787, 1979-9-4.
    [21] Ralph J. Bertolacini, Chesterton, Gerald M. Lehmann. Catalytic Cracking with Reduced Emission of Sulfur Oxides[P]. USP3835031, 1974-9-10.
    [22] Blanton J, William A. Process for removing sulphur from a gas[P]. USP4071436, 1978-4-31.
    [23] Radford, Herschel D. Removal of carbon monoxide and sulfur oxides from refinery flue gases[P]. USP4146463, 1978-4-31.
    [24] Vasalos, Iacovos A. Catalytic cracking with reduced emission of noxious gases[P]. USP4153534, 1979-5-8.
    [25] Blanton W A, Flanders R L. Process for removing sulphur from a gas[P]. USP4071436, 1976-3-11.
    [26]姜瑞霞,谢在库,张成芳等.镁铝尖晶石的制备及在催化反应中的应用[J].工业催化, 2003, 11(1): 47~51.
    [27]董文生,王心葵,彭少逸.尖晶石的性质,制备及在催化中的应用[J].石油化工高等学校学报, 1996, 9(4): 10~14.
    [28]朱仁发,鲍成根.脱硫催化剂的酸法制备及性能研究[J].安徽师范学院学报. 1999, 5(1): 54~58.
    [29] Yoo.Jin S, Radlowski, Cecelia A. Karch, etal. Metal-containing spinel composition and process of using same[P]. USP4963520, 1990-10-16.
    [30] Joseph P D, Prashanth R K, Harvey G S. Oxidation of Sulfur Dioxide to Sulfur Trioxide over Supported Vanadia Catalysts[J]. Appl. Catal., 1998, 19: 103~117.
    [31] Angelo Vaccari. Preparation and catalytic properties of cationic and anionic clays[J]. Catal. Today, 1998, 41(1): 53~71.
    [32] Pinnavaia, Thomas J. Process using sorbents for the removal of SO_x from flue gas [P]. USP5114691, 1992-5-19.
    [33] Pinnavaia, Thomas J. Layered double hydroxide sorbents for the removal of SO_x from flue gas and other gas streams [P]. USP5114898, 1992-5-19.
    [34]程文萍,王雯娟,刘玲等. FCC硫转移剂MgAlCuFe复合氧化物的结构与性能:金属盐前体的影响[J].催化学报, 2007, 28(12): 1113~1117.
    [35]程文萍,梁学正,杨建国等. FCC硫转移剂MgAlCuFe复合氧化物的结构与性能: Fe和Cu含量的影响[J].催化学报, 2009, 30(1): 32~37.
    [36]赵月昌,刘玲,程文萍等.MgAlZnFeCe类水滑石水热合成,表征及其FCC硫转移性能的研究[J].无机材料学报, 2009, 24(1): 171~175.
    [37] S Krishna, C R Hsieh, A R English. Additives improve FCC process[J]. Hydrocarbon Process. , 1991, 70(11): 59~65.
    [38] A Bhattacharyya, W E Cormier, G M Woltermann. Alkaline earth metal spinels and processes for making[P]. USP 4728637, 1988-2-6.
    [39]陈德胜,侯典国.催化裂化烟气SO_x转移助剂的工业应用[J].石油炼制与化工, 2003, 34(4): 43~47.
    [40]李林波,周忠国,许金山等.多功能催化裂化烟气流转移剂的工业应用[J].石油炼制与化工, 2001, 32(5): 13~15.
    [41]冯明,杨彬. HL-9 DeSO_x助剂的工业应用[J].齐鲁石油化工, 2002, 30(1): 16~18.
    [42]陈志,段东升,徐文长.催化裂化烟气转硫脱氮和助燃三功能催化剂FP-DSN的工业应用[J].炼油设计, 2002, 32(11): 7~10.
    [43]齐文义,王龙延. LST-1液体硫转移助剂的研究[J].炼油设计, 2000, (9): 5~8.
    [44]姚志强,武迎建. LT-8硫转移剂剂在II套催化裂化装置的工业应用[J].江西石油化工, 2002, 14(1): 9~14.
    [45] E. F. Iliopoulou, E. A. Efthimiadis, A. A. Lappas, etal. Effect of Ru-Based Catalytic Additives on NO and CO Formed during Regeneration of Spent FCC Catalyst. Ind. Eng. Chem. Res., 2005, 44 (14), 4922~4930.
    [46] Kathleen C. Taylor, James C. Schlatter. Selective reduction of nitric oxide over noble metals[J]. J. catal., 1980, 63(1):53~71.
    [47] Tomohiro Yoshinari, Kazuhito Sato, Masaaki Haneda,etal. Positive effect of coexisting SO2 on the activity of supported iridium catalysts for NO reduction in the presence of oxygen[J]. Appl. Catal., 2003, 41(1): 157~169.
    [48] E. F. Iliopoulou, E. A. Efthimiadis, A. A. Lappas, etal. Development and Evaluation of Ir-Based Catalytic Additives for the Reduction of NO Emissions from the Regenerator of a Fluid Catalytic Cracking Unit[J]. Ind. Eng. Chem. Res. 2004, 4(23): 7476~7483.
    [49] E. F. Iliopoulou, E. A. Efthimiadis, I. A. Vasalos, etal. Effect of Rh-based additives on NO and CO formed duringregeneration of spent FCC catalyst[J]. Appl. Catal., B, 2004, 47 (12): 165~175.
    [50] E. F. Iliopoulou, E. A. Efthimiadis, I. A. Vasalos. Ag-Based Catalytic Additives for the Simultaneous Reduction of NO and CO Emissions from the Regenerator of a FCC Unit[J]. Ind. Eng. Chem. Res., 2004, 43 (6), 1388~1394.
    [51] S.D. Peter1, E. Garbowski, V. Perrichon, B. Pommier, M. Primet. Activity enhancement of mixed lanthanum-copper-iron-perovskites in the CO+NO reaction[J]. Appl. Catal., A, 2001, 205 (1): 147~158.
    [52] Runduo Zhang, Houshang Alamdari, Serge Kaliaguine. SO2 poisoning of LaFe0.8Cu0.2O3 perovskite prepared by reactive grinding during NO reduction by C3H6[J]. Appl. Catal., A, 2008, 340(1): 140~151.
    [53] Ilaria Rosso, Guido Saracco, Vito Specchia, Edoardo Garrone. Sulphur poisoning of LaCr0.5-xMnxMg0.5O3·yMgO catalysts for methane combustion[J]. Appl. Catal., B, 2003, 43 (4): 195~205.
    [54] M. Machida, K. Ochiai, K. Ito, etal. Catalytic properties of novel La-Sr-Cu-O-S perovskites for automotive C3H6/CO oxidation in the presence of SO_x[J]. Catal. Today,2006, 117(3): 584~587.
    [55] A. Corma, A. E. Palomares, F. Rey, etal. Simultaneous Catalytic Removal of SO_x and NO_x with Hydrotalcite-Derived Mixed Oxides Containing Copper, and Their Possibilities to Be Used in FCC Units[J]. J. catal., 1997, 170(1): 140~149.
    [56] Bin Wen, Mingyuan He. Study of the Cu-Ce synergism for NO reduction with CO in the presence of O2, H2O and SO2 in FCC operation[J]. Appl. Catal., B, 2002, 37(1): 75~82.
    [57] A. E. Palomares, J. M. López-Nieto, F. J. Lázaro, A. López, A. Corma. Reactivity in the removal of SO2 and NO_x on Co/Mg/Al mixed oxides derived from hydrotalcites[J]. Appl. Catal., B, 1999, 20(4): 257~266.
    [58]刘忠生,方向晨,戴文军.炼厂NO_x排放及其控制技术[J].当代化工, 2005, 34(5): 39~44.
    [59]卫纲领,周志宏,陈俊豪.应用LDN-1氮氧化物脱除剂实现催化再生烟气NO_x达标排放[J].石油化工环境保护, 2004, 27(4): 39~45.
    [60]迟继运.新型5号CO助燃剂性能研究及其应用[J].工业催化, 1994, 2, 39~45.
    [61]蔡智.新型5号CO助燃剂的工业应用效果[J].石油炼制与化工,1995, 26(3): 23~26.
    [62]崔连起,王开林,张家庆等.钙钛矿结构的金属氧化物CO助燃剂[J].石油炼制与化工, 2001, 32(7): 29~32.
    [63] Ta-Jen Huang, Tai-Chiang Yu, Shu-Hsiang. Chang. Effect of calcination atmosphere on CuO/γ-Al2O3 catalyst for carbon monoxide oxidation [J]. Appl. Catal., 1989, 52(1): 157~163.
    [64]殷慧玲,黄星亮等.非贵金属一氧化碳助燃剂及其制法[P]. CN1072109, 1992-9-261.
    [65]王智峰,高雄厚,张海涛等.新型稀土FCC助剂反应性能研究[J].石化技术与应用, 2004, 22(3): 170~173.
    [66]黄星亮,冯长辉,靳广州等.非贵金属复合氧化物CO助燃剂的催化性能研究[J].石油炼制与化工, 1996, 27(8): 17~211.
    [67] J.A. Wang, L.F.Chena, R.Limas-Ballesteros,etal. Evaluation of crystalline structure and SO2 storage capacity of a series of composition-sensitive De-SO2 catalysts[J]. J. Mol. Catal. A: Chem, 2003, 194(2): 181~193.
    [68] Jin S.Yoo, Alak A. Bhattacharyya, etal. De-SO_x Catalyst: An XRD Study of Magnesium Aluminate Spinel andIts Solid Solutions[J]. Ind. Eng. Chem. Res., 1991, 30(7): 1444~1448.
    [69]陈银飞,葛忠华,吕德伟. MgAlFe复合氧化物吸收SO2后的再生[J].燃料化学学报, 2000, 26(8): 561~564.
    [70] Jin-an Wang, Ze-lin Zhu, Cheng-lie Li. Pathway of the cycle between the oxidative adsorption of SO2 and the reductive decomposition of sulfate on the MgAl2-xFexO4 catalyst[J]. J. Mol. Catal. A: Chem, 1999, 139(1): 31~41.
    [71] Alessandro Trovarelli, Carla de Leitenburg, Marta Boaro, etal. The utilization of ceria in industrial catalysis[J]. Catal. Today, 1999, 50(2): 353~367.
    [72] Alessandro Trovarelli, Marta Boaro, Eliana Rocchini, etal. Some recent developments in the characterization of ceria-based catalysts[J]. J. Alloys Compd., 2001, 323(3): 584~591.
    [73]朱仁发,谭乐成,王金安等.调变组分对流化催化裂化助剂脱硫性能的影响[J].华东理工大学学报, 2000, 26(2): 149~153.
    [74] Gwan Kim, Michael V. Juskelis. Catalytic reduction of SO3 Stored in SO_x transfer catalysts—A temperature-programmed reaction study[J]. Stud. Surf. Sci. Catal., 1996, 101, 137~142.
    [75] M. Waqif, P. Bazin, O. Saur, etal. Study of ceria sulfation[J]. Appl. Catal., B, 1997, 11(2): 193~205.
    [76] Jin-an Wang, Ze-lin Zhu, Cheng-lie Li. Pathway of the cycle between the oxidative adsorption of SO2 and the reductive decomposition of sulfate on the MgAl2-xFexO4 catalyst[J]. J. Mol. Catal. A: Chem, 1999, 139(1): 31~41.
    [77] Jin S. Yoo, Alak A. Bhattacharyya, Cecelia A. Radlowski. De-SO_x Catalyst: The Role of Iron in Iron Mixed Solid Solution Spinels,MgO·MgA12-xFexO4[J]. Ind. Eng. Chem. Res., 1992, 31(5): 1252~1258.
    [78]陈银飞,卓广澜,葛忠华等. MgAIFe复合氧化物高温下脱除低浓度SO2的性能[J].高校化学工程学报, 2000, 14(4): 346~351.
    [79] Jinan Wang, Chenglie Li. A study of surface and inner layer compositions of Mg-Fe-Al-O mixed spine1 sulfur-transfer catalyst using Auger electron spectroscopy[J]. Mate. Lett., 1997, 32 (2): 223~227.
    [80] Buchanan J S,Stern D L, Nariman K E, etal, Regenerable solid sorbents for claus lailgas cleanup:a treatment process for the catalytic removal of SO2 and H2S[J]. Ind. Eng. Chem. Res., 1996, 35(8): 2495~2499.
    [81] M. Waqif, O. Saur, J.C. Lavalley,etal. Evaluation of magnesium aluminate spinel as a sulfur dioxide transfer catalyst [J]. Appl. Catal., 1991, 71(2): 319~331.
    [82] Carla Maria Salerno Polato, Cristiane Assumpc. Synthesis, characterization and evaluation of CeO2/Mg,Al-mixed oxides as catalysts for SO_x removal [J]. J. Mol. Catal. A: Chem, 2005, 241 (2): 184~193.
    [83] Rodolfo Eugenio Roncolatto, Mauri J. B. Cardoso, Yiu Lau Lam, etal. FCC SO_x Additives Deactivation[J]. Ind. Eng. Chem. Res., 2006, 45(2): 2646~2650.
    [84]崔秋凯,冉晓丽,许孝玲等. FCC镁铝尖晶石硫转移剂的脱硫效果及稳定性研究[J].石化技术与应用, 2008, 26(6): 536~540.
    [85]崔秋凯,张强,李春义等.再生条件对硫转移剂脱硫性能的影响[J].中国石油大学学报, 2009, 33(5): 151~155.
    [86]于心玉.型FCC再生烟气硫转移剂的制备,表征及其性能的研究[D].上海:华东师范大学, 2007.
    [87]董林.负载型催化剂的表面相互作用及其在大气分子污染物NO和CO消除中的应用基础研究[J].催化学报, 2009, 30(11): 1151~1160.
    [88] A. Corma, A. E. Palomares, F. Rey, F. M′arquez. Simultaneous Catalytic Removal of SO_x and NO_x with Hydrotalcite-Derived Mixed Oxides Containing Copper, and Their Possibilities to Be Used in FCC Units[J]. J. catal., 1997, 170(1): 140~149.
    [89]温斌.同时脱除FCC烟气中NO_x, SO_x和CO的催化材料及其作用原理的研究[D],北京:石油化工科学研究院, 2000.
    [90] Bin Wen, Mingyuan He, Ethan Schrum, etal. NO reduction and CO oxidation over Cu/Ce/Mg/Al mixed oxide catalyst in FCC operation[J]. J. Mol. Catal. A: Chem, 2002,180 (2): 187~192.
    [91]张雪黎,罗来涛. A2BO4类钙钛矿型复合氧化物在催化领域的应用研究进展[J].工业催化, 2006, 14(3): 6~10.
    [92] S Cimino, R Pirone, L Lisi. Zirconia supported LaMnO3 monoliths for the catalytic combustion of methane[J]. Appl. Catal., B, 2002, 35(4): 243~254.
    [93] P E Martia, M Maciejewskib, A Baiker. Methane combustion over La0.8Sr0.2MnO3+x supported on MAl2O4(M=Mg, Ni, Co) spinels[J]. Appl. Catal., B, 1994, 4(2): 225~235.
    [94] N K Labhsetwar, A Watanabe, R B Biniwale, etal. Alumina supported,perovskite oxide based catalytic materials and their auto-exhaust application[J]. Appl. Catal., B, 2001, 33(2): 165~173.
    [95]孙燕华,沈岳山,贾美林等.负载型La0.8Sr0.2MnO4燃烧催化剂的载体效应[J].物理化学学报, 1999, 15(8): 720~725.
    [96] Xiaomao Yang, Laitao Luo, Hua Zhong. Structure of La2-xSrxCoO4λ(x=0.0-1.0) and their catalytic properties in the oxidation of CO and C3H8[J]. Appl. Catal., A, 2004, 272(1): 299~303.
    [97]罗来涛,钟华,杨小毛. K2NiF4型Co系稀土复合氧化物合成及氧化性能[J].应用化学, 2004, 21(11): 1150~1154.
    [98] Cheng Tiexin, Yang Xiangguang, Wu Yue. Synthesis, charaterization and catalytic behaviour of La2-xSrxCoO4λ(x=0-2) in complete oxidation[J]. Science China B, 1995, 38(9): 1025~1037.
    [99] Shiaw-Tzong Shen, Hung-Shan Weng. Comparative Study of Catalytic Reduction of Nitric Oxide with Carbon Monoxide over the La1-xSrxBO3(B=Mn, Fe, Co, Ni) Catalysts[J]. Ind. Eng. Chem. Res. 1998, 37(2): 2654~2661.
    [100] Junjiang Zhu, Zhen Zhao, Dehai Xiao, etal. CO Oxidation, NO Decomposition, and NO + CO Reduction over perovskite-like Oxides La2CuO4 and La2-xSrxCuO4: An MS-TPD Study[J]. Ind. Eng. Chem. Res.,2005, 44(2): 4227~4233.
    [101] Xiaomao Yang, Laitao Luo, Hua Zhong. Structure of La2-xSrxCoO4λ(x=0.0í1.0) and their catalytic properties in the oxidation of CO and C3H8[J]. Appl. Catal., A, 2004,272(1): 299~303.
    [102] Runduo Zhang, Houshang Alamdari. SO2 poisoning of LaFe0.8Cu0.2O3 perovskite prepared by reactive grinding during NO reduction by C3H6[J]. Appl. Catal., A, 2008, 340(1): 140~151.
    [103] M Alifanti, R Auer, J Kirchnerova, etal. Activity in methane combustion and sensitivity to sulfur poisoning of La1-xCexMn1-yCoyO3 perovskite oxides[J]. Appl. Catal., B, 2003, 41(1): 71~81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700