IBV 793/B株N基因的序列分析及地高辛标记探针、双重RT-PCR检测方法的建立与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸡传染性支气管炎(Infectious Bronchitis,IB)是由传染性支气管炎病毒(Infectious bronchitis virus,IBV)引起的一种急性、高度接触性传染病。自30年代在美国爆发以来,现已成为世界各地流行的重要禽病。IBV是单股RNA病毒,该病毒基因可因点突变和重组而发生变异,故传染性支气管炎病毒血清型较多。已知的血清型有以侵害呼吸道为主的Conn、Iowa97、JMK、Florida、Arkansas99等和以侵害肾脏为主的M41、Holte、Gray、Australia“T”等30余种。Gough等(Gough et al,1992)报道了英国一种新的793/B血清型的IBV,该毒株和其它血清型传支毒株之间无交叉血清学关系;其免疫原基因S1的序列与欧洲17个传支毒株之间差异高达21~25%。2003年刁有祥、杨杰华等从山东省某蛋鸡饲养场产蛋异常下降鸡群中分离到一株793/B传染性支气管炎毒株,命名为TA03株。目前,该血清型IBV在西班牙、德国、荷兰、中国、意大利、泰国等国均有发生和流行,对养鸡业危害较大。
     根据GenBank中已经发表的IBV N基因的保守序列,设计合成一对引物,利用RT-PCR技术扩增IBV N基因的582 bp的核酸片段,并制备出地高辛标记的IBV核酸探针。特异性检测结果表明,该探针能与不同毒株的IBV核酸发生特异性杂交,而与对照的NDV、鹅副粘病毒的核酸杂交反应为阴性;敏感性检测结果表明,该探针对IBV的最低检出量为10 pg,显示所制备的核酸探针用于IBV的检测是可行的。
     参照GenBank已经发表的793/B和多株IBV的N基因和S1基因,设计两对引物,对样品的核酸模板进行扩增,建立了一种能够同时检测鸡传染性支气管炎病毒和鉴定出793/B血清型的双重RT-PCR方法。该方法对793/B血清型可检测到582bp和891bp两条核酸片断,其他的血清型只出现582bp一条核酸片断,而新城疫病毒、传染性喉气管炎、鹅副粘病毒菌未检测到特异型条带。该方法简化了聚合酶链式反应程序和缩短了检测时间。
     根据Genbank已经发表的传染性支气管炎病毒(IBV)N全基因组序列设计引物,对IBV 793/B分离毒株N基因进行克隆与序列分析。结果表明,IBV 793/B的N基因由1229bp组成,与Genbank已发表的11株IBV的N基因相比较,IBV 793/B的N基因共有88处点突变,在第991位发生了一个核苷酸的缺失。N基因的核苷酸同源性为86.9~91.4%,氨基酸同源性为75.8~77.5%。表明IBV 93/B的N基因存在着较大的变异性。
Infectious Bronchitis(IB) is a severe acute respiratory disease of poultry, caused by Infectious bronchitis virus (IBV)。Since broke out in USA in the 1930s, IB have been an important disease of poultry around the world. IBV is a sRNA virus , the gene of the virus always mutated owing to it’s point-mutation and gene recombination, so the virus have many serotypes. The known serotypes can be classified into respiratory symptomatic serotypes such as Conn, Iowa97, JMK, Florida, Arkansas99 and nephritic symptomatic serotypes such as M41, Holte, Gray, Australia‘T’.Gough reported a new serotype of IBV named 793/B (also known as 4/91 and CR88) in UK in 1992,793/B isolates have a little serological relation with other serotypes of IBV, the whole S1 gene of 793/B isolates differed by 21% to 25% from those of other 17 European isolates. Youxiang Diao, Jiehua Yang et.al.(2003) isolated an IBV 793/B strain named IBV TA03 from layer flock in a chicken house of Shandong province. In recent years, the 793/B serotype of IBV, harmful to the healthy development of poultry breeding, prevailed and spread in Spain, Germany, Holland,China ,Italy and Thailand, too.
     According to the genomic sequences of N gene of infectious bronchitis virus (IBV) published in Genbank,one pairs of primers were designed for amplifying the 582 bp fragment in RT-PCR experiments. The PCR product was labeled with digoxigenin as DNA probe for detection of IBV. The hybridization assay result of specificity showed all RNA of IBV strains were positive, but other nucleotide extracted from NDV, GPV were negative. The sensitivity result showed that as few as 10 pg RNA amount of IBV could be detected by DIG-labeled probe. So the DIG-labeled probe could be used to detect the IBV.
     A Multiplex RT-PCR was optimized to simultaneously detect IBV and 793/B,for saving time of detection. Two sets of primers were designed according to the sequences of 793/B and other IBV at the GenBank. The product of 582bp and 891bp were generated only with RNA from 793/B, where as 582bp product only with RNA from other IBV. However, the RT-PCR failed to detect NDV, ILTV and GPV. The results showed that the established Multiplex RT-PCR technique provided a more sensitive method for diagnosis and epizootic study of the IBV.
     According to the genomic sequences of Nucleocapsid gene of IBV published in Genbank , a pair of primers were designed. The nucleocapsid protein(N) gene was amplified by RT-PCR. The results of sequencing showed that the complete genome of nucleocapsid of IBV isolate (793/B) consisted of 1229 nucleotides. Sequence analysis showed that 88 point mutations were found in N gene, and one nucleotides was deletion in 991 position. The homology of nucleotide sequence were 86.9—91.4%, and the homology of deduced aminoacids were 75.8 -77.5% compared with the 11 strains published in GenBank. The results showed that these were major variance in the N gene of 793/B.
引文
[1]. B.W 卡尔尼克主编. 禽病学(第十版)[M].北京:中国农业出版社,1999, 653-673.
    [2]. F.奥斯伯,R.布伦特,R.E.金斯顿,等颜子颖,王海林译. 精编分子生物学实验指南[M].北京:科学出版社,1999,39.
    [3]. J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯.分子克隆实验指南(第二版)[M].北京:科学出版社,2002,19-22,55-56,880-886.
    [4]. 步志高,陈万芳,卢景良.传染性支气管炎病毒的分子变异及其机制.国外兽医学-畜禽传染病[M],1998, 18(3):1-4.
    [5]. 陈德胜,潘杰彦,戴亚斌,等. 传染性支气管炎病毒纤突蛋白 S1 基因的 T/A 载体克隆策略[J]. 畜牧与兽医. 2000,32(5):1-3.
    [6]. 陈丽君,王英守,蔡学忠等:传染性支气管炎病毒 T 株核衣壳蛋白困)的克隆及部分序列分析[J] .上海农业学报,1999,159(1):22-27.
    [7]. 刁有祥,张万福. 禽病学[M]. 北京:中国农业科技出版社, 2000,134-137.
    [8]. 刁有祥,丁家波,姜世金,等.地高辛标记探针检测猪胸膜肺炎放线菌的研究与应用[J].畜牧兽医学报,2005,36(6):585-589.
    [9]. 蒋贻海,陈溥言. 传染性支气管炎病毒中国和东南亚分离株的分子流行病学[J]. 中国兽医学报. 2003,23(5):417-420.
    [10]. 江国托,刘思国,康丽娟等. 中国鸡传染性支气管炎病毒的变异[J].中国畜禽传染病. 1998,20(6):321-323.
    [11]. 林承业,马育芳,马新伟.鸡传染性支气管炎(IB)病毒变异型研究近况[J].中国禽业导刊,2001,18(21):37.
    [12]. 林雪,辛朝安. 微量血凝抑制试验检测传染性支气管炎抗体的研究[J].中国兽医科技,1995,25(6):8-10.
    [13]. 刘滨东,刘思国,袁秀芳等. PCR 结合分子杂交法检测鸡传染性支气管炎病毒[J]. 中国兽医学报,1997,17(5): 431-433.
    [14]. 刘明春,康丽娟,刘思国等. 一株传染性支气管炎病毒变异株的分离与鉴定[J]. 黑龙江畜牧兽医,2000,8:17-18.
    [15]. 刘胜旺,孔宪刚,王玮等:鸡传染性支气管炎病毒核蛋白基因的克隆及在杆状病毒系统中的表达[J].中国预防兽医学报,2001, 25(6):401-403.
    [16]. 李华,杨汉春.传染性支气管炎病毒分子变异机制研究进展[J].中国兽医杂志,1999,25(1):46-48.
    [17]. 廖明,辛朝安,王林川. 鸡传染性支气管炎病毒 B41 S1 基因序列分析与测定[J]. 畜牧兽医学报,1999,30(3):254-256.
    [18]. 吕化广. 应用雏鸡气管环组织培养和血清学方法诊断禽传染性支气管炎[J]. 中国畜禽传染病.1989,47(4):29-32.
    [19]. 吕化广,杨奇伟,张洪勇等:禽传染性支气管炎病毒分离毒株的血清型鉴定与免疫防制研究[J].中国兽医杂志,1997, 23(8):7-10
    [20]. 李康然. 用气管环培养中和试验对鸡传染性支气管炎病毒进行血清定型[J]. 广西学院学报. 1991,10(3):1-6.
    [21]. 马秀丽,许学顺,崔言顺.鸡传染性支气管炎的研究进展[J].山东畜牧兽医. 2000,8:34-36.
    [22]. 潘杰彦,陈德胜,王忠田等:传染性支气管炎病毒青岛腺胃株核衣壳蛋白基因的克隆和鉴定[J].南京农业大学学报,2000, 23(4):118-120.
    [23]. 庞耀珊,谢芝勋,M. I. Khan. 二温式多重 PCR 同时检测鸡的 6 种呼吸道病病原方法的建立[J].中国兽医科技.2001, 31(5): 3-6.
    [24]. 荣骏弓,康丽娟,谷守林等:腺胃病变型鸡传染性支气管炎病毒的分离鉴定[J].中国预防兽医学报,1999, 21(2):124-127.
    [25]. 单松华,邹键,姚龙涛等。复合 RT-PCR 快速鉴别鹅副粘病毒与鸡新城疫病毒[J].上海交通大学学报,2004, 22(4): 355-358。
    [26]. 孙涛,王欣,陆苹,鸡传染性支气管炎病毒 N 基因片段的 RT-PCR扩 增 及 限 制 性 内 切 酶 分 析 [J]. 西 北 农 林 科 技 大 学 学 报 ,2001,29(4):13-16.
    [27]. 吴琦,王红宁. 鸡传染性支气管炎病毒的分型研究概况[J].中国预防兽医学报,1999,21(4):317-320.
    [28]. 王济霖,王丽,闰若潜:RT-PCR 检测禽传染性支气管炎病毒[J].中国预防兽医学报,1999 19(3):237-240.
    [29]. 王永坤,朱国强,田慧芳等:鸡传染性腺胃病的研究[J].江苏农业学院报,1996,17(1):52-53
    [30]. 谢芝勋,谢志勤,庞耀珊,等。应用三重聚合酶链反应同时检测鉴别鸡 3 种病毒性呼吸道传染病的研究[J].中国兽医科技,2001, 31(1):11-14。
    [31]. 谢芝勋,谢志勤,庞耀珊,等.应用多重聚合酶链反应同时检测鉴别鸡新城疫病毒、传染性支气带炎病毒、鸡传染性喉气带炎病毒、鸡毒霉形体的研究[J].中国预防兽医学报,2000, 22(6):443~446
    [32]. 杨杰华,刁有祥,于申业,等. 传染性支气管炎变异毒株的分离及其 S1 基因序列分析[J].中国病毒学,2005,20(3):283-287.
    [33]. 杨奇伟,武志强,吕化广等.鸡传染性支气管炎可疑病料的分离及初步鉴定[J]. 中国畜禽传染病,1995,82(3):22-24.
    [34]. 赵建梅,魏荣,王志亮等。一步法多重 RT-PCR 检测新城疫、禽流感、传染性支气管炎病毒试验的研究[J].中国动物检疫,2003, 20(1): 22~24。
    [35]. 殷 震,刘景华. 动物病毒学(第二版) [M].北京:科学出版社,1997, 331-336.
    [36]. 英特威(香港)有限公司技术服务部.预防传染性支气管炎变异株感染的疫苗[J].养禽与禽病防治,1998,7:20-21.
    [37]. 英特威(香港)有限公司技术服务部.感染家禽的一株“新”传染性支气管炎病毒[J].养禽与禽病防治,1998,9:26-27.
    [38]. 英特威(香港)有限公司技术服务部.传染性支气管炎病毒 IBV 4/91变异株引起鸡较高的死亡率[J].养禽与禽病防治,1998,3:5-6.
    [39]. 赵继勋,秦卓明. 一株类 4/91 病毒的初步研究[J].中国预防兽医学报. 2002,24(5):360-363.
    [40]. 辛朝安,陈天杰. 广州地区鸡传染性支气管炎病毒的分离与鉴定[J]. 华南农学院学报,1982,3(1):90-98.
    [41]. 谢芝勋,廖 敏,刘加波,等。禽呼肠孤病毒地高辛探针的制备及应用[J].中国预防兽医学报,2001, 23(6):407-410.
    [42]. 郑海洲,苏刚,刘占牛,等.鸡传染性支气管炎病毒分子生物学的研究进展[J].河北师范大学学报,2003,27(4):402-405.
    [43]. 周继勇,沈行燕,程丽琴等.新变异的禽传染性支气管炎病毒 ZJ971毒株 S 基因克隆及序列分析[J].中国农业科学,2001,34(4):445-450.
    [44]. A. Adzhar , R.E.Gough , D.Haydon , et al . MolecuLar analysis of the 793/B serotype of infectious bronchitis virus in Great Britain[J]. Avian Pathology,1997,26:625-640.
    [45]. Abdul N, Aanna K, Wasters B, Minglong Z et al. Recombinant nucleocapsid protein is potentially an inexpensive serodiagnostic reagant for IBV[J]. J. Virol. Method, 1998,70(1): 37-44.
    [46]. Adzhar, shaw K, Britton P, et al. Universal oligonucleotides for the detection of infectious bronchitis virus by the polymerase chain reaction[J]. Avian Pathology, 1996, 25:817-836.
    [47]. Adzhar AB, Shaw R, Britton P et al. Avian infectous bronchitis virus: differences between 793/B and other strains[J]. Vet Rec. 1995, 136(21):548.
    [48]. Akin A, Lin T L, Bryan T A et al. Nucleocapsid protein gene sequence analysis reveals close genomic relationship between turkey coronavirus and avian infectious bronchitis virus[J]. Acta Viro1,2001, 45(1):31-38.
    [49]. Albassan MA, Winterfield RW, Thacker HL,et al. Comparison of the nephropathogenicity of four strains of infectious bronchitis virus[J]. Avian Dis, 1986, 30:468-476.
    [50]. Ambai AG, Jones RC. Early pathogenesis in chicks with an eterotropic strain of infectious bronchitis virus[J]. Avian Dis. 1990, 34:809-817.
    [51]. Andreasen JR Jr, Jackwood M W, Hilt D A. Polymerase chain reaction amplification of the genome of infectious bronchitis virus[J]. Avian Dis., 1991, 35(1):216-220.
    [52]. Animas SB, Otsuki K, Hanayama M, et al. Experimental infection with avian infection bronchitis virus(Kagoshima-34 strain) in chicks at different ages[J]. Vet Med Sci. 1994, 56(3):443-447.
    [53]. Animas SB, Otsuki K, Tsubokura M, et al. Comparison of the susceptibility of chicks of different ages to infection with nephrosis or nephritis-causing strain of infectious bronchitis virus[J]. J Vet Med Sci. 1994,56(3):449-553.
    [54]. Antoine A. F. de Vries, Marian C. HorzineK, Peter J. M. Rottier, et a1.The genome organization of the Nidovirales: similarities and differences between Arteri-, Toro- and coronaviruses. Seminars in virology.1997, 8: 33-47.
    [55]. Auakian AP, Wakenell PS, Gross D, et al. Protective immunity to infectious bronchitis in broilers vaccinated against Marek’s disease either in ovo or hatch and against infectious bronshitis at hatch[J]. Avian Dis. 2000,44(3):536-544.
    [56]. Avellaneda GE, Villegas P, Jackwood MW, et al. In vivo evaluation of the pathogenicity of field isolates of infectious bronchitis virus[J]. Avian Dis. 1994,38(3):589-597.
    [57]. Barr D A, Reece R L, O'Rourke D, et al. Isolation of infectious bronchitis virus from a flock of racing pigeons[J]. Aust Vet J,1988, 65(7): 228.
    [58]. Baric R S, Stohlman S A, Razavi M K. Characterization of leader-related small RNAs in Coronavirus-infected cells Further evidence for leader-primed mechanism of transcription[J].Virus Res., 1985, 3:19-33.
    [59]. Beaudette FR,Hudson CB. CuLitivation of the virus of infectious bronchitis[J]. J Am Vet Med Assoc. 1937,90:51-60.
    [60]. Bernard N, David MK. Fields virology(second edition) [M]. New York:Raven Press. 1990,841-856.
    [61]. Binns MM, Boursnell ME, Cavanagh D, et al. Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV[J]. 1985,66(4):719-726.
    [62]. Boots AM, Van Lierop MJ. Kusters JG, et al. MHC classⅡ-restricted T-cell hybridomas recognizing the nucleocapsid protein of avian coronavirus IBV[J]. Immnology. 1991,72(1):10-14.
    [63]. Boots AM, Kusters JG, Van Noort JM, et al. Localizatoin of a T-cell epitope within the nucleocapsid protein of avian coronavirus[J].Immnology. 1991,74(1):8-13.
    [64]. Boots AM, Benaissa-Trouw BJ, Hesselink W, et al. Induction of anti-viral immune responces by immunization with recombinant-DNA encoded avian coronavirus nucleocapsid protein[J]. Vaccine. 1992, 10(2):119-124.
    [65]. Boursnell ME, Binns MM, FouLds IJ, et al. Sequence of the nucleocapsid genes from two strains of avian infectious bronchitis virus [J].J Gen Virol. 1987,66:573-580.
    [66]. Boursnell ME, Brown TD, FouLds IJ, et al. Completion of the sequence of the genome of the coronavirus avian infectious bronchitis[J]. 1987,68:57-77.
    [67]. Box PG, Holmes HC. Infectious bronchitis in laying hens:The relationship between hemagglutination inhibitio antibody levels and resistence to experimental challenge[J].Avian Pathol.1988,17:349-361.
    [68]. Breslin JJ, Smith LG, FuLler FJ, et al. Sequence analysis of Matrix nucleocapsid gene region of turkey coronavirus[J]. Intervirology. 1999,42(1):22-29.
    [69]. Breslin JJ, Smith LG, FuLler FJ, et al. Sequence analysis of the turkey coronavirus nucleocapsid protein gene and 3’ untranslated region identifies the virus as a close relative of infectious bronchitis virus[J]. Virus Res. 1999,65(2):187-193.
    [70]. Brierley I, Digard P, Inglis SC. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot[J]. Cell. 1989,57(4): 537-547.
    [71]. Bree A, Dho M, Lafont JP. Comparative infectivity for axenic and specific-pathogen-free chikens of O2 Eschierichia coli strains with of without virlence factors[J]. Avian Dis. 1989,33(1):134-139.
    [72]. Britton P, Stirrups K, Dalton K. Use of an infectious bronchitis virus D-RNA as an RNA vector[J]. Adv. Exp. Med. Biol., 2001,494:507-512.
    [73]. Brown RP, Glisson JR. Studies of avian urolithiasis asscoiated with an infectious virus[J]. Avian Dis. 1987,31:629-636.
    [74]. Bsudoux P, Carrat C, Besnardeau L. Coronavirus pseudoparticles formed with recombinant M and E proteins induce alpha interferon synthesis by leukocytes[J]. J. Virol, 1998, 72:8636-8643.
    [75]. Bumstead N, Huggins MB. Genetic differences in susceptibility to a mixture of avian infectious virus and Escherichia coli.BR[J]. PouLtry Sci. 1989,30: 39-48.
    [76]. Butcher GD, Gelb J, Collisson EW. Comparisons of genomic RNA of Arkansas DPI embryonic passages 10 and 100, Austalian T and Massachusetts 41 Strains of infectious bronchitis virus[J]. Avian Dis. 1990,34(2):253-259.
    [77]. Calnek B W, H J Barnes, C W Beard, etal. Diseases of Poultry (ninth edition) [M],. Iowa State University Press, Ames, Iowa, USA,1995. 471-484.
    [78]. Case JT, Sverlow KW, Reynolds BJ. A novel protein polymorphism differentiates the California serotype of infectious bronchitis from other serotypes common to California[J].J Vet Diagn Invest.1997 ,9(2):149-155.
    [79]. Cavanagh D, Mawditt K, Adzhar A, et al. Does IBV change slowly despite the capacity of the spike protein to vary greatly? [J].Adv Exp Med Biol. 1998,440:729-734.
    [80]. Cavanagh D, Davis PJ. Sequence analysis of strains of avian infectious bronchitis coronavirus isolated during the 1960s in the U.K. [J]. Arch Virol. 1993,21:401-408.
    [81]. Cavangh D , Davis PJ. Infectious bronchitis viru:Evidence for recombination within the Massachusetts serotype[J]. Avian Pathol. 1992,21:401-408.
    [82]. Cavangh D, Davis PJ. Evolution of avian coronavirus IBV:sequence of the matrix glycoprotein gene and intergenic region of severalserotype[J]. J Gen Virol. 1988. 69:621-629.
    [83]. Cavangh D, Davis PJ. Coronavirus IBV: relationships among recent European isolates studied by limited proteolysis of the virion glycopolypeptides[J]. Avian Pathol. 1987,16:1-13.
    [84]. Cavangh D , Davis PJ. Coronavirus IBV:removal of spike glycopolypeptides S1 by urea abolishes infectivity and haemagglutination but not attachment to cells[J]. J Gen Virol. 1986. 67:1443-1448.
    [85]. Cavangh D, Davis PJ. Pappin DJ, et al. Coronavirus IBV:partial amino terminal sequencing of spike polypeptide S2 identifies the sequence Arg-Arg-Phe-Arg-Arg at the cleavage site of the spike precursot propolypeptide of IBV strains Beaudette and M41[J]. Virus Res. 1986,4(2):133-143.
    [86]. Canvangh D. Structural characterization of IBV glycoproteins[J]. Adv Exp Med Biol. 1984. 173:85-108.
    [87]. Cavangh D, Mawditt K, shaw K. Towards the routine application of nucleoacid technology for avain disease diagnose[J]. Acta veterinaria hungaria,1997,45(3):282-298.
    [88]. Chasey D, Alexander DJ. Morhpogenesis of avian infectious bronchitis virus in primary chick kidney cells[J]. Arch Virol. 1976, 52:101-111.
    [89]. Chang R Y,Brian D A. Cis requirement for N-specific protein sequence in bovine coronavirus defective interfering RNA replication[J]. J.Virol., 1996, 70:2210-2217.
    [90]. Chew PH, Wakenell PS, Farver TB. Pathogenicity of attenuated infectious bronchitis virus for oviducts of chikens exposed in ovo[J]. Avian Dis. 1997,41(3):598-603.
    [91]. Chubb RC, Huynh V. The detection of cytotoxic lymphocyte activity in chikens infected with infectious bronchitis virus or fowl poxvirus[J]. Avian Pathol. 1987,17:371-383.
    [92]. Compton J R, Rogers D B, Holmes KV, et al. In vitro replication ofmouse hepatitis virus strain A59[J]. J Virol., 1987, 61:1814-1820.
    [93]. Coor JKA. Duration of Experimental infeltious bronchitis in chicken[J]. Research in Veterinary Science. 1968(9):506-514.
    [94]. Cook , J K A , S J Orbell , M A Woods, et al. Breadth of protection of the respiratory tract provided by different live-attenuated infectious bronchitis vaccines against challenge with infectious bronchitis viruses of heterologous serotypes[J]. Avian Pathology, 1999,28:477-485.
    [95]. Corse E, Machamer C E. The cytoplasmic tails of infectious bronchitis virus E and M proteins mediate their interaction[J]. Virology. 2003, 312(1): 25-34.
    [96]. Cavanagh D, Mawditt K, Welchman Dde B, et al. Coronaviruses from pheasants (Phasianus colchicus) are genetically closely related to coronaviruses of domestic fowl (infectious bronchitis virus) and turkeys[J]. Avian Pathol. 2002,31(1): 81-93.
    [97]. Cavanagh D , Davis PJ , Mockett APA. Aminoacids within hypervariable region I of avian coronavirus IBV(Massachusetts serotype) spike glycoprotein areassociated with neutralization epitopes[J].Virus Res.1988,11:141-150.
    [98]. Collisson E W, Parr R L, Li W, et al. An overview of the molecuLar characteristics of avian infectious bronchitis virus[J]. PouLtry Science Rev. 1992,4: 41-55.
    [99]. Chou P Y, Fasman G D. Prediction of the secondary structure of proteins from their amino acid sequence[J]. Adv Enzymol Relat Areas Mol Biol. 1978,47: 45-148.
    [100]. Collisson E W, Pei J, Dzielawa J, et al. Cytotoxic T lymphocytes are critical in the control of infectious bronchitis virus in pouLtry[J]. Dev Comp Immunol. 2000,24(2-3): 187-200.
    [101]. Domingo E. Rapid evolution of viral RNA genomes[J]. J Nutr. 1997, 127(5): 958-961.
    [102]. Darbyshire J H, Powell J G. Aetal taxonomic studies on strains of avian infectious bronchitis virus using neutralization tests in tracheai organ cuLtures[J]. Archives of virology,1979(61):227-228.
    [103]. Dalton K, Casais R, Shaw K, et al. Cis-acting sequences required for coronavirus infectious bronchitis virus defective-RNA replication and packaging[J]. J Virol. 2001,75(1): 125-133.
    [104]. Emiliana F, Emanuela’ D A, Livia D T, et al. Rapid diagnosis of avian infectious bronchitis virus by polymerase chain reaction[J]. J Virol Methods,1997,64: 125-130.
    [105]. Ellen W C, Minglong ZH, Paul G: Infectious bronchitis virus nucleocapsid protein interactions with the 3' untranslated region of genomic RNA depend on uridylate bases[J]. Adv.Exp.Med.Biol, 2001, 494: 669-675.
    [106]. Evans M R, Simpson R W. The coronavirus avian infectious bronchitis virus requires the cell nucleus and host transcription factors[J]. Virol., 1980, 105:582-591.
    [107]. Farsang A, Ros C, Renstrom LH, et al. MolecuLar epizootiology of infectious bronchitis virus in Sweden indicating the involvement of a vaccine strain[J]. Avian Pathol. 2002,31(3): 229-236.
    [108]. Falcone E, D' Amore E, Di Frani L, et al. Rapid diagnosis of avian infectious bronchitis virus by the polymerse chain reaction.J,Virol Method 1997,64:125-130.
    [109]. Feldman H , Wang SS. Senci V it of Varions , Viruses to Chlorlform[A]. Proceedings of Society for Experimenfal Bialogy[C]. 1961(106):736-736
    [110]. Fischer F, Stegen C F, Masters P S. Analysis of constructed E gene mutants of mouse hepatitis virus confirms a pivotal role for E protein in coronavirus assembly[J]. J Viro1.,1998, 72:7885-7894.
    [111]. G Dhinakar Raj , R C Jones. Cross-reactive celluLar immune responses in chickens vaccinated with live infectious bronchitis virus
    [102]. Darbyshire J H, Powell J G. Aetal taxonomic studies on strains of avian infectious bronchitis virus using neutralization tests in tracheai organ cuLtures[J]. Archives of virology,1979(61):227-228.
    [103]. Dalton K, Casais R, Shaw K, et al. Cis-acting sequences required for coronavirus infectious bronchitis virus defective-RNA replication and packaging[J]. J Virol. 2001,75(1): 125-133.
    [104]. Emiliana F, Emanuela’ D A, Livia D T, et al. Rapid diagnosis of avian infectious bronchitis virus by polymerase chain reaction[J]. J Virol Methods,1997,64: 125-130.
    [105]. Ellen W C, Minglong ZH, Paul G: Infectious bronchitis virus nucleocapsid protein interactions with the 3' untranslated region of genomic RNA depend on uridylate bases[J]. Adv.Exp.Med.Biol, 2001, 494: 669-675.
    [106]. Evans M R, Simpson R W. The coronavirus avian infectious bronchitis virus requires the cell nucleus and host transcription factors[J]. Virol., 1980, 105:582-591.
    [107]. Farsang A, Ros C, Renstrom LH, et al. MolecuLar epizootiology of infectious bronchitis virus in Sweden indicating the involvement of a vaccine strain[J]. Avian Pathol. 2002,31(3): 229-236.
    [108]. Falcone E, D' Amore E, Di Frani L, et al. Rapid diagnosis of avian infectious bronchitis virus by the polymerse chain reaction.J,Virol Method 1997,64:125-130.
    [109]. Feldman H , Wang SS. Senci V it of Varions , Viruses to Chlorlform[A]. Proceedings of Society for Experimenfal Bialogy[C]. 1961(106):736-736
    [110]. Fischer F, Stegen C F, Masters P S. Analysis of constructed E gene mutants of mouse hepatitis virus confirms a pivotal role for E protein in coronavirus assembly[J]. J Viro1.,1998, 72:7885-7894.
    [111]. G Dhinakar Raj , R C Jones. Cross-reactive celluLar immune responses in chickens vaccinated with live infectious bronchitis virusbronchitis virus resulting from recombination among three differtent strain[J]. Arch. Virol., 1995, 140:259-271.
    [122]. Jia W, Naqi S A. Sequence analysis of gene 3, gene 4 and gene 5 of avian infectious bronchitis virus strain CU-T2[J]. Gene. 1997,189(2): 189-193.
    [123]. K J Handberg , O L Nielsen , M W Pedersen , et al . Detection and stain differentiation of infectious bronchitis virus in tracheal tissues from experimentally infected chickens by reverse transcription-polymerase chain reaction. Comparision with an immunohistochemical techque[J]. Avian Pathology,1999,28:327-335.
    [124]. Kwon H M , Jackood M W , Browll T P , et al. Polymerase chain reaction and abiotill-labeled DNA probe for detection of infection of infectious bronchitis virus in chickens[J]. Avian Dis,1993,37: 149-156.
    [125]. Kusters J G, Niesters H G, Bleumink-Pluym NM, et al. MolecuLar epidemiology of infectious bronchitis virus in The Netherlands[J]. J Gen Virol. 1987,68(2): 343-352.
    [126]. Kommers GD, King DJ , Seal BS, et al. Pathogenesis of chicken-passaged Newcastle disease viruses isolated from chickens and wild and exotic birds[J]. Avian Dis. 2003,47(2): 319-329.
    [127]. Liu DX, Brown TD. Characterisation and mutational analysis of an ORF 1a-encoding proteinase domain responsible for proteolytic processing of the infectious bronchitis virus 1a/1b polyprotein[J]. Virology. 1995,209(2): 420-427.
    [128]. Lee C W, Jackwood M W.Origin and evolution of Georgia 98(GA98), a new serotype of avian infectious bronchitis virus[J]. Virus Res. 2001 80(1-2): 33-39.
    [129]. Lenstra J A, Kusters J G, Koch G, et al. Antigenicity of the peplomer protein of infectious bronchitis virus[J]. Mol Immunol. 1989, 26(1): 7-15.
    [130]. Maeda A, Makino S: Release of voronavirus E protein in membranevesicles from virus-infected cells and E protein -expressing cells[J]. Virology, 1999, 263:265-272.
    [131]. Molenkamp R, Spaan W J. Identification of a specific interaction between the coronavirus mouse hepatitis virus A59 nucleocapsid protein and packaging signal[J]. Virology, 1997, 239:78-86.
    [132]. Niesters H G, Blcumink-Pluym N M, Osterhaus A D. Epitopes on the peplomer protein of infectious bronchitis virus strain M41 as defined by monoclonal antibodies[J]. Virology, 1987,161(2):511-519
    [133]. Raamsman M J B, Locker J K, de Hooge A: Characterization of coronavirus mouse hepatitis virus strain A59 small membrane protein E[J]. J Virol., 2000, 74:2333-2342.
    [134]. Reed LJ, Mucnch H. A Simple methcd of estimating fifty percent end points[J]. American Journal of Hygiene. 1938(27):493-497.
    [135]. Robbins S G, Frana F M, McGovan J J. RNA-binding proteins of coronavirus MHV: detection of monomeric and multimeric N protein with an RNA overlay protein blot assay[J]. Virology, 1986,150:402-410.
    [136]. Sanneke A K, Cavanagh D, et al. Experimental evidence of recombination in coronavirus infectious bronchitis virus[J]. Virol., 1995, 213:569-580.
    [137]. Sapats S I, Ashton F, Wright P J, et al. Novel variation in the N protein of avian infectious bronchitis virus[J]. Virology. 1996, 226(2): 412-417.
    [138]. Strauss E G, Strauss J H. RNA viruses genome structure and evolution[M]. Curr Opin Genet Dev. 1991, 1(4): 485-493.
    [139]. Seah J N, Yu L, Kwang J. Localization of linear B-cell epitopes on infectious bronchitis virus nucleocapsid protein[J]. Vet Microbiol, 2000, 75(1): 11-16.
    [140]. Seo S H, Collision W M: Specific cytotoxic T lymphocytes are involved in vivo clearance of infectious bronchitis virus[J]. J Virol., 1997, 71:5173-5177.
    [141]. Seo S H, Pei J, Briles W E et al.Adaptive transfer of infectious bronchitis virus primed α β T cells bearing CD8 antigen protects chicks from acute infection[J]. Virology, 2000, 269(1): 183-189.
    [142]. Seon C S, JeongY L, Won C L, et al. Induction of protective immunity in chickens vaccinated with infectious bronchitis virus S l glycoprotein expressed by a recombinant baculovirus[J]. J. Gen. Virol.,1999, 79:719—723
    [143]. Spaan W, Cavanagh D, Horzinek M C. Coronaviruses: structure and genome expression[J]. J Gen Virol. 1988, 69(12): 2939-2952.
    [144]. Shi Q, Wang C, Keirs RW. Genetic relationships of infectious bronchitis virus isolates from Mississippi broilers[J]. Avian Dis. 2000, 44(1): 66-73.
    [145]. Smati R, Silim A, Guertin C, et al. MolecuLar characterization of three new avian infectious bronchitis virus (IBV) strains isolated in Quebec[J]. Virus Genes. 2002, 25(1): 85-93.
    [146]. Soe H S, Wang L, Smith R.The carboxy-terminal 120-residue polypeptide of infectious bronchitis virus from nucleocapsid induces cytotoxic T lymphocytes and protects chickens acute infection[J]. J. Virol., 1997, 75:7889-7894.
    [147]. Stern D F, Sefton B M. Coronavirus proteins: biogenesis of avian infectious bronchitis virus virion proteins[J]. J Virol. 1982,44(3): 794-803.
    [148]. Wainright P O, Villegas P, Brugh M et al. Characterization of infectious bronchitis virus using monoclonal antibodies[J]. Avian Dis., 1989,33(3): 482-490.
    [149]. Wang L, Junker D, Collisson EW. Evidence of natural recombination within the S1 gene of infectious bronchitis virus[J]. Virology. 1993,192(2): 710-716.
    [150]. Wesseling J G, Godeke G J, SHijns S et al. Mouse hepatitis virus spike and nucleocapsid proteins expressed by adenovirus vectors protect miceagainst a lethal ninfection[J]. J. Gen Virol., 2001,74:2061-2069.
    [151]. Williams A K, Wang L, Sneed LW, et al. Comparative analyses of the nucleocapsid genes of several strains of infectious bronchitis virus and other coronaviruses[J]. Virus Res,1992,25(3): 213-222.
    [152]. Wurm T, Chen H, Hodgson T, et al. Location to the nucleolus is a common feature of coronavirus nucleoproteins and the proteins may disrupt host cell division[J]. J. Virol,2001, 75(19):9345-9356.
    [153]. Yagyuk O S. Detection of infectious bronchitis virus antigen from experimentally infected chickens by indirect immunofluorescent assay with monoclonal antibody[J]. Avian Dis., 1990, 34(2): 246-252.
    [154]. Yu L, Jiang Y, Low S, et al. Characterization of three infectious bronchitis virus isolates from China associated with proventricuLus in vaccinated chickens[J]. Avian Dis. 2001,45(2): 416-424.
    [155]. Xiuqing Wang , Mazhar I K. Use of reverse transcriptase-polymerase chain reaction-restriction fragment length polymorphism to examine the interaction between infectious bronchitis virus strains Massachusetts 41 and JMK in ovo[J]. Avian Pathology,2000,29:441-448.
    [156]. Zaagstra K A, Vander Zeijst B A M, Kustrers J G. Rapid detection and identification of avian infectious bronchitis virus[J]. Journal of Clinical Microbiology, 1992, 30:79-84.
    [157]. Zhao X, Show K and Cavsngh D. Presence of subgenemic mRNAs in virions of coronavirus[J]. Virology, 1993, 196 (1):172-178.
    [158]. Zhou M, Collisson E W, et al. The amino and carboxyl domains of the infectious bronchitis virus nucleocapsid protein interact with 3'genomic RNA[J]. Virus Res., 2000, 67(1):31-39.
    [159]. Zhou M, Williams A K, Chung S I, et al. The infectious bronchitis virus nucleocapsid protein binds RNA sequences in the 3' terminus of the genome[J]. Virology., 1996,217(1):191-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700