水果表面农药残留快速检测方法及模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的进步和人民生活水平的提高,消费者在强调水果的外观和营养品质的同时,对其食用安全性提出了越来越高的要求。目前,常规的水果表面农药残留检测方法存在破坏样品、前处理繁琐、耗时长、成本高、对环境造成污染等不足,因此,探索一种简便、快速、绿色、环保的检测方法具有重要的实际应用价值。这对于扩大我国高档优质水果的出口,增加果农的收入,提高我国水果产业的国际竞争力有着重大的意义。
     拉曼光谱技术是一门基于拉曼散射效应而发展起来的光谱分析技术,体现的是分子的振动或转动信息。其拥有样品无需前处理、操作简便、耗时短、绿色、环保等优点,已广泛应用于石油化工、生物医学、地质考古、刑事司法、宝石鉴定等领域。论文以赣南脐橙作为研究对象,以毒死蜱和马拉硫磷作为分析测试指标,应用拉曼光谱技术对水果表面农药残留进行了快速检测方法与定量模型研究,取得的主要研究成果有:
     1.通过采集毒死蜱和马拉硫磷标样和赣南脐橙表皮的拉曼光谱,获得了毒死蜱和马拉硫磷以及赣南脐橙表皮的拉曼谱带归属和拉曼特征峰。
     2.分别对农药毒死蜱和马拉硫磷标准溶液和赣南脐橙表皮农药残留的拉曼光谱预处理方法进行了实验研究,获得了理想的拉曼光谱预处理方法。实验采集了不同基底(镜片和硅胶片)的毒死蜱和马拉硫磷溶液以及赣南脐橙表皮农药残留的拉曼光谱,对比不同的预处理方法,建立了基于偏最小二乘法的定量数学模型。研究表明:当以镜片作为基底时,线性基线校正预处理后毒死蜱溶液校正模型最为理想,位移校正预处理后马拉硫磷溶液校正模型最为理想;当以硅胶片作为基底时,二阶导数预处理后毒死蜱溶液校正模型最为理想,一阶导数预处理后马拉硫磷溶液校正模型最为理想。对于赣南脐橙表皮的毒死蜱残留,理想的预处理方法为一阶导数;而对于马拉硫磷残留,理想的预处理方法则为标准正态变量校正。
     3.建立了两种农药标准溶液的拉曼光谱快速定量数学模型。采用传统的峰强比值法和化学计量学算法对不同基底的毒死蜱和马拉硫磷溶液拉曼光谱数据建立校正模型,探讨了以镜片和硅胶片作为基底时采集农药毒死蜱和马拉硫磷的建模效果。研究表明:当以镜片作为基底时,利用多元线性回归建立的毒死蜱拉曼光谱检测模型最为理想,校正和交互验证结果为:r_c=0.960,RMSEC=3.166,r_(cv)=0.877,RMSECV=5.421;利用偏最小二乘法建立的马拉硫磷拉曼光谱检测模型最为理想,校正和交互验证结果为:r_c=0.998,RMSEC=0.748,r_(cv)=0.985,RMSECV=2.236。当以硅胶片作为基底时,利用偏最小二乘法建立的毒死蜱拉曼光谱检测模型最为理想,校正和交互验证结果为:r_c=0.986,RMSEC=1.628,r_(cv)=0.944,RMSECV=3.341;利用偏最小二乘法建立的马拉硫磷拉曼光谱检测模型最为理想,校正和交互验证结果为:r_c=0.996,RMSEC=1.175,r_(cv)=0.992,RMSECV=1.639。结果表明以硅胶片作为基底采集农药溶液的拉曼光谱效果比使用镜片时效果更好。
     4.建立了水果在两种农药残留情况下的拉曼光谱快速检测数学模型。对残留在赣南脐橙表皮上的毒死蜱和马拉硫磷的拉曼光谱数据分别采用峰强比值法和化学计量学方法建立了定量分析数学模型,探讨了拉曼光谱技术定量快速检测水果表面农药残留的可行性。实验结果为:利用最小二乘法—支持向量回归建立的毒死蜱残留拉曼光谱快速检测数学模型最为理想,r_c=0.974,RMSEC=2.592,r_(cv)=0.973,RMSECV=2.566;利用最小二乘法—支持向量回归建立的马拉硫磷残留拉曼光谱快速检测数学模型最为理想,r_c=0.948,RMSEC=4.101,r_(cv)=0.948,RMSECV=4.111。结果表明:利用拉曼光谱技术可以定量检测残留在水果表皮的农药残留含量,这为水果表面的农药残留快速检测提供了一种快速、绿色、环保的检测方法。
With the progress of society and the improvement of people’s life, the higher demand of fruits security is needed as well as its appearance and nutritional quality. At present, routine analytical methods used for the determination of pesticide residue on the surface of fruits are destructive, complex, time-consuming, high cost and not environmentally friendly. Hence, it will be very worthful for pratical applications to explore a determination technique, which is simple, rapid, green and environmentally friendly. This technique is very meaningful to expand China’s exports of high-grade quality fruit, increase revenue of the fruit growers, and enhance the international competitiveness for the country’s fruit industry.
     Raman spectroscopy technique is a kind of spectral analysis technique based on the development of the Raman scattering effects, which show informations of the molecule’s vibration and rotating. With the merits of non-preparative sample, easy operation, short response time, green and environmentally friendly, Raman spectroscopy has been widely applied in petrol chemical, biomedicine, geoarchaeology, criminal justice and gem identification, etc. In the thesis, Gannan navel orange was chosen as the study objective, chlorpyrifos and malathion were chosen as analysis testing indexes. The rapid determination methods and quantitative models for pesiticide residues on the surface of fruits were studied using Raman spectroscopy technique. The main results of the thesis were involved:
     1. Raman spectra of chlorpyrifos and malathion standards and Gannan navel orange’s pericarp samples were acquired. Then the Raman spectrum’s ownerships and characteristic peaks of chlorpyrifos, malathion and Gannan navel orange’s pericarp were obtained.
     2. Raman spectrum preprocessing methods were studied and ideal methods were obtained for chlorpyrifos and malathion standard solutions and residues on the surface of Gannan navel orange. Raman spectra of the chlorpyrifos and malathion solutions at different substrates (ophthalmic lens and silicon sheet) and on the surface of Gannan navel orange’s pericarps were acquired. Then different spectral preprocessing methods were compared with and partial least square (PLS) regression models were established. The results showed that when the substrate was ophthalmic lens, the calibration model with linear baseline correcting preprocessing was the ideal model for chlorpyrifos solutions, and the calibration model with offset correcting preprocessing was the ideal model for malathion solutions. And when the substrate was silicon sheet, the calibration model with second derivative preprocessing was the ideal model for chlorpyrifos solutions, and the calibration model with first derivative preprocessing was the ideal model for malathion solutions. While the ideal preprocessing methods were first derivative and standard normal variate correction (SNV) for chlorpyrifos and malathion residues on the surface of Gannan navel orange, respectively.
     3. Rapid and quantitative mathematical models were established for the Rman spectra of the two kinds of pesticide standard solutions. Calibration models were eatablished using traditional peak-to-intensity ratio method and chemometric algorithms for Raman spectra data of chlorpyrifos and malathion solutions. Modeling effects between ophthalmic lens and silicon sheet for the acquisition of chlorpyrifos and malathion solutions were discussed. The results showed that when the substrate was ophthalmic lens, the model established by multiple linear regression (MLR) was the ideal model for chlorpyrifos solutions. The calibration and cross-validation results were: r_c=0.960, RMSEC=3.166, r_(cv)=0.877, RMSECV=5.421. And the PLS model was the ideal model for malathion solutions. The calibration and cross-validation results were: r_c=0.998, RMSEC=0.748, r_(cv)=0.985, RMSECV=2.236. However, when the substrate was silicon sheet, the PLS model was the ideal model for chlorpyrifos solutions. The calibration and cross-validation results were: r_c=0.986, RMSEC=1.628, r_(cv)=0.944, RMSECV=3.341. And the PLS model was the ideal model for malathion solutions. The calibration and cross-validation results were: r_c=0.996, RMSEC=1.175, r_(cv)=0.992, RMSECV=1.639. The results showed that it is better to acquire Raman spectrum of pesticide solutions by using silicon sheet than by using ophthalmic lens.
     4. Rapid and quantitative mathematical models were established for the Rman spectra of the two kinds of pesticide residues on the surface of fruit. Quantitative analysis mathematical models were established using traditional peak-to-intensity ratio method and chemometric algorithms for chlorpyrifos and malathion residues on the surface of Gannan navel orange. The feasibility of the rapid and quantitative determination of pesticide residue on the surface of fruit by Raman spectroscopy was discussed. The results showed that the least squares support vector regression (LS-SVR) model was the ideal model for the chlorpyrifos residue. The r_c, RMSEC, r_(cv) and RMSECV were 0.974, 2.592, 0.973 and 2.566. And the LS-SVR model was the ideal model for the malathion residue. The r_c, RMSEC, r_(cv) and RMSECV were 0.948, 4.101, 0.948 and 4.111. The results showed that pesticide residue on the surface of fruit could be determined by Raman spectroscopy, which supplied a kind of rapid, green and environmentally friendly method.
引文
[1]尤建强,崔岩.对我国水果进出口贸易的思考[J].国际贸易问题, 2006, (2): 26-31.
    [2]中华人民共和国国家统计局.中国统计年鉴2009 [DB/OL]. http://www.stats.gov.cn/tjsj/ndsj/2009/indexch.htm
    [3]陈小帆,荣晓东,何日荣,等.国内外水果农药残留管理概况[J].植物保护, 2006, Vol. 32 (6): 18-21.
    [4]邱栋梁.果品质量学概论[M].北京:化学工业出版社, 2006.
    [5]刘爱红,张琳.农药残留与食品安全[J].安徽农业科学, 2007, Vol. 35 (13): 4017-4018.
    [6]戴廷灿,倪永年,卢普滨,等.我国农药残留检测技术现状[J].农药, 2004, Vol. 43 (9): 389-393.
    [7]张青,周国强.农药对我国农产品污染的现状及控制对策[J].洛阳大学学报, 2007, Vol. 22 (2): 46-49.
    [8]何军,马志卿,张兴.农药残留对农业的影响及对策[J].西北农业学报, 2006, Vol. 15 (6): 240-243.
    [9]罗松明.农产品质量检测及安全控制研究进展[J].粮食储藏, 2005, Vol. 34 (1): 46-50.
    [10]吴丽华,李建科.气相色谱法在农药残留分析中的应用[J].粮油食品科技, 2006, Vol. 14 (4): 57-58.
    [11]易军.食品中农药残留分析技术的研究与应用[D]: [硕士学位论文].福建:厦门大学海洋与环境学院, 2002.
    [12] Oliva J., Navarro S., Barba A., et al. Determination of chlorpyrifos, penconazole, fenarimol, vinclozolin and metalaxyl in grapes, must and wine by on-line microextraction and gas chromatography [J]. Journal of Chromatography A, 1999, Vol. 833 (1): 43-51.
    [13] Xiao Q., Hu B., Yu C., et al. Optimization of a single-drop microextraction procedure for the determination of organophosphorus pesticides in water and fruit juice with gas chromatography-flame photometric detection [J]. Talanta, 2006, Vol. 69 (4): 848-855.
    [14] Chen F., Zeng L. Q., Zhang Y. Y., et al. Degradation behaviour of methamidophos and chlorpyrifos in apple juice treated with pulsed electric fields [J]. Food Chemistry, 2009, Vol. 112 (4): 956-961.
    [15] Kne?evi? Z., Serdar M. Screening of fresh fruit and vegetables for pesticide residues on Croatian market [J]. Food Control, 2009, Vol. 20 (4): 419-422.
    [16] Chai M. K., Tan G. H. Validation of a headspace solid-phase microextraction procedure with gas chromatography-electron capture detection of pesticide residues in fruits and vegetables [J]. Food Chemistry, 2009, Vol. 117 (3): 561-567.
    [17]吴丽华,李建科,伍小红.气相色谱法测定苹果中的多种农药残留量[J].分析试验室, 2006, Vol. 25 (11): 46-50.
    [18]刘文杰,晋玉霞,马玲,等.气相色谱法测定土壤、蔬菜和水果中硫丹类农药残留[J].中国卫生检验杂志, 2007, Vol. 17 (2): 256-289.
    [19]于彦彬,王淑菊,谭培功,等.固相萃取气相色谱法测定水果中克菌丹和灭菌丹[J].分析化学研究报告, 2008, Vol. 36 (6): 750-754.
    [20]徐晓国.气相色谱(ECD)法同时测定蔬菜和水果中8种菊酯类农药残留[J].中国卫生检验杂志, 2008, Vol. 18(1): 62-63.
    [21]郑小严,陆万平,黄红霞,等.固相萃取气相色谱法测定蔬菜、水果中的多种有机磷农药残留[J].分析测试技术与仪器, 2009, Vol. 15 (3): 144-150.
    [22]刘志杏,郭平,王远兴,等.气相色谱分析柑橘类水果中残留的苯丁锡[J].色谱, 2009, Vol. 27 (6): 760-763.
    [23]赵建伟,岳永德,汤锋,等.气相色谱法测定蔬菜、水果中多种有机磷农药残留[J].安徽农业大学学报, 2010, Vol. 37 (1): 82-87.
    [24] Martínez Vidal J. L., Arrebola F. J., Mateu-Sánchez M. Application of gas chromatography–tandem mass spectrometry to the analysis of pesticides in fruits and vegetables [J]. Journal of Chromatography A, 2002, Vol. 959 (1-2): 203-213.
    [25] Ticha J., Hajslova J., Jech M., et al. Changes of pesticide residues in apples during cold storage [J]. Food Control, 2008, Vol. 19 (3): 247-256.
    [26] Cortés-Aguado S., Sánchez-Morito N., Arrebola F. J., et al. Fast screening of pesticide residues in fruit juice by solid-phase microextraction and gas chromatography–mass spectrometry [J]. Food Chemistry, 2008, Vol. 107 (3): 1314-1325.
    [27] Cunha S. C., Fernandes J. O., Oliveira M. B. P. P. Fast analysis of multiple pesticide residues in apple juice using dispersive liquid–liquid microextraction and multidimensional gas chromatography–mass spectrometry [J]. Journal of Chromatography A, 2009, Vol. 1216 (51): 8835-8844.
    [28] Guan H., Brewer W. E., Garris S. T., et al. Disposable pipette extraction for the analysis of pesticides in fruit and vegetables using gas chromatography/mass spectrometry [J]. Journal of Chromatography A, 2010, Vol. 1217 (12): 1867-1874.
    [29]赵晓萌,于同泉,朱高群,等.气相色谱-质谱法检测蔬菜和水果中35种农药残留[J].色谱, 2005, Vol. 23 (3): 328.
    [30]薄海波.固相萃取-气相色谱/质谱法分析水果和蔬菜中残留的嘧菌酯[J].色谱, 2007, Vol. 25 (6): 898-901.
    [31]王明泰,牟峻,吴剑,等.蔬菜及水果中77种有机磷和氨基甲酸酯农药残留量检测技术研究[J].食品科学, 2007, Vol. 28 (3): 247-253.
    [32]王天,谭红,何锦林,等.凝胶渗透色谱净化-气相色谱/质谱联用法测定草莓中残留的克百威[J].安徽农业科学, 2010, Vol. 38 (7): 3521-3522, 3615.
    [33]沈伟健,毛应民,吴斌,等.气相色谱-正化学源-质谱联用技术测定葡萄和葡萄酒中多种唑类杀菌剂的残留量[J].分析化学研究报告, 2010, Vol. 38 (7): 941-947.
    [34]郝征红.固相萃取-HPLC技术在农药残留分析中的研究与应用[D]: [硕士学位论文].山东:山东师范大学, 2006.
    [35] Orejuela E., Silva M. Monitoring some phenoxyl-type N-methylcarbamate pesticide residues in fruit juices using high-performance liquid chromatography with peroxyoxalate-chemiluminescence detection [J]. Journal of Chromatography A, 2003, Vol. 1007 (1-2): 197-201.
    [36] Campillo N., Vi?as P., Aguinaga N., et al. Stir bar sorptive extraction coupled to liquid chromatography for the analysis of strobilurin fungicides in fruit samples [J]. Journal of Chromatography A, 2010, Vol. 1217 (27): 4529-4534.
    [37]刘宏程,黎其万,周世萍,等.荧光检测-高效液相色谱法测定水果、蔬菜中抗蚜威残留量[J].分析试验室, 2005, Vol. 24 (9): 52-54.
    [38]李永新,孙成均,赵剑虹,等.高效液相色谱法同时测定蔬菜水果中的12种农药残留[J].色谱, 2006, Vol. 24 (3): 251-255.
    [39]朱兴江,丁振华,胡艳云,等.固相萃取高效液相色谱法检测蔬菜水果中的唑螨酯残留[J].光谱实验室, 2008, Vol. 25 (2): 217-220.
    [40]田宏哲,周艳明.高效液相色谱法对水果中多茵灵与福美双残留的同时测定[J].分析测试学报, 2010, Vol. 29 (1): 93-96.
    [41]吴丽华.苹果中多种农药残留的分析检测方法研究[D]: [硕士学位论文].陕西:陕西师范大学, 2007.
    [42] Garrido Frenich A., Martínez Vidal J. L., López López T., et al. Monitoring multi-class pesticide residues in fresh fruits and vegetables by liquid chromatography with tandem mass spectrometry [J]. Journal of Chromatography A, 2004, Vol. 1048 (2): 199-206.
    [43] Ortelli D., Edder P., Corvi C. Multiresidue analysis of 74 pesticides in fruits and vegetables by liquid chromatography–electrospray–tandem mass spectrometry [J]. Analytica Chimica Acta, 2004, Vol. 520 (1-2): 33-45.
    [44] Venkateswarlu P., Rama Mohan K., Ravi Kumar Ch., Seshaiah K. Monitoring of multi-class pesticide residues in fresh grape samples using liquid chromatography with electrospray tandem mass spectrometry [J]. Food Chemistry, 2007, Vol. 105 (4): 1760-1766.
    [45] Sagratini G., Ma(n|~)es J., GiardináD., et al. Analysis of carbamate and phenylurea pesticide residues in fruit juices by solid-phase microextraction and liquid chromatography–mass spectrometry [J]. Journal of Chromatography A, 2007, Vol. 1147 (2): 135-143.
    [46]刘敏,端裕树,宋苑苑,等.分散固相萃取-液相色谱-质谱检测蔬菜水果中氨基甲酸酯和有机磷农药[J].分析化学研究报告, 2006, Vol. 34 (7): 941-945.
    [47]马又娥,余琛,刘宝峰,等.高效液相色谱-串联质谱法同时检测蔬菜、水果中21种农药多残留[J].农药, 2008, Vol. 47 (3): 192-194, 204.
    [48]宋文华,刘芳,丁峰,等.液相色谱-质谱联用法快速检测蔬菜水果中70种农药多残留分析的研究[J].南开大学学报(自然科学版), 2008, Vol. 41 (2): 35-41.
    [49]刘宝峰,刘罡一,马又娥,等.高效液相色谱-串联质谱法检测蔬菜水果中65种农药残留方法研究[J].科技通报, 2010, Vol. 26 (1): 93-99.
    [50]王连珠,周昱,陈泳,等.果蔬中8种苯甲酰脲类农药残留量的液相色谱-串联质谱法测定[J].分析测试学报, 2010, Vol. 29 (3): 289-293.
    [51]王丽春.气相色谱质谱联用法对农药残留检测的研究[D]: [硕士学位论文].湖南:湖南大学化学化工学院, 2005.
    [52] Lehotay S. J., Valverde-García A. Evaluation of different solid-phase traps for automated collection and clean-up in the analysis of multiple pesticides in fruits and vegetables after supercritical fluid extraction. Journal of Chromatography A, 1997, Vol. 765 (1): 69-84.
    [53]刘佳.除虫脲农药残留酶联免疫测定方法的研究[D]: [硕士学位论文].天津:天津科技大学, 2005.
    [54]王文珺,刘兴春,李季.免疫分析在农药残留检测中的应用和发展[J].中国生态农业学报, 2007, Vol. 15 (6): 195-199.
    [55] Gabaldón J. A., Maquieira A., Puchades R. Development of a simple extraction procedure for chlorpyrifos determination in food samples by immunoassay [J]. Talanta, 2007, Vol. 71 (3): 1001-1010.
    [56]刘长武,张俊亭,王一茹,等.应用酶联免疫技术分析水果中的对硫磷[J].环境科学学报, 1993, Vol. 13 (1): 87-92.
    [57]王硕,刘佳,王俊平.除虫脲农药残留的酶联免疫测定方法[J].农业环境科学学报, 2005, Vol. 24 (6): 1254-1258.
    [58]王大宁,董益阳,邹明强.农药残留检测与监控技术[M].北京:化学工业出版社, 2006.
    [59] Jeanty G., Wojciechowska A., Marty J. L., et al. Flow-injection amperometric determination of pesticides on the basis of their inhibition of immobilized acetylcholinesterases of different origin [J]. Analytical and Bioanalytical Chemistry, 2002, Vol. 373 (8): 691-695.
    [60]李亮亮,于维军,刘文娥.荧光法快速测定有机磷农药[J].辽宁农业科学, 2001, (5): 44-45.
    [61]杨若明,赵新颖,崔香花,等.酶抑制法快速检定果蔬中的农药残留[J].中央民族大学学报(自然科学版), 2009, Vol. 18 (1): 11-13, 28.
    [62]蒋雪松,应义斌,王剑平.生物传感器在农药残留检测中的应用[J].农业工程学报, 2005, Vol. 21 (4): 118-122.
    [63]李文秀.应用红外光谱技术进行农药残留快速检测的研究[D]: [硕士学位论文].天津:天津大学精密仪器与光电子工程学院, 2004.
    [64] Armenta S., Quintás G., Garrigues S., et al. A validated and fast procedure for FTIR determination of cypermethrin and chlorpyrifos [J]. Talanta, 2005, Vol. 67 (3): 634-639.
    [65] Skoulika S. G., Georgiou C. A., Polissiou M. G. FT-Raman spectroscopy-analytical tool for routine analysis of diazinon pesticide formulations [J]. Talanta, 2000, Vol. 51 (3): 599-604.
    [66] Quintás G., Garrigues S., de la Guardia M.. FT–Raman spectrometry determination of malathion in pesticide formulations [J]. Talanta, 2004, Vol. 63 (2): 345-350.
    [67] Sato-BerrúR. Y., Medina-Valtierra J., Medina-Gutiérrez C., et al. Quantitative NIR–Raman analysis of methyl-parathion pesticide microdroplets on aluminum substrates [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004, Vol. 60 (10): 2231-2234.
    [68] Armenta S., Garrigues S., de la Guardia M. Determination of iprodione in agrochemicals by infrared and Raman spectrometry [J]. Analytical and Bioanalytical Chemistry, 2007, Vol. 387 (8): 2887-2894.
    [69] Shende C., Inscore F., Gift A., et al. Analysis of pesticides on or in fruit by surface-enhanced Raman spectroscopy [J]. Proceedings of SPIE, 2004, Vol. 5587 (170): 170-176.
    [70] Zhang P. X., Zhou X. F., Cheng A. Y. S., et al. Raman spectra from pesticides on the surface of fruits [J]. Journal of Physics: Conference Series, 2006, (28): 7-11.
    [71] Li J. F., Huang Y. F., Ding Y., et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Nature, 2010, Vol. 464 (18): 392-395.
    [72]周小芳,方炎,张鹏翔.水果表面残留农药的拉曼光谱研究[J].光散射学报, 2004, Vol. 16 (1): 11-14.
    [73]肖怡琳,张鹏翔,钱晓凡.几种农药的显微拉曼光谱和荧光光谱[J].光谱学与光谱分析, 2004, Vol. 24 (5): 579-581.
    [74]钱晓凡,肖怙琳,徐存英,等.新鲜水果显微拉曼光谱研究[J].光散射学报, 2001, Vol. 13 (1): 59-61.
    [75]陈晨.水体污染物拉曼光谱检测的数据处理与建库技术[D]: [硕士学位论文].湖北:华中师范大学, 2006.
    [76]张明生.激光光散射谱学[M].北京:科学出版社, 2008.
    [77]陈柳.拉曼光谱系统设计及基于遗传算法的光谱数据分析研究[D]: [硕士学位论文].湖北:华中师范大学, 2004.
    [78]刘敏敏.表面增强拉曼散射的电磁理论[D]: [硕士学位论文].湖北:华中师范大学, 2005.
    [79]李琼.微型拉曼光谱仪的拉曼光谱数据处理方法研究[D]: [硕士学位论文].重庆:重庆大学, 2008.
    [80]刘燕德,刘涛,孙旭东,等.拉曼光谱技术在食品质量安全检测中的应用[J].光谱学与光谱分析, 2010, Vol. 30 (11): 3007-3012.
    [81]田国辉,陈亚杰,冯清茂.拉曼光谱的发展及应用[J].化学工程师, 2008, (1): 52-53, 64.
    [82] Wang D., Nakashima H., Tanaka M., et al. Local strain evaluation of single crystal Si pillar by micro Raman spectroscopy and photoluminescence [J]. Thin Solid Films, 2008, Vol. 517 (1): 31-33.
    [83] Lei Z. K., Qiu W., Kang Y. L., et al. Stress transfer of single fiber/microdroplet tensile test studied by micro-Raman spectroscopy [J]. Composites Part A: Applied Science and Manufacturing, 2008, Vol. 39 (1): 113-118.
    [84]田中群,任斌,吴德印,等.激光拉曼光谱研究电化学界面的新进展[J].厦门大学学报(自然科学版), 2001, Vol. 40 (2): 434-447.
    [85] Tarcea N., Harz M., R(o|¨)sch P., et al. UV Raman spectroscopy—A technique for biological and mineralogical in situ planetary studies [J]. Spectrochimica Acta Part A, 2007, Vol. 68 (4): 1029-1035.
    [86] Mizrach A., Schmilovitch Z., Korotic R., et al. Yeast detection in apple juice using Raman spectroscopy and chemometric methods [J]. Transactions of the ASABE, 2007, Vol. 50 (6): 2143-2149.
    [87] McGoverin C. M., Clark A. S. S., Holroyd S. E., et al. Raman spectroscopic quantification of milk powder constituents [J]. Analytica Chimica Acta, 2010, Vol. 673 (1): 26-32.
    [88] Roggo Y., Degardin K., Margot P. Identification of pharmaceutical tablets by Raman spectroscopy and chemometrics [J]. Talanta, 2010, Vol. 81 (3): 988-995.
    [89]陆雪非,李风亭.表面增强拉曼光谱在工业水处理及金属材料保护中的应用[J].腐蚀与防护, 2001, Vol. 22 (4): 144-146.
    [90] ?odziński M., Wrzalik R., Sitarz M. Micro-Raman spectroscopy studies of some accessory minerals from pegmatites of the Sowie Mts and Strzegom-Sobótka massif, Lower Silesia, Poland [J]. Journal of Molecular Structure, 2005, Vol. 744-747: 1017-1026.
    [91] Sudheer S. K., Mahadevan Pillai V. P., Nayar V. U. Characterization of laser processing of single-crystal natural diamonds using micro-Raman spectroscopic investigations [J]. Journal of Raman Spectroscopy, 2007, Vol. 38 (4): 427-435.
    [92]祖恩东,段云彪,张鹏翔.显微共焦拉曼光谱在宝石鉴定中的应用[J].云南大学学报(自然科学版), 2004, Vol. 26 (1): 51-55.
    [93]殷道永.近红外拉曼光谱分析技术在白酒酒精度检测中的应用[D]: [硕士学位论文].江苏:江苏大学, 2006.
    [94]徐伟,张帅,王克家.拉曼光谱预处理中几种小波去噪方法的分析[J].应用科技, 2009, Vol. 36 (11) : 27-31.
    [95]李宁.近红外傅立叶变换拉曼光谱定量分析应用基础的研究[D]: [硕士学位论文].北京:中国农业大学, 2003.
    [96]李卿,张国平,刘洋.基于EMD的拉曼光谱去噪方法研究[J].光谱学与光谱分析, 2009, Vol. 29 (1): 142-145.
    [97] Lin H., Chen Q. S., Zhao J. W., et al. Determination of free amino acid content in Radix Pseudostellariae using near infrared (NIR) spectroscopy and different multivariate calibrations [J]. Journal of Pharmaceutical and Biomedical Analysis, 2009, Vol. 50 (5): 803-808.
    [98]尼珍,胡昌勤,冯芳.近红外光谱分析中光谱预处理方法的作用及其发展[J].药物分析杂志, 2008, Vol. 28 (5): 824-829.
    [99] Zou X. B., Zhao J. W., Malcolm J. W. P., et al. Variables selection methods in near-infraredspectroscopy [J]. Analytica Chimica Acta, 2010, Vol. 667 (1-2): 14-32.
    [100]陈兴苗.赣南脐橙可溶性固形物的近红外光谱无损检测方法研究[D]: [硕士学位论文].江西:江西农业大学, 2008.
    [101]郝勇.近红外光谱微量分析方法研究[D]: [博士学位论文].天津:南开大学, 2009.
    [102]许禄,邵学广.化学计量学方法(第二版)[M].北京:科学出版社, 2004.
    [103]朱尔一,杨凡原.化学计量学技术及应用[M].北京:科学出版社, 2001.
    [104]分析化学手册(第二版)编辑委员会.分析化学手册(第十分册):化学计量学[M].北京:化学工业出版社, 1998.
    [105] Suykens J. A. K., van Gestel T., de Brabanter J., et al. Least-Squares Support Vector Machines [M]. Singapore: World Scientific, 2002.
    [106]王克奇,杨少春,戴天虹,等.采用遗传算法优化最小二乘支持向量机参数的方法[M].计算机应用与软件, 2009, Vol. 26(7): 109-111.
    [107] GB 2763—2005,食品中农药最大残留限量[S].
    [108]赵金涛,张鹏翔,徐存英.活体植物中β-胡萝卜素分子的二级拉曼散射谱[J].光谱学与光谱分析, 2002, Vol. 22 (5): 790-792.
    [109]陶家友,黄鹰,廖高华,等.甲醛浓度的激光拉曼光谱检测研究[J].光散射学报, 2008, Vol. 20 (4): 346-349.
    [110]陶家友,徐代升,梅孝安,等.苯的激光拉曼光谱检测研究[J].应用光学, 2010, Vol. 31 (2): 273-276.
    [111]陈美娟,陈杰勋,王靖岱,等.聚乙烯密度的拉曼光谱检测[J].浙江大学学报(工学版), 2010, Vol. 44 (6): 1164-1184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700