用户名: 密码: 验证码:
汉坦病毒嵌合基因G1S0.7、G2S0.7重组腺病毒的改建、表达及其免疫学特性的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肾综合征出血热(Hemorrhagic fever with renal syndrome, HFRS)是由汉坦病毒(Hantavirus, HTV)引起的急性病毒性传染病,临床上尚缺乏特异有效的治疗药物,因此其防治任务十分艰巨。现有的HFRS疫苗主要是鼠脑来源和细胞来源的灭活疫苗,虽然该疫苗在HFRS防治方面起到了积极作用,但仍存在明显不足,主要是其诱导机体产生中和抗体的能力较弱,中和抗体滴度不高,细胞免疫水平亦不高。因此需要更为有效的新型疫苗来弥补现有疫苗的不足。
     HTV的囊膜糖蛋白(Glycoprotein, GP)是HFRS基因工程疫苗基础研究中的重要组分。研究表明,GP上有中和抗原表位,能诱导机体产生中和抗体从而起到保护作用。但是GP免疫原性较弱,诱生的抗体出现晚,滴度低;而HTV的核衣壳蛋白(Nucleocapsid protein, NP)被认为是其三个结构蛋白中免疫原性强的蛋白,且NP诱生的抗体出现早,滴度高。虽然现有研究对其是否具有中和抗原表位存在争议,但是大量研究证实NP对HTV感染的实验动物具有保护作用。此外NP上还存在多个针对HTV的CTL表位,因此NP在机体的细胞免疫应答中发挥重要作用。我室以往研究表明,NP的抗原结合位点主要位于S基因0.7 kb片段(即编码NP氨基端1~274aa片段)上。将该截短片段克隆进原核载体并用表达产物免疫小鼠,动物实验结果显示与完整NP免疫效果基本相同;进一步构建了M片段与S0.7的嵌合基因(G1S0.7、G2S0.7),并在不同系统中表达,同时对其免疫学特性进行检测,结果显示嵌合基因/融合蛋白能有效的诱导机体体液和细胞免疫应答,且其在腺病毒载体中的免疫效果优于其他系统。然而研究中我们发现各个表达系统存在融合蛋白表达水平不高、表达产物免疫小鼠后细胞免疫水平也相对较低的问题。因此有必要采取有效策略来解决这一问题。
     本课题在我室前期工作基础上,以人5型复制缺陷型腺病毒Adeno-XTM系统为基础,利用基因重组技术,对含HTV嵌合基因G1S0.7、G2S0.7的pShuttle转移载体进行改建和修饰,包括将原有人巨细胞病毒早期增强子/启动子(Human cytomegalovirus early enhancer/promoter, CMV)替换为CMV与鸡β肌动蛋白的杂合启动子(hybrid of Human cytomegalovirus early enhancer and chickenβ-actin promoter, CAG),单独插入土拨鼠肝炎病毒转录后调控元件(Woodchuck Hepatitis Virus post-transcriptional regulatory element, WPRE),或替换启动子的同时插入WPRE,以期在转录及转录后调控阶段提高抗原的表达水平;构建病毒载体并包装重组腺病毒,鉴定并比较不同重组腺病毒中融合蛋白G1S0.7、G2S0.7的表达及其水平的高低;大量制备、纯化各重组腺病毒,免疫小鼠,并对其免疫学特性进行系统研究。
     1、设计并合成CAG启动子,替换pShuttle转移载体CMV启动子,获得含HTV嵌合基因G1S0.7、G2S0.7的改建重组腺病毒转移载体,分别命名为G1S0.7-pCAG和G2S0.7-pCAG;设计并合成WPRE,插入重组pShuttle载体中目的片段3端,获得含HTV嵌合基因G1S0.7、G2S0.7的改建重组腺病毒转移载体,分别命名为G1S0.7-WPRE和G2S0.7-WPRE;同时替换启动子并插入WPRE,获得含HTV嵌合基因G1S0.7、G2S0.7的改建重组腺病毒转移载体,分别命名为G1S0.7-pCAG-WPRE和G2S0.7-pCAG-WPRE。
     2、将上述改建的重组转移载体分别克隆入腺病毒载体骨架pAdeno-X DNA,并经XhoⅠ、PCR及PI-SceⅠ和I-CeuⅠ双酶切鉴定,获得阳性重组腺病毒DNA。转染HEK 293细胞,包装重组腺病毒,分别命名rAd-G1S0.7-pCAG、rAd-G2S0.7-pCAG、rAd-G1S0.7-WPRE、rAd-G2S0.7-WPRE、rAd-G1S0.7-pCAG-WPRE和rAd-G2S0.7-pCAG-WPRE。
     3、扩增、纯化并测定重组腺病毒滴度,用IFA和Western blot对表达产物进行鉴定,同时加入未改建的含嵌合基因重组腺病毒rAd-G1S0.7、rAd-G2S0.7作为对照。结果显示,所有重组腺病毒感染HEK 293细胞后,用特异性抗体均可检测到胞浆内的绿色荧光,表明所有重组腺病毒均可表达融合蛋白G1S0.7和G2S0.7,其中替换启动子的rAd-G1S0.7-pCAG、rAd-G2S0.7-pCAG感染细胞荧光亮度最强;Western blot结果证实,替换了CAG启动子的rAd-G1S0.7-pCAG、rAd-G2S0.7-pCAG表达融合蛋白的水平最高,分别是其他改建及未改建的含嵌合基因G1S0.7、G2S0.7重组腺病毒的2.1倍和2.3倍。
     4、将各组重组腺病毒经腹腔注射免疫C57BL/6小鼠,并同时设立HFRS灭活疫苗、Adenovirus-Lac Z和正常小鼠对照组。通过ELISA、微量细胞培养中和试验、ELISPOT及CTL杀伤实验观察重组腺病毒的免疫学特性。ELISA检测结果显示,免疫小鼠血清可以检测到最高效价分别为1: 80和1: 320的特异性抗汉滩病毒( Hantaan virus, HTNV ) GP、NP抗体,rAd-G1S0.7-pCAG和rAd-G2S0.7-pCAG分别高于其他改建和未改建的含嵌合基因G1S0.7、G2S0.7的重组腺病毒;微量细胞培养中和试验结果显示,各实验组小鼠血清中均可检测到不同滴度的中和抗体(1: 10~1: 40),其中rAd-G1S0.7-pCAG和rAd-G2S0.7-pCAG均高于疫苗对照组(1: 10~1: 20);ELISPOT检测结果显示,各实验组小鼠脾细胞分泌细胞因子水平不同,其中rAd-G1S0.7-pCAG和rAd-G2S0.7-pCAG分泌IFN-γ和IL-2水平分别高于其他改建及未改建含嵌合基因G1S0.7、G2S0.7的重组腺病毒及疫苗对照组(P<0.05),TNF-α和IL-10差异不明显;CTL杀伤实验提示,各实验组均可诱导CTL杀伤作用,且随着效靶比的升高,杀伤效应也相应升高,其中在效靶比为100: 1和50: 1时, rAd-G1S0.7-pCAG和rAd-G2S0.7-pCAG诱导的杀伤活性分别高于其他改建及未改建含嵌合基因G1S0.7、G2S0.7的重组腺病毒及疫苗对照组(P<0.05)。
     综上所述,通过替换转移载体启动子,我们获得融合蛋白表达水平高于其他组的重组腺病毒rAd-G1S0.7-pCAG和rAd-G2S0.7-pCAG;动物实验结果显示,这两各重组腺病毒诱导体液免疫应答和细胞免疫应答能力高于其他实验组,特别是细胞免疫应答水平,亦高于本研究中灭活疫苗对照组。下一步,我们将进一步改建重组腺病毒转移,通过加入泛素或者HSP70等免疫佐剂,以期获得能诱导更高细胞免疫应答的重组腺病毒。
Hemorrhagic fever with renal syndrome (HFRS) is caused by Hantaviruses (HTV), and there is no specific treatment right now. There are a few inactivated vaccines licensed for use in China, but their prophylactic effect has prompted mixed reviews. One clear problem is the vaccines’poor immunogenicity for eliciting neutralizing antibodies and cell-mediated immunity. It is clearly indicates a need for developing more effective vaccines.
     It is well demonstrated that GP is a main candidate protein for the HTV genetically engineered vaccine: It plays an important role in stimulating neutralizing antibodies and in protecting humans and animals from HTV infection; however, its immunogenicity is weak, the antibody elicited by GP is produced later, and the titer is low. Among the structural proteins, NP has the strongest immunogenicity and it can elicit a high titer and a long-lasting antibody response. It is disputed that NP contains neutralizing epitopes, but the fact that NP can protect animals from HTV infection is totally confirmed. Besides, NP contains antigenic sites associated with cytotoxic T-lymphocyte (CTL) responses. Thererfore, NP plays an important role in evoking cellular immune response against HTV infection. Previous work has demonstrated that the antigenic sites of NP are mainly distributed at the 0.7 kb fragment of the S segment, which is close to the N-terminus. Mice immunized with the truncated protein expressed in prokaryotic vector could produce the same immunological effect as immunized with the complete NP. Further experiments indicated that mice immunized with the fusion proteins G1S0.7 (G1 of the M segment and a 0.7 kb fragment of the S segment) and G2S0.7 (G2 of the M segment and a 0.7 kb fragment of the S segment) effectively elicit specific anti-NP, anti-GP and neutralizing antibodies and a cellular immune response. And the immune response produced by the recombinant adenovirus containing the chemiric genes was more efficient than other systems. But the expreesion level of the fused proteins was not satisfied, and the cell-mediated immunity of mice which were immuned with the expressed products was still low. Efficient strategies are need for the problems.
     In this study, we chose the human adenoviral type 5 replication-incompetent systems to express the fusion proteins G1S0.7 and G2S0.7. To improve the expression levels, we made several modifications to the adenoviral vector pShuttle, including replacing the CMV promoter (Human cytomegalovirus early enhancer/promoter) with CAG promoter (hybrid of Human cytomegalovirus early enhancer and chickenβ-actin promoter). We also incorporated WPRE (Woodchuck Hepatitis Virus post-transcriptional regulatory element) alone, or in conjunction with, the new promoter CAG. After packaging the recombinant adenoviruses and infecting HEK 293 cells, we identified the fusion proteins and compared the expression level as well as immunized mice with recombinant adenoviruses, a series of immunological assays were taken and the immunological characteristics were studied.
     1. By designing and synthesizing the CAG promoter, the classic CMV promoter of the adenoviral vectors pShuttle containing chimeric genes G1S0.7 or G2S0.7 were replaced, naming G1S0.7-pCAG and G2S0.7-pCAG; Designed and synthesized the WPRE, incorporated at the 3′UTR of pShuttle carrying chimeric genes G1S0.7 or G2S0.7, naming G1S0.7-WPRE and G2S0.7-WPRE; By both replacing the promoter and incorporating WPRE, the reconstructed vectors containing chimeric genes G1S0.7 or G2S0.7 were modified, naming G1S0.7-pCAG-WPRE and G2S0.7-pCAG-WPRE, respectively.
     2. Reconstructed pShuttle vestors containing chimeric genes, and the pAdeno-X DNA were all digested with PI-SceⅠand I-CeuⅠ, and the ligation products were transformated into E.coli JM109. Clones were identified by XhoⅠdigestion, PCR amplified and PI-SceⅠand I-CeuⅠdouble digestion. After transfected HEK 293 cells, the recombinant Adenoviruses were packaged, naming rAd-G1S0.7-pCAG, rAd-G2S0.7-pCAG, rAd-G1S0.7-WPRE, rAd-G2S0.7-WPRE, rAd-G1S0.7-pCAG-WPRE and rAd-G2S0.7-pCAG-WPRE.
     3. By purifing and determinating the viral titers, immunofluorescence assays and Western blot were employed to identify the expression products, the unmodified recombinant adenoviruses rAd-G1S0.7 and rAd-G2S0.7 were used as controls. A positive fluorescence could be observed in 293 cells 48 hrs after infection in IFA. The most intense fluorescence for the target proteins were all observed in vector with the CAG promoter groups. Western blot results indicated that the reconstructed vectors with a CAG promoter and carrying the chemiric genes G1S0.7 or G2S0.7, expressed 2.1-fold and 2.3-fold more protein than the unmodified vectors, respectively.
     4. C57BL/6 mice were inoculated by intraperitoneal injection, HFRS inactivated vaccine, Adenovirus-Lac Z and normal mice were employed as controls. ELISA, microcell-cultured neutralization test, ELISPOT and CTL assay were performed for the immunological characteristics of recombinant adenoviruses. The results showed that among all the experimental groups the titers of mice immunized with rAd-G1S0.7-pCAG were the highest, which were 1: 80 and 1: 320, respectively. In the microcell-cultured neutralization test, a low titer of neutralization antibodies were observed in all experimental groups (1: 10~1: 40), of which the rAd-G1S0.7-pCAG and rAd-G2S0.7-pCAG were higher than the vaccine control (1: 10~1: 20). The levels of cytokines stimulated by splenocytes were quite different: the INF-γand IL-2 of rAd-G1S0.7-pCAG and rAd-G2S0.7-pCAG were higher than the other experimental groups and vaccine control (P<0.05), while TNF-αand IL-10 did not change remarkedly during all the groups. Cell-mediated cytotoxicity assay results indicated that all the recombinant adenoviruses induced specific cytotoxic effects on target cells, which was enhanced in accord with the rise of E/T ration. Among all the experimental groups the specific cytotoxic effects of the rAd-G1S0.7-pCAG and rAd-G2S0.7-pCAG were stronger than the other experimental groups and vaccine control at the E/T ration of 100: 1 and 50: 1(P<0.05).
     By replacing the promoter, we obtained 2 recombinant adenviruese rAd-G1S0.7-pCAG and rAd-G2S0.7-pCAG, which could express the fusion proteins in a relative high level. Animal experiments showed that these recombinant adenviruses induced a stronger humoral immunoresponse and cellullar immunologic response, especially the cellullar immunologic response, which were stronger than the vaccine control. Next step, we hope to obtain more recombinant adenoviruses which could induce effective cell-mediated immunity by inserting the adjuvant such as ubiquitin and HSP70.
引文
1. Schmaljohn C., and Hjelle B., Hantaviruses: a global disease problem. Emerg Infect Dis, 1997. 3(2): p. 95-104.
    2. Clement J., Heyman P., McKenna P., et al. The hantaviruses of Europe: from the bedside to the bench. Emerg Infect Dis, 1997. 3(2): p. 205-11.
    3. Schmaljohn C., Vaccines for hantaviruses. Vaccine, 2009. 27(4): p. D61-4.
    4. Schmaljohn C., Hasty S. and Dalrymple J., Preparation of candidate vaccinia-vectored vaccines for haemorrhagic fever with renal syndrome. Vaccine, 1992. 10(1): p. 10-3.
    5. Maes P., Clement J., Gavrilovskayab I., et al. Hantaviruses: Immunology, Treatment, and Prevention. Viral Immunology, 2004. 17(4): p. 481-97.
    6.张芳琳,徐志凯,阎岩,等.汉滩病毒S、M基因部分片段嵌合基因原核载体的构建及表达产物的鉴定.中国人兽共患病杂志, 2003.19(1): p.34-6.
    7. Zhang F., Wu X., Xu Z., et al. The Expression and Genetic Immunization of Chimeric Fragment of Hantaan Virus M and S segments. Biochem Biophys Res Commun, 2007. 354(4): p. 858-63.
    8. Luo W., Zhang, F., Xu Z., et al. Immunological Properties of a Fusion Protein Containing Nucleocapsid Protein and Glycoprotein Gn of Hantaan virus. Acta virologica, 2008. 52 (4): p. 243-9.
    9.张芳琳,刘勇,于澜,等.汉坦病毒G1S0.7嵌合基因重组腺病毒的构建及鉴定.免疫学杂志, 2006. 22(2): p. 206-9.
    10.于澜,张芳琳,刘勇,等.汉坦病毒嵌合基因G1S0.7重组腺病毒免疫学特性研究.科学技术与工程, 2008. 8(8): p. 2180-2.
    11.张芳琳,刘勇,于澜,等.汉滩病毒76-118株G2S0.7嵌合基因重组腺病毒的构建及表达产物鉴定.第四军医大学学报, 2004. 25(12): p.1057-60.
    12.张芳琳,刘勇,白文涛,等.汉坦病毒嵌合基因G2S0.7重组腺病毒免疫学研究.科学技术与工程, 2004. 4(5): p. 360-2.
    13. Plotkin S.A., New vaccination strategies. Bull Acad Natl Med., 2008. 192(3): p.511-8.
    14. Garg S., Oran A., Hon H., et al. The hybrid cytomegalovirus enhancer/ chicken beta-actin promoter along with woodchuck hepatitis virus posttranscriptional regulatory element enhances the protective efficacy of DNA vaccines. J Immunol, 2004. 173(1): p. 550-8.
    15. Nitta Y., Kawamoto S., Halbert C., et al. A CMV-actin-globin hybrid promoter improves adeno-associated viral vector gene expression in the arterial wall in vivo. J Gene Med., 2005. 7(10): p. 1348-55.
    16. Halbert C., Lam S., Miller A., et al. High-efficiency promoter-dependent transduction by adeno-associated virus type 6 vectors in mouse lung. Hum Gene Ther., 2007. 18(4): p. 344-54.
    17. Fujii I., Matsukura M., Ikezawa M., et al. Adenoviral mediated MyoD gene transfer into fibroblasts: myogenic disease diagnosis. Brain Dev., 2006. 28(7): p. 420-5.
    18. Donello J., Loeb J. and Hope T., Woodchuck Hepatitis Virus Contains a Tripartite Posttranscriptional Regulatory Element. J Virol., 1998. 72(6): p. 5085-92.
    19. Maes P., Clement J. and Van Ranst M., Recent approaches in hantavirus vaccine development. Expert Rev Vaccine, 2009. 8(1): p. 67-76.
    20. McCaughey C. and Hart C., Hantaviruses. J Med Microbiol, 2000. 49(7): p. 587-99.
    21. Arikawa J., Yao J., Yoshimatsu K., et al. Protective role of antigenic sites on the envelope protein of Hantaan virus defined by monoclonal antibodies. Arch Virol, 1992. 126(1-4): p. 271-81.
    22. Arikawa J., Schmaljohn A., Dalrymple J., et al. Characterization of Hantaan virus envelope glycoprotein antigenic determinants defined by monoclonal antibodies. J Gen Virol., 1989. 70(Pt3): p. 615-24.
    23. Xu Z., Wei L., Wang L., et al. The in vitro and in vivo protective activity of monoclonal antibodies directed against Hantaan virus: potential application for immunotherapy and passive immunization. Biochem Biophys Res Commun, 2002. 298(4): p. 552-8.
    24. Heiskanen T., Lundkvist A., Vaheri A., et al. Phage-displayed peptide targeting on the Puumala hantavirus neutralization site. J Virol., 1997, 71(5): p. 3879-85.
    25.宋绍霞,王志玉.汉坦病毒包膜糖蛋白及其生物活性的研究进展.预防医学论坛, 2005. 11(3): p.309-11.
    26.王建文,赵玉军,宋卓,等.汉坦病毒结构蛋白及其表位生物学活性的研究进展.现代畜牧兽医, 2007. (4): p. 60-3.
    27. Terajima M., Van Epps H., Li D., et al. Generation of recombinant vaccinia viruses expressing Puumala virus proteins and use in isolating cytotoxic T cells specific for Puumala virus. Virus Res., 2002. 84(1-2): p. 67-77.
    28. Davenport B., Willis D., Prescott J., et al. Generation of competent bone marrow-derived antigen presenting cells from the deer mouse (Peromyscus maniculatus). BMC Immunol., 2004. 5(1): p. 23.
    29. Xu X., Severson W., Villegas N., et al. The RNA binding domain of the hantaan virus N protein maps to a central, conserved region. J Virol., 2002. 76(7): p. 3301-8.
    30. Mir M. and Panganiban A., Trimeric hantavirus nucleocapsid protein binds specifically to the viral RNA panhandle. J Virol., 2004. 78(15): p. 8281-8.
    31.刘合宾,刘克洲,翁景清,等.汉坦病毒疫苗株Z10与Z37重组核蛋白NP的表达纯化及其特异结合基因组末端反向重复序列的功能研究.病毒学报, 2004. 20(2): 110-7.
    32. Kaukinen P., Vaheri A. and Plyusnin A., Hantavirus nucleocapsid protein: a multifunctional molecule with both housekeeping and ambassadorial duties. Arch Virol., 2005. 150(9): p. 1693-713.
    33. Schonrich G., Rang A., Lutteke N., et al. Hantavirus-induced immunity in rodent reservoirs and humans. Immunol Rev., 2008. 225: p. 163-89.
    34. Lundkvist A., Kallio K., Brus S., et al. Characterization of Puumala virus nucleocapsid protein: identification of B-cell epitopes and domains involved in protective immunity. Virology, 1996. 216(2): p. 397-406.
    35. Wang P., Huang C., Zhang Y., et al. Analysis of the immune response to Hantaan virus nucleocapsid protein C-terminal-specific CD8(+) T cells in patients with hemorrhagic fever with renal syndrome. Viral Immunol, 2009. 22(4): p. 253-60.
    36.王平忠,白雪帆,黄长形,等.汉滩病毒核衣壳蛋白C-端T细胞表位鉴定.中华微生物学和免疫学杂志, 2004. 24(5): p. 393-6.
    37. Van Epps H., Schmaljohn C. and Ennis F., Human memory cytotoxic T-lymphocyte (CTL) responses to Hantaan virus infection: identification of virus-specific and cross-reactive CD8(+) CTL epitopes on nucleocapsid protein. J Virol., 1999. 73(7): p. 5301-8.
    38. Wang M., Wang J., Zhu Y., et al. Cellular immune response to Hantaan virus nucleocapsid protein in the acute phase of hemorrhagic fever with renal syndrome: correlation with disease severity. J Infect Dis., 2009. 199(2): p. 188-95.
    39. Lee K., Chun E., Kim N., et al. Characterization of HLA-A2.1-restricted epitopes, conserved in both Hantaan and Sin Nombre viruses, in Hantaanvirus-infected patients. J Gen Virol., 2002. 83(Pt 5): p. 1131-6.
    40. Maeda K., West K., Toyosaki-Maeda T., et al. Identification and analysis for cross-reactivity among hantaviruses of H-2b-restricted cytotoxic T-lymphocyte epitopes in Sin Nombre virus nucleocapsid protein. J Gen Virol., 2004. 85(Pt 7): p. 1909-19.
    41. Woo G., Chun E., Kim K., et al. Analysis of immune responses against nucleocapsid protein of the Hantaan virus elicited by virus infection or DNA vaccination. J Microbiol., 2005. 43(6): p. 537-45.
    42.薛小平,徐志凯,马文煜,等.汉滩病毒核蛋白的分段表达及抗原表位分析.中国病毒学, 2000. 15(3): 220-4.
    43.刘勇,徐志凯,王海涛,等.重组汉坦病毒核蛋白及其26 kDa片段的免疫学特性鉴定.第四军医大学学报, 2000. 21(11):1307-1309.
    44. Lee H., Ahn C., Song J., et al. Field trail of an inactivated vaccine against hemorrhagic fever with renal syndrome in humans. J Arch Virol., 1990. (Suppl l ): 35-47.
    45. Cho H. and Howard C., Antibody responses in humans to an inactivated hantavirus vaccine (Hantavax). Vaccine, 1999. 17(20-21): p. 2569-75.
    46. Sohn, Y.M., et al., Primary humoral immune responses to formalin inactivated hemorrhagic fever with renal syndrome vaccine (Hantavax): consideration of active immunization in South Korea. Yonsei Med J, 2001. 42(3): p. 278-84.
    47. Cho H., Howard C. and Lee H., Review of an inactivated vaccine against hantaviruses. Intervirology, 2002. 45(4-6): p. 328-33.
    48. Hjelle B., Vaccines against hantaviruses. Expert Rev Vaccines, 2002. 1(3): p. 373-84.
    49.陈化新,叶克龙,张家驹,等.中国肾综合征出血热疫苗免疫效果评价和免疫策略研究.中国媒介生物学及控制杂志, 1996. 7(4): 241-7.
    50. Song G., Huang Y., Hang C., et al. Preliminary human trial of inactivated golden hamster kidney cell (GHKC) vaccine against haemorrhagic fever with renal syndrome (HFRS). Vaccine, 1992. 10(4): p. 214-6.
    51.董关木,安祺,朱智勇,等.原代沙鼠肾细胞肾综合症出血热双价疫苗临床观察与免疫学研究.中华微生物与免疫学杂志, 1998. 18(6): 453-5.
    52. Laddy D. and Weiner D., From plasmids to protection: a review of DNA vaccines against infectious diseases. Int Rev Immunol, 2006. 25(3-4): p. 99-123.
    53. Klinman D., Sechler J., Conover J., et al. Contribution of cells at the site of DNA vaccination to the generation of antigen-specific immunity and memory. J Immunol, 1998. 160(5): p. 2388-92.
    54. Sato Y., Roman M., Tighe H., et al. Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science, 1996. 273(5273): p. 352-4.
    55. Custer D., Thompson E., Schmaljohn C., et al. Active and passive vaccination against hantavirus pulmonary syndrome with Andes virus M genome segment-based DNA vaccine. J Virol, 2003. 77(18): p. 9894-905.
    56. Kamrud K., Hooper J., Elgh F., et al. Comparison of the protective efficacy of naked DNA, DNA-based Sindbis replicon, and packaged Sindbis replicon vectors expressing Hantavirus structural genes in hamsters. Virology, 1999. 263(1): p. 209-19.
    57. Hooper J., Custer D., Thompson E., et al. DNA vaccination with the Hantaan virus M gene protects Hamsters against three of four HFRS hantaviruses and elicits a high-titer neutralizing antibody response in Rhesus monkeys. J Virol., 2001. 75(18): p. 8469-77.
    58. Hooper J., Kamrud K., Elgh F., et al. DNA vaccination with hantavirus M segment elicits neutralizing antibodies and protects against seoul virus infection. Virology, 1999. 255(2): p. 269-78.
    59. Hooper J., Ferro A. and Wahl-Jensen V., Immune serum produced by DNA vaccination protects hamsters against lethal respiratory challenge with Andes virus. J Virol, 2008. 82(3): p. 1332-8.
    60. Lindkvist M., Lahti K., Lilliehook B., et al.Cross-reactive immune responses in mice after genetic vaccination with cDNA encoding hantavirus nucleocapsid proteins. Vaccine, 2007. 25(9): p. 1690-9.
    61.李金梅,张海林,邓淑珍,等.肾综合征出血热病原学和疫苗研究进展.中国人兽共患病学报, 2008. 24(7): p.666-9.
    62.石永兵,金东华,诸葛洪祥,等.汉滩病毒核酸疫苗滴鼻及皮肤划痕免疫小鼠的比较研究.中国人兽共患病学报, 2006. 22(9): p. 840-1.
    63.刘峰,张全福,刘琴之,等.汉滩病毒84F1i株DNA疫苗诱导小鼠免疫应答的初步研究.病毒学报, 2007. 23(3): p. 183-7.
    64.贾珉,张泽华,胡洪波,等.汉坦病毒H8205株G12人源IL22融合基因疫苗的免疫效应.华中科技大学学报, 2005. 34(4): p. 388-90.
    65.张连忠,赵大鹏,张龙梅,等.汉坦病毒DNA疫苗pVAX/G2诱导小鼠的免疫应答.中国生物制品学杂志, 2005. 18(5): p. 398-411.
    66.熊颖,张泽华,贾珉,等.中国汉坦病毒H8205株G1、G22人源IL-2融合基因免疫效果的实验研究.中国医学文摘:检验与临床, 2007. 21(3): p.132-3.
    67.沙茜,李晓丹,赵平.核酸疫苗的研究进展.安徽农学通报, 2009. 15(9): p.45-6.
    68.郭文龙,朱瑞良.基因工程亚单位疫苗的研究现状及发展动态.国外畜牧学:猪与禽, 2008. 28(4): p. 72-4.
    69. Schmaljohn C., Chu Y., Schmaljohn A., et al. Antigenic subunits of Hantaanvirus expressed by baculovirus and vaccinia virus recombinants. J Virol., 1990. 64(7): p. 3162-70.
    70. Yoshimatsu K., Yoo Y., Yoshida R., et al. Protective immunity of Hantaan virus nucleocapsid and envelope protein studied using baculovirus-expressed proteins. Arch Virol., 1993. 130(3-4): p. 365-76.
    71.孟祥芝,陈宇萍,李川,等.用重组汉坦病毒NP、GP检测急性期HFRS患者血清中特异性IgG、IgM、lgA抗体.中华实验和临床病毒学杂志, 2003. 17(3): 254-7.
    72. Pensiero M. and Hay J., The Hantaan virus M-segment glycoproteins G1 and G2 can be expressed independently. J Virol., 1992. 66(4): p. 1907-14.
    73. McClain D., Summers P., Harrison S., et al. Clinical evaluation of a vaccinia -vectored Hantaan virus vaccine. J Med Virol., 2000. 60(1): p. 77-85.
    74. Ulrich R., Lundkvist A., Meisel H., et al. Chimaeric HBV core particles carrying a defined segment of Puumala hantavirus nucleocapsid protein evoke protective immunity in an animal model. Vaccine, 1998. 16(2-3): p. 272-80.
    75. Koletzki D., Lundkvist A., Sjolander K., et al. Puumala (PUU) hantavirus strain differences and insertion positions in the hepatitis B virus core antigen influence B-cell immunogenicity and protective potential of core-derived particles. Virology, 2000. 276(2): p. 364-75.
    76. Ulrich R., Lundkvist A., Meisel H., et al. Chimaeric HBV core particles carrying a defined segment of Puumala hantavirus nucleocapsid protein evoke protective immunity in an animal model. Vaccine, 1998. 16(2-3): p. 272-80.
    77. Ulrich R., Koletzki D., Lachmann S., et al. New chimaeric hepatitis B virus core particles carrying hantavirus (serotype Puumala) epitopes:immunogenicity and protection against virus challenge. J Biotechnol, 1999. 73(2-3): p. 141-53.
    78. Koletzki D., Biel S., Meisel H., et al. HBV core particles allow the insertion and surface exposure of the entire potentially protective region of Puumala hantavirus nucleocapsid protein. Biol Chem., 1999. 380(3): p. 325-33.
    79. Geldmacher A., Skrastina D., Petrovskis I., et al. An amino-terminal segment of hantavirus nucleocapsid protein presented on hepatitis B virus core particles induces a strong and highly cross-reactive antibody response in mice. Virology, 2004. 323(1): p. 108-19.
    80. Geldmacher A., Skrastina D., Borisova G., et al. A hantavirus nucleocapsid protein segment exposed on hepatitis B virus core particles is highly immunogenic in mice when applied without adjuvants or in the presence of pre-existing anti-core antibodies. Vaccine, 2005. 23(30): p. 3973-83.
    81. McClain D., Summers P., Harrison S., et al. Clinical evaluation of a vaccinia-vectored Hantaan virus vaccine. J Med Virol., 2000. 60(1): p.77-85.
    82. Maeda K., West K., Hayasaka D., et al. Recombinant adenovirus vector vaccine induces stronger cytotoxic T-cell responses than recombinant vaccinia virus vector, plasmid DNA, or a combination of these. Viral Immunol., 2005. 18(4): p. 657-67.
    83. Lee B., Yoshimatsu K., Araki K., et al. A pseudotype vesicular stomatitis virus containing Hantaan virus envelope glycoproteins G1 and G2 as an alternative to hantavirus vaccine in mice. Vaccine, 2006. 24(15): p. 2928-34.
    84.吴兴安,于澜,胡刚,等.汉滩病毒G2重组腺病毒的表达及其基因免疫的研究.细胞与分子免疫学杂志, 2005. 21(4): 415-7.
    85.吴兴安,张芳琳,于澜,等.汉滩病毒囊膜糖蛋白G2基因重组腺病毒的构建与表达.科学技术与工程, 2004. 5(4): 363-6.
    86. Ha S., Park J., Kim J., et al. Molecular cloning and high-level expression of G2 protein of hantaan (HTN) virus 76-118 strain in the yeast Pichia pastoris KM71. Virus Genes, 2001. 22(2): p. 167-73.
    87. Ennis F., Cruz J., Spiropoulou C., et al. Hantavirus pulmonary syndrome: CD8+ and CD4+ cytotoxic T lymphocytes to epitopes on Sin Nombre virus nucleocapsid protein isolated during acute illness. Virology, 1997. 238(2): p. 380-90.
    88. Maes P., Keyaerts E., Bonnet V., et al. Truncated recombinant Dobrava hantavirus nucleocapsid proteins induce strong, long-lasting immune responses in mice. Intervirology, 2006. 49(5): p. 253-60.
    89. Maes P., Clement J., Cauwe B., et al. Truncated recombinant puumala virus nucleocapsid proteins protect mice against challenge in vivo. Viral Immunol, 2008. 21(1): p. 49-60.
    90. Bangari D. and Mittal S., Development of nonhuman adenoviruses as vaccine vectors. Vaccine, 2006. 24(7): p. 849-62
    91. Brun A., Albina E., Barret T., et al. Antigen delivery systems for veterinary vaccine development. Viral-vector based delivery systems. Vaccine, 2008. 26(51): p. 6508-28.
    92. Dormond E., Perrier M. and Kamen A., From the first to the third generation adenoviral vector: what parameters are governing the production yield? Biotechnol Adv., 2009. 27(2): p. 133-44.
    93. Sullivan N., Geisbert T., Gersbert J., et al. Accelerated vaccination for Ebola virus haemorrhagic fever in non-human primates. Nature, 2003. 424(6949): p. 681-4.
    94. Mascola J., Sambor A., Beaudry K., et al. Neutralizing antibodies elicited by immunization of monkeys with DNA plasmids and recombinant adenoviralvectors expressing human immunodeficiency virus type 1 proteins. J Virol., 2005. 79(2): p. 771-9.
    95. Tan Y., Hackett N., Boyer J., et al. Protective immunity evoked against anthrax lethal toxin after a single intramuscular administration of an adenovirus-based vaccine encoding humanized protective antigen. Hum Gene Ther., 2003. 14(17): p. 1673-82.
    96. Gao W., Tamin A., Soloff A., et al. Effects of a SARS-associated coronavirus vaccine in monkeys. Lancet, 2003. 362(9399): p. 1895-6.
    97. Muller L., Saydam O., Saeki Y., et al. Gene transfer into hepatocytes mediated by herpes simplex virus-Epstein-Barr virus hybrid amplicons. J Virol Methods, 2005. 123(1): p. 65-72.
    98. You L., Lou J., Wang A., et al. A hybrid promoter-containing vector for direct cloning and enhanced expression of PCR-amplified ORFs in mammalian cells. Mol Biol Rep., 2009. Sep. 16
    99. Takahashi R., Kuramochi T., Aoyagi K., et al. Establishment and characterization of CAG/EGFP transgenic rabbit line. Transgenic Res., 2007. 16(1): p. 115-20.
    100. Xu Z., Mizuguchi H., Ishii-Watabe A., et al. Optimization of transcriptional regulatory elements for constructing plasmid vectors. Gene., 2001. 272(1-2): p. 149-56.
    101. Xu Z., Mizuguchi H., Ishii-Watabe A., et al. Strength evaluation of transcriptional regulatory elements for transgene expression by adenovirus vector. J Control Release., 2002. 81(1-2): p. 155-63.
    102. Xu Z., Mizuguchi H., Mayumi T., et al. Woodchuck hepatitis virus post-transcriptional regulation element enhances transgene expression from adenovirus vectors. Biochim Biophys Acta., 2003. 1621(3): p. 266-71.
    103. Mariati, Ho S., Yap M., et al. Evaluating post-transcriptional regulatory elements for enhancing transient gene expression levels in CHO K1 and HEK293 cells. Protein Expr Purif., 2010. 69(1): p. 9-15.
    104. Boulos S., Meloni B., Arthur P., et al. Assessment of CMV, RSV and SYN1 promoters and the woodchuck post-transcriptional regulatory element in adenovirus vectors for transgene expression in cortical neuronal cultures. Brain Res., 2006. 1102(1): p. 27-38.
    105. Loeb J., Cordier W., Harris M., et al. Enhanced expression of transgenes from adeno-associated virus vectors with the woodchuck hepatitis virus posttranscriptional regulatory element: implications for gene therapy. Hum Gene Ther., 1999. 10(14): p. 2295-305.
    106. Zufferey R., Donello J., Trono D., et al. Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol., 1999. 73(4): p. 2886-92.
    107. Miyoshi H., Blomer U., Takahashi M., et al. Development of a self-inactivating lentivirus vector. J Virol., 1998. 72(10): p. 8150-7.
    108. Paterson R., Russell C. and Lamb R., Fusion Protein of the Paramyxovirus SV5: Destabilizing and Stabilizing Mutants of Fusion Activation. Virology, 2000. 270(1): p.17-30.
    109. Takara. Adeno-X? Rapid Titer Kit User Manual.
    110.秦卫兵. Th1和Th2细胞在体内的分化.国外医学免疫学分册, 2002. 25 (1): p. 42-6.
    111. Mosmann T.and Sad S., The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today, 1996. 17: p.138-46.
    112.王平忠,杨建军,白雪帆,等.肾综合征出血热患者血清α肿瘤坏死因子的检测及其意义.西南国防医药, 2005 (15): p. 362-6.
    113.王平忠,李宜川,白雪帆,等.肾综合征出血热患者TNF-α、IL-6、IL-4、IFN-γ水平变化及意义.西南国防医药, 2007 (17): p. 396-8.
    114.秦川主编.实验动物学,人民卫生出版社.
    115.陈化新.肾综合征出血热灭活疫苗应用研究.第七次全国肾综合征出血热会议论文汇编, 2006: p.81-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700