靶向toll样受体2多肽的筛选、鉴定及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TLR2(Toll like receptor2)作为固有免疫受体家族的重要成员,参与机体免疫系统抵御体内及体外危险因素的攻击。近期研究表明TLR2还参与包括癌症、自身免疫及心脑血管等多种疾病的发生和进展。本研究发现TLR2在急性粒细胞性白血病细胞高表达。因此靶向TLR2进行药物开发对多种疾病具有很好的治疗前景。本研究主要通过构建TLR2特异性配基细胞筛选模型,从噬菌体展示肽库中筛选出与TLR2特异性结合的多肽。以多肽为载体偶联不同治疗性物质,靶向治疗急性粒细胞白血病和肿瘤。具体内容主要分为以下三部分:
     1.TLR2特异性配基细胞筛选模型的构建、验证及TLR2配基多肽的筛选。
     为了构建TLR2特异性配基细胞筛选模型,我们将TLR2及其辅助型受体CD14、 TLR1和TLR6的表达质粒与TLR2信号通路NF-κB启动子荧光素酶报告基因质粒共转染至人胚肾HEK293细胞,经过筛选得到稳定表达细胞株。利用这一筛选系统从噬菌体展示7肽库中通过生物淘洗-快速差异筛选配基方法(BRASIL)筛选出与TLR2特异性结合的肽段Pep2和C8,经ELISA、流式细胞术和细胞免疫荧光方法鉴定以上肽段均能特异性结合TLR2。通过荧光素酶活性实验验证肽段C8作为TLR2配基激活TLR2/TLR1信号通路;激光共聚焦实验验证肽段Pep2作为靶向TLR2的细胞穿膜肽经受体内化进入细胞。综上所述,通过以上实验证明我们成功构建了TLR2特异性配基的细胞筛选模型,并且筛选到靶向结合TLR2的多肽。
     2.以靶向TLR2细胞穿膜肽Pep2为载体治疗急性粒细胞性白血病和淋巴瘤
     细胞穿膜肽作为新的靶向药物传输载体在多种癌症治疗中具有高效低毒的优点。本研究发现TLR2在急性粒细胞性白血病(AML)和多种淋巴瘤细胞中高表达。为了验证靶向结合TLR2的细胞穿膜肽Pep2是否可以作为新的药物传输载体用于治疗AML,我们将该肽段偶联上一段促进细胞凋亡的多肽D(KLAKLAK)2,组成新的嵌合肽Pep2-D(KLAKLAK)2。实验结果表明Pep2-D(KLAKLAK)2可以靶向促进高表达TLR2(TLR2high)的AML细胞发生凋亡,而对低表达TLR2(TLR2low)的慢性粒细胞性白血病(CML)细胞则没有作用。Pep2-D(KLAKLAK)2抗白血病效应进一步在白血病临床骨髓样本和小鼠模型中得到验证。白血病小鼠骨髓切片TUNEL染色表明此嵌合多肽以TLR2依赖性方式促进AML细胞凋亡。综上所述,本研究证明TLR2可以作为治疗AML和淋巴瘤的潜在靶点,而嵌合多肽Pep2-D(KLAKLAK)2是一个有开发价值的候选药物。
     3.以细胞穿膜肽Pep2为载体靶向抑制TRB3的功能抑制肿瘤发生与进展
     肿瘤细胞的过度增殖、侵袭和转移涉及一系列相关基因的表达和功能异常。TRB3(Tribbles Homologue3)在多种肿瘤细胞及肿瘤组织中高表达。为了探究TRB3与肿瘤发生和进展的关系,本研究发现抑制肿瘤细胞内TRB3的高表达能抑制肿瘤细胞的自噬活性。本研究深入探讨了TRB3调节自噬的分子机制,发现TRB3主要与自噬通路的“货车蛋白"P62相互作用,进而干扰P62与泛素化蛋白以及自噬标志蛋白LC3的结合,造成自噬活性被抑制,从而促进肿瘤的发生和进展。本研究进一步发现干扰肿瘤细胞内TRB3的表达显著降低肿瘤细胞的增殖、侵袭及转移能力,提高荷瘤动物生存率。这些结果提示TRB3是治疗肿瘤的一个潜在靶点。利用这一机制,本研究从P62蛋白结构域中筛选出一段靶向结合TRB3的具有α螺旋结构的肽段,以细胞穿膜肽Pep2作为载体将其带入肿瘤细胞。结果显示该嵌合肽能干扰TRB3与P62的结合,激活肿瘤细胞自噬活性,在体内和体外起到抑制肿瘤生长和转移的作用。综上所述,我们的研究证明TRB3能作为连接自噬和肿瘤的桥梁,靶向阻断P62/TRB3之间相互作用可以明显抑制肿瘤发展。
Toll-like receptor2plays a fundamental role in pathogen recognition and activation of innate immunity as a pattern recognition receptor. Recent studies found that TLR2activity participated with the pathogenesis of autoimmune diseases, tumor carcinogenesis and cardio-cerebrovascular diseases. In this study, enhanced expression of toll like receptor2(TLR2) was observed in acute myeloid leukemia (AML) cells. Therefore, TLR2and its signalling components are promising target candidates for drug development. Our study established a TLR2receptor-based cell screening model and new TLR2agonist and cell penetrating peptide were identified from the Ph.D.TM-7Phage Display Peptide Library. Chimeric peptides composed of the TLR2-binding motif linked to therapeutic effect sequences target acute myeloid leukemia or tumors. The major research results are shown as following:
     1. Establishment, identification and application of TLR2receptor-based cell screening model.
     To establish a TLR2receptor-based cell screening model, human TLR2and co-receptors CD14, TLR1and TLR6plasmids and NF-κB promoter-driven luciferase reporter plasmids were co-transfected into Human Embryonic Kidney cells (HEK293). Single clones were then isolated and characterized. Using this screening system, human TLR2-binding peptide C8and Pep2were obtained from the Ph.D.TM-7Phage Display Peptide Library. The binding characteristic of C8and Pep2with human TLR2was evaluated by ELISA, flow cytometry and immunofluorescence. The NF-κB luciferase activity assay showed that C8could activate the TLR2/TLR1signaling pathway. The immunefluorence assay revealed that Pep2could penetrate into TLR2expressing cells. In conclusion, we have successfully established the TLR2receptor-based cell screening system and new TLR2-binding peptides were identified through this system.
     2. Targeting leukemia and lymphoma with a proapoptotic peptide conjugated to a toll-like receptor2-mediated cell-penetrating peptide.
     Cell-penetrating peptides provide a unique platform to create a new generation of cancer therapeutics with enhanced efficacy and diminished toxicity. In this study, enhanced expression of toll like receptor2(TLR2) was observed in acute myeloid leukemia (AML) cells. Screening of a phage display peptide library using Bio-panning and Rapid Analysis of Selective Interactive Ligands (BRASIL) identified a TLR2-binding cell penetrating peptide motif, Pep2. We show that Pep2targeted and penetrated into leukemia cells in a TLR2-dependent manner. Moreover, a synthetic, chimeric peptide composed of the TLR2-binding motif linked to a programmed cell death-inducing sequence, D(KLAKLAK)2, induced apoptosis in AML cells with high TLR2expression (TLR2high) but not in chronic myeloid leukemia (CML) cells with low TLR2expression (TLR2low). The anti-leukemia activity of this chimeric peptide was confirmed in leukemia patient samples and an animal model of myeloid leukemia, as the development of leukemia was significantly delayed in mice with TLR2high AML compared to TLR2low CML NOD/SCID mice. TUNEL assays on bone marrow tissue slices revealed that the chimerical peptide induced leukemia cell apoptosis in a TLR2-dependent manner. Together, our findings indicate that TLR2is a potential therapeutic target for the prevention and treatment of AML, and the prototype, Pep2-D(KLAKLAK)2, is a promising drug candidate in this setting.
     3. TRB3connects autophagy to tumorigenesis and progression.
     Cancer initiation and progression are associated with autophogy with unclear mechanism. Here we report that silencing of TRB3not only restored suppressed autophagic flux and promoted autophagy-associated cells death, but also attenuated tumor growth and metastasis. However, isotopic expression of TRB3enhanced the susceptibility to tumor development. Notably, TRB3physically interacted with p62to interfere with binding of p62to LC3and ubiquitinated proteins, resulting in an inhibition of autophagy-dependent ubiquitination degradation and accumulation of cancer-promoting factors. Treatment of animals with peptides corresponding to α-helix peptide of p62binding to TRB3attenuated tumor growth and metastasis. Our results demonstrate that TRB3connects autophogy to cancer development and progression. Targeting the TRB3/p62interaction is a therapeutic strategy against cancer progression.
引文
[1]O'Neill LAJ. How Toll-like receptors signal:what we know and what we don't know. Current Opinion in Immunology[J] 2006; 18:3-9.
    [2]Watters TM, Kenny EF, O'Neill LAJ. Structure, function and regulation of the Toll//IL-1 receptor adaptor proteins. Immunol Cell Biol[J] 2007;85:411-9.
    [3]Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, Brint E, Dunne A, Gray P, Harte MT, McMurray D, Smith DE, Sims JE, Bird TA, O'Neill LAJ. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature[J] 2001;413:78-83.
    [4]Seibl R, Birchler T, Loeliger S, Hossle JP, Gay RE, Saurenmann T, Michel BA, Seger RA, Gay S, Lauener RP. Expression and Regulation of Toll-Like Receptor 2 in Rheumatoid Arthritis Synovium. The American Journal of Pathology [J] 2003;162:1221-7.
    [5]Filippi CM, Ehrhardt K, Estes EA, Larsson P, Oldham JE, von Herrath MG. TLR2 signaling improves immunoregulation to prevent type 1 diabetes. European Journal of Immunology[J] 2011;41:1399-409.
    [6]Boulard O, Asquith MJ, Powrie F, Maloy KJ. TLR2-independent induction and regulation of chronic intestinal inflammation. European Journal of Immunology [J] 2010;40:516-24.
    [7]Lugade AA, Bogner PN, Murphy TF, Thanavala Y. The role of TLR2 and bacterial lipoprotein in enhancing airway inflammation and immunity. Frontiers in Immunology [J] 2011;2.
    [8]Leemans JC, Stokman G, Claessen N, Rouschop KM, Teske GJD, Kirschning CJ, Akira S, van der Poll T, Weening JJ, Florquin S. Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. The Journal of Clinical Investigation [J] 2005;115:2894-903.
    [9]Bielinski S, Hall J, Pankow J, Boerwinkle E, Matijevic-Aleksic N, He M, Chambless L, Folsom A. Genetic variants in TLR2 and TLR4 are associated with markers of monocyte activation:the Atherosclerosis Risk in Communities MRI Study. Hum Genet[J] 2011;129:655-62.
    [10]Garay RP, Viens P, Bauer J, Normier G, Bardou M, Jeannin J-F, Chiavaroli C. Cancer relapse under chemotherapy:Why TLR2/4 receptor agonists can help. European Journal of Pharmacology [J] 2007;563:1-17.
    [11]Erridge C, Burdess A, Jackson AJ, Murray C, Riggio M, Lappin D, Milligan S, Spickett CM, Webb DJ. Vascular cell responsiveness to Toll-like receptor ligands in carotid atheroma. European Journal of Clinical Investigation[J] 2008;38:713-20.
    [12]Zarember KA, Godowski PJ. Tissue Expression of Human Toll-Like Receptors and Differential Regulation of Toll-Like Receptor mRNAs in Leukocytes in Response to Microbes, Their Products, and Cytokines. J Immunol[J] 2002;168:554-61.
    [13]Ozinsky A, Underhill D, Fontenot J, Hajjar A, Smith K, Wilson C, Schroeder L, A A. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci [J] 2000;97:13766-71.
    [14]Lien E, Means TK, Heine H, Yoshimura A, Kusumoto S, Fukase K, Fenton MJ, Oikawa M, Qureshi N, Monks B, Finberg RW, Ingalls RR, Golenbock DT. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest[J] 2000;; 105:497.
    [15]Arbibe L, Mira J-P, Teusch N, Kline L, Guha M, Mackman N, Godowski PJ, Ulevitch RJ, Knaus UG. Toll-like receptor 2-mediated NF-[kappa]B activation requires a Racl-dependent pathway. Nat Immunol[J] 2000;1:533-40.
    [16]Akira S, Takeda K, Kaisho T. Toll-like receptors:critical proteins linking innate and acquired immunity. Nat Immunol[J] 2001;2:675-80.
    [17]Hertz CJ, Kiertscher SM, Godowski PJ, Bouis DA, Norgard MV, Roth MD, Modlin RL. Microbial Lipopeptides Stimulate Dendritic Cell Maturation Via Toll-Like Receptor 2. J Immunol[J] 2001;166:2444-50.
    [18]Lee HK, Iwasaki A. Innate control of adaptive immunity:Dendritic cells and beyond. Seminars in Immunology [J] 2007; 19:48-55.
    [19]Zhang C-Y, Bai N, Zhang Z-H, Liang N, Dong L, Xiang R, Liu C-H. TLR2 signaling subpathways regulate TLR9 signaling for the effective induction of IL-12 upon stimulation by heat-killed Brucella abortus. Cell Mol Immunol[J] 2012;9:324-33.
    [20]Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R. Toll-like receptors control activation of adaptive immune responses. Nat Immunol[J] 2001;2:947-50.
    [21]Kaisho T, Akira S. Toll-like receptors as adjuvant receptors. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research[J] 2002; 1589:1-13.
    [22]Wooten RM, Ma Y, Yoder RA, Brown JP, Weis JH, Zachary JF, Kirschning CJ, Weis JJ. Toll-Like Receptor 2 Is Required for Innate, But Not Acquired, Host Defense to Borrelia burgdorferi. J Immunol[J] 2002; 168:348-55.
    [23]Seibl R, Birchler T, Loeliger S, Hossle JP, Gay RE, Saurenmann T, Michel BA, Seger RA, Gay S, Lauener RP. Expression and Regulation of Toll-Like Receptor 2 in Rheumatoid Arthritis Synovium. Am J Pathol[J] 2003;162:1221-7.
    [24]Mihai GN, Timothy R, Leo AJ, Jos WMvdM, Pilar B, Bart Jan K. Salmonella septicemia in rheumatoid arthritis patients receiving anti-tumor necrosis factor therapy:Association with decreased interferon-gamma production and toll-like receptor 4 expression. Arthritis & Rheumatism[J] 2003;48:1853-7.
    [25]Kim D-H, Lee J-C, Kim S, Oh SH, Lee M-K, Kim K-W, Lee M-S. Inhibition of Autoimmune Diabetes by TLR2 Tolerance. The Journal of Immunology[J] 2011;187:5211-20.
    [26]Kim HS, Han MS, Chung KW, Kim S, Kim E, Kim MJ, Jang E, Lee HA, Youn J, Akira S, Lee M-S. Toll-like Receptor 2 Senses 2-Cell Death and Contributes to the Initiation of Autoimmune Diabetes. Immunity[J] 2007;27:321-33.
    [27]Hugues S, Mougneau E, Ferlin W, Jeske D, Hofman P, Homann D, Beaudoin L, Schrike C, Von Herrath M, Lehuen A, Glaichenhaus N. Tolerance to Islet Antigens and Prevention from Diabetes Induced by Limited Apoptosis of Pancreatic [beta] Cells. Immunity [J] 2002; 16:169-81.
    [28]Pabst S, Yenice V, Lennarz M, Tuleta I, Nickenig G, Gillissen A, Grohe C. Toll-Like Receptor 2 Gene Polymorphisms Arg677Trp and Arg753Gln in Chronic Obstructive Pulmonary Disease. Lung[J] 2009; 187:173-8.
    [29]Dunzendorfer S, Lee H-K, Tobias PS. Flow-Dependent Regulation of Endothelial Toll-Like Receptor 2 Expression Through Inhibition of SP1 Activity. Circulation Research[J] 2004;95:684-91.
    [30]Cant E, Ricart E, Monfort D, Gonez-Juan D, Balanz J, Rodr uez-Schez JL, Vidal S. TNF[alpha] production to TLR2 ligands in active IBD patients. Clinical Immunology [J] 2006;119:156-65.
    [31]Suzhen Z. Cellular and Molecular Immunopathogenesis of Ulcerative Colitis [J] 2006;3.
    [32]Canto E, Ricart E, Monfort D, Gonzalez-Juan D, Balanzo J, Rodriguez-Sanchez JL, Vidal S. TNFa production to TLR2 ligands in active IBD patients. Clinical Immunology [J] 2006; 119:156-65.
    [33]Xie W, Wang Y, Huang Y, Yang H, Wang J, Hu Z. Toll-like receptor 2 mediates invasion via activating NF-κB in MDA-MB-231 breast cancer cells. Biochemical and Biophysical Research Communications[J] 2009;379:1027-32.
    [34]Zhang Y, Luo F, Cai Y, Liu N, Wang L, Xu D, Chu Y. TLR1/TLR2 Agonist Induces Tumor Regression by Reciprocal Modulation of Effector and Regulatory T Cells. The Journal of Immunology [J] 2011;186:1963-9.
    [35]Tye H, Kennedy Catherine L, Najdovska M, McLeod L, McCormack W, Hughes N, Dev A, Sievert W, Ooi Chia H, Ishikawa T-o, Oshima H, Bhathal Prithi S, Parker Andrew E, Oshima M, Tan P, Jenkins Brendan J. STAT3-Driven Upregulation of TLR2 Promotes Gastric Tumorigenesis Independent of Tumor Inflammation. Cancer Cell[J] 2012;22:466-78.
    [36]LeBouder E, Rey-Nores JE, Rushmere NK, Grigorov M, Lawn SD, Affolter M, Griffin GE, Ferrara P, Schiffrin EJ, Morgan BP, Labeta MO. Soluble Forms of Toll-Like Receptor (TLR)2 Capable of Modulating TLR2 Signaling Are Present in Human Plasma and Breast Milk. J Immunol[J] 2003; 171:6680-9.
    [37]Vanags D, Williams B, Johnson B, Hall S, Nash P, Taylor A, Weiss J, Feeney D. Therapeutic efficacy and safety of chaperonin 10 in patients with rheumatoid arthritis:a double-blind randomised trial. The Lancet[J] 2006;368:855-63.
    [38]Meng G, Rutz M, Schiemann M, Metzger J, Grabiec A, Schwandner R, Luppa PB, Ebel F, Busch DH, Bauer S, Wagner H, Kirschning CJ. Antagonistic antibody prevents toll-like receptor 2 driven lethal shock-like syndromes. The Journal of Clinical Investigation[J] 2004; 113:1473-81.
    [39]Ingale S, Wolfert MA, Gaekwad J, Buskas T, Boons G-J. Robust immune responses elicited by a fully synthetic three-component vaccine. Nat Chem Biol[J] 2007;3:663-7.
    [1]Smith GP. Filamentous fusion phage:novel expression vectors that display cloned antigens on the virion surface. Science[J] 1985;228:1315-7.
    [2]Scott JK, Smith GP. Searching for peptide ligands with an epitope library. Science[J] 1990;249:386-90.
    [3]Miceli RM, DeGraaf ME, Fischer HD. Two-stage selection of sequences from a random phage display library delineates both core residues and permitted structural range within an epitope. Journal of Immunological Methods[J] 1994; 167:279-87.
    [4]Parhami-Seren B, Keel T, Reed GL. Sequences of antigenic epitopes of streptokinase identified via random peptide libraries displayed on phage. Journal of Molecular Biology [J] 1997;271:333-41.
    [5]Kehoe JW, Kay BK. Filamentous Phage Display in the New Millennium. Chem Rev[J] 2005;105:4056-72.
    [6]Kolonin M, Pasqualini R, Arap W. Molecular addresses in blood vessels as targets for therapy. Current Opinion in Chemical Biology[J] 2001;5:308-13.
    [7]Hong FD, Clayman GL. Isolation of a Peptide for Targeted Drug Delivery into Human Head and Neck Solid Tumors. Cancer Res[J] 2000;60:6551-6.
    [8]Liang S, Lin T, Ding J, Pan Y, Dang D, Guo C, Zhi M, Zhao P, Sun L, Hong L, Shi Y, Yao L, Liu J, Wu K, Fan D. Screening and identification of vascular-endothelial-cell-specific binding peptide in gastric cancer. Journal of Molecular Medicine[J] 2006;84:764-73.
    [9]Giordano RJ, Anobom CD, Cardo-Vila M, Kalil J, Valente AP, Pasqualini R, Almeida FCL, Arap W. Structural Basis for the Interaction of a Vascular Endothelial Growth Factor Mimic Peptide Motif and Its Corresponding Receptors. Chemistry & Biology[J] 2005;12:1075-83.
    [10]Ardelt PU, Wood CG, Chen L, Mintz PJ, Moya C, Arap MA, Wright KC, Pasqualini R, Arap W. Targeting Urothelium:Ex Vivo Assay Standardization and Selection of Internalizing Ligands. The Journal of Urology[J] 2003;169:1535-40.
    [11]Arap W, Pasqualini R, Ruoslahti E. Cancer Treatment by Targeted Drug Delivery to Tumor Vasculature in a Mouse Model. Science[J] 1998;279:377-80.
    [12]Wu M, Pasula R, Smith PA, Martin WJ. Mapping alveolar binding sites in vivo using phage peptide libraries. Gene Ther[J];10:1429-36.
    [13]Chen Y, Shen Y, Guo X, Zhang C, Yang W, Ma M, Liu S, Zhang M, Wen L-P. Transdermal protein delivery by a coadministered peptide identified via phage display. Nat Biotech[J] 2006;24:455-60.
    [14]Duerr DM, White SJ, Schluesener HJ. Identification of peptide sequences that induce the transport of phage across the gastrointestinal mucosal barrier. Journal of Virological Methods[J] 2004; 116:177-80.
    [15]Adey NB, Mataragnon AH, Rider JE, Carter JM, Kay BK. Characterization of phage that bind plastic from phage-displayed random peptide libraries. Gene[J] 1995;156:27-31.
    [16]Matsubara T, Hiura Y, Kawahito O, Yasuzawa M, Kawashiro K. Selection of novel structural zinc sites from a random peptide library. FEBS Letters[J] 2003;555:317-21.
    [17]D. D. Phage display substrate:a blind method for determining protease specificity. Biol Chem[J] 2002;383:1107-12.
    [18]McCarter JD, Stephens D, Shoemaker K, Rosenberg S, Kirsch JF, Georgiou G. Substrate Specificity of the Escherichia coli Outer Membrane Protease OmpT. J Bacteriol[J] 2004; 186:5919-25.
    [19]Takeuchi T, Harris JL, Huang W, Yan KW, Coughlin SR, Craik CS. Cellular Localization of Membrane-type Serine Protease 1 and Identification of Pro tease-activated Receptor-2 and Single-chain Urokinase-type Plasminogen Activator as Substrates. J Biol Chem[J] 2000;275:26333-42.
    [20]Cloutier SM, Chagas JR, Mach J-P, Gygi CM, Leisinger H-J, Deperthes D. Substrate specificity of human kallikrein 2 (hK2) as determined by phage display technology. European Journal of Biochemistry [J] 2002;269:2747-54.
    [21]Pan W, Arnone M, Kendall M, Grafstrom RH, Seitz SP, Wasserman ZR, Albright CF. Identification of Peptide Substrates for Human MMP-11 (Stromelysin-3) Using Phage Display. J Biol Chem[J] 2003;278:27820-7.
    [22]Kridel SJ, Chen E, Kotra LP, Howard EW, Mobashery S, Smith JW. Substrate Hydrolysis by Matrix Metalloproteinase-9*. J Biol Chem[J] 2001;276:20572-8.
    [23]Siyi Hu. Epitope mapping and structural analysis of an anti-ErbB2 antibody A21: Molecular basis for tumor inhibitory mechanism. Proteins:Structure, Function, and Bioinformatics[J]2008;70:938-49.
    [24]Ghosh AK, Ribolla PEM, Jacobs-Lorena M. Targeting Plasmodium ligands on mosquito salivary glands and midgut with a phage display peptide library. Proceedings of the National Academy of Sciences[J] 2001;98:13278-81.
    [25]Foell D, Wittkowski H, J R. Mechanisms of disease:a'DAMP'view of inflammatory arthritis. Nat Clin Pract Rheumatol[J] 2007;3:382-90.
    [26]Esposito M, Luccarini I, Cicatiello V, De Falco D, Fiorentini A, Barba P, Casamenti F, Prisco A. Immunogenicity and therapeutic efficacy of phage-displayed beta-amyloid epitopes. Molecular Immunology [J] 2008;45:1056-62.
    [27]Zhang M, Alicot EM, Chiu I, Li J, Verna N, Vorup-Jensen T, Kessler B, Shimaoka M, Chan R, Friend D, Mahmood U, Weissleder R, Moore FD, Carroll MC. Identification of the target self-antigens in reperfusion injury. J Exp Med[J] 2006;203:141-52.
    [28]Pacios LF, Tordesillas L, Cuesta-Herranz J, Compes E, Sanchez-Monge R, Palacin A, Salcedo G, Diaz-Perales A. Mimotope mapping as a complementary strategy to define allergen IgE-epitopes:Peach Pru p 3 allergen as a model. Molecular Immunology[J];In Press, Corrected Proof.
    [29]Jost PJ, Harbottle RP, Knight A, Miller AD, Coutelle C, Schneider H. A novel peptide, THALWHT, for the targeting of human airway epithelia. FEBS Letters[J] 2001;489:263-9.
    [30]Mutuberria R, Satijn S, Huijbers A, van der Linden E, Lichtenbeld H, Chames P, Arends J-W, Hoogenboom HR. Isolation of human antibodies to tumor-associated endothelial cell markers by in vitro human endothelial cell selection with phage display libraries. Journal of Immunological Methods[J] 2004;287:31-47.
    [31]Kolonin MG, Saha PK, Chan L, Pasqualini R, Arap W. Reversal of obesity by targeted ablation of adipose tissue. Nat Med[J] 2004; 10:625-32.
    [32]Deschenes J, Dupere C, McNicoll N, L'Heureux N, Auger F, Fournier A, Lean AD. Development of a selective peptide antagonist for the human natriuretic peptide receptor-B. Peptides[J] 2005;26:517-24.
    [33]Montigiani S, Muller R, Kontermann RE. Inhibition of cell proliferation and induction of apoptosis by novel tetravalent peptides inhibiting DNA binding of E2F. Oncogene[J];22:4943-52.
    [34]Koivunen E, Wang B, Ruoslahti E. Isolation of a highly specific ligand for the alpha 5 beta 1 integrin from a phage display library. J Cell Biol[J] 1994; 124:373-80.
    [35]Welch BD, VanDemark AP, Heroux A, Hill CP, Kay MS. Potent D-peptide inhibitors of HIV-1 entry. Proceedings of the National Academy of Sciences[J] 2007;104:16828-33.
    [36]Tim Beli. Engineering molecular recognition of endoxylanase enzymes and their inhibitors through phage display. Journal of Molecular Recognition[J] 2007;20:103-12.
    [37]Bonetto S, Carlavan I, Baty D. Isolation and characterization of antagonist and agonist peptides to the human melanocortin 1 receptor. Peptides[J] 2005;26:2302-13.
    [38]Deshayes K, Schaffer ML, Skelton NJ, Nakamura GR, Kadkhodayan S, Sidhu SS. Rapid Identification of Small Binding Motifs with High-Throughput Phage Display: Discovery of Peptidic Antagonists of IGF-1 Function. Chemistry & Biology [J] 2002;9:495-505.
    [39]Doorbar J, Winter G. Isolation of a Peptide Antagonist to the Thrombin Receptor using Phage Display. Journal of Molecular Biology[J] 1994;244:361-9.
    [40]Kitagawa M, Goto D, Mamura M, Matsumoto I, Ito S, Tsutsumi A, T S. Identification of three novel peptides that inhibit CD40-CD154 interaction. Mod Rheumatol[J] 2005; 15:423-6.
    [41]Cain SA, Higginbottom A, Monk PN. Characterisation of C5a receptor agonists from phage display libraries. Biochemical Pharmacology [J] 2003;66:1833-40.
    [42]Hessling J, Lohse MJ, Klotz K-N. Peptide G protein agonists from a phage display library. Biochemical Pharmacology [J] 2003;65:961-7.
    [43]Sato A, Sone S. A peptide mimetic of human interferon (IFN)-beta. Biochem J[J] 2003;371:603-8.
    [44]Wrighton NC, Farrell FX, Chang R, Kashyap AK, Barbone FP, Mulcahy LS, Johnson DL, Barrett RW, Jolliffe LK, Dower WJ. Small Peptides as Potent Mimetics of the Protein Hormone Erythropoietin. Science[J] 1996;273:458-63.
    [45]Ballinger MD, Shyamala V, Forrest LD, Deuter-Reinhard M, Doyle LV, Wang J-x, Panganiban-Lustan L, Stratton JR, Apell G, Winter JA, Doyle MV, Rosenberg S, Kavanaugh WM. Semirational design of a potent, artificial agonist of fibroblast growth factor receptors. Nat Biotech[J] 1999; 17:1199-204.
    [46]Veronese F, G P. PEGylation, successful approach to drug delivery. Drug Discov Today[J]2005;10:1451-8.
    [47]Bai Y, Feng H. Selection of stably folded proteins by phage-display with proteolysis. European Journal of Biochemistry [J] 2004;271:1609-14.
    [48]Dwyer MA, Lu W, Dwyer JJ, Kossiakoff AA. Biosynthetic phage display:a novel protein engineering tool combining chemical and genetic diversity. Chemistry & Biology [J] 2000;7:263-74.
    [49]Dumont J, Low S, Peters R, AJ B. Monomeric Fc fusions:impact on pharmacokinetic and biological activity of protein therapeutics. BioDrugs[J] 2006;20:151-60.
    [50]Ladner RC, Sato AK, Gorzelany J, de Souza M. Phage display-derived peptides as therapeutic alternatives to antibodies. Drug Discovery Today[J] 2004;9:525-9.
    [51]Samoylova T, Morrison N, Globa L, NR C. Peptide phage display:opportunities for development of personalized anti-cancer strategies. Anticancer Agents Med Chem[J] 2006;6:9-17.
    [52]Landon L, Zou J, SL D. Is phage display technology on target for developing peptide-based cancer drugs? Curr Drug Discov Technol[J] 2004; 1:113-32.
    [1]Lindgren M, Hallbrink M, Prochiantz A, Langel U. Cell-penetrating peptides. Trends in Pharmacological Sciences[J] 2000;21:99-103.
    [2]Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell[J] 1988;55:1189-93.
    [3]Derossi D, Joliot AH, Chassaing G, Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes. Journal of Biological Chemistry [J] 1994;269:10444-50.
    [4]Meade BR, Dowdy SF. Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Advanced Drug Delivery Reviews[J] 2007;59:134-40.
    [5]Heitz F, Morris MC, Divita G. Twenty years of cell-penetrating peptides:from molecular mechanisms to therapeutics. British Journal of Pharmacology [J] 2009;157:195-206.
    [6]Morris MC, Deshayes S, Heitz F, Divita G Cell-penetrating peptides:from molecular mechanisms to therapeutics. Biology of the Cell[J] 2008;100:201-17.
    [7]Joliot A, Prochiantz A. Transduction peptides:from technology to physiology. Nat Cell Biol[J] 2004;6:189-96.
    [8]Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B. Cell-penetrating Peptides:A REEVALUATION OF THE MECHANISM OF CELLULAR UPTAKE. Journal of Biological Chemistry[J] 2003;278:585-90.
    [9]Lundberg M, Wikstrom S, Johansson M. Cell Surface Adherence and Endocytosis of Protein Transduction Domains. Mol Ther[J] 2003;8:143-50.
    [10]Daniels TR, Delgado T, Rodriguez JA, Helguera G, Penichet ML. The transferrin receptor part I:Biology and targeting with cytotoxic antibodies for the treatment of cancer. Clinical Immunology[J] 2006; 121:144-58.
    [11]Riese DJ, Gallo RM, Settleman J. Mutational activation of ErbB family receptor tyrosine kinases:insights into mechanisms of signal transduction and tumorigenesis. BioEssays[J] 2007;29:558-65.
    [12]Zeng F, Lee H, Allen C. Epidermal Growth Factor-Conjugated Poly(ethylene glycol)-block-Poly(δ-valerolactone) Copolymer Micelles for Targeted Delivery of Chemotherapeutics. Bioconjugate Chemistry [J] 2006; 17:399-409.
    [13]Blessing T, Kursa M, Holzhauser R, Kircheis R, Wagner E. Different Strategies for Formation of PEGylated EGF-Conjugated PEI/DNA Complexes for Targeted Gene Delivery. Bioconjugate Chemistry[J] 2001;12:529-37.
    [14]Newby LK, Califf RM, White HD, Harrington RA, Van de Werf F, Granger CB, Simes RJ, Hasselblad V, Armstrong PW. The failure of orally administered glycoprotein Ⅱb/IIIa inhibitors to prevent recurrent cardiac events. The American journal of medicine[J] 2002;112:647-58.
    [15]Li Z-b, Cai W, Cao Q, Chen K, Wu Z, He L, Chen X.64Cu-Labeled Tetrameric and Octameric RGD Peptides for Small-Animal PET of Tumor avβ3 Integrin Expression. Journal of Nuclear Medicine[J] 2007;48:1162-71.
    [16]Zhou Y, Drummond DC, Zou H, Hayes ME, Adams GP, Kirpotin DB, Marks JD. Impact of Single-chain Fv Antibody Fragment Affinity on Nanoparticle Targeting of Epidermal Growth Factor Receptor-expressing Tumor Cells. Journal of Molecular Biology[J] 2007;371:934-47.
    [17]Kehoe JW, Kay BK. Filamentous Phage Display in the New Millennium. Chemical Reviews[J] 2005;105:4056-72.
    [18]Huang B-c, Liu R. Comparison of mRNA-Display-Based Selections Using Synthetic Peptide and Natural Protein Libraries. Biochemistry[J] 2007;46:10102-12.
    [19]Pasqualini R, Ruoslahti E. Organ targeting In vivo using phage display peptide libraries. Nature[J] 1996;380:364-6.
    [20]Laakkonen P, Porkka K, Hoffman JA, Ruoslahti E. A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat Med[J] 2002;8:751-5.
    [21]Arap W, Haedicke W, Bernasconi M, Kain R, Rajotte D, Krajewski S, Ellerby HM, Bredesen DE, Pasqualini R, Ruoslahti E. Targeting the prostate for destruction through a vascular address. Proceedings of the National Academy of Sciences[J] 2002;99:1527-31.
    [22]Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E. Aminopeptidase N Is a Receptor for Tumor-homing Peptides and a Target for Inhibiting Angiogenesis. Cancer Research[J] 2000;60:722-7.
    [23]Essler M, Ruoslahti E. Molecular specialization of breast vasculature:A breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature. Proceedings of the National Academy of Sciences[J] 2002;99:2252-7.
    [24]Pasqualini R, Arap W, McDonald DM. Probing the structural and molecular diversity of tumor vasculature. Trends in molecular medicine[J] 2002;8:563-71.
    [25]Agemy L, Friedmann-Morvinski D, Kotamraju VR, Roth L, Sugahara KN, Girard OM, Mattrey RF, Verma IM, Ruoslahti E. Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proceedings of the National Academy of Sciences[J]2011.
    [26]Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A. Cell Internalization of the Third Helix of the Antennapedia Homeodomain Is Receptor-independent. Journal of Biological Chemistry[J] 1996;271:18188-93.
    [27]Matsuzaki K, Yoneyama S, Murase O, Miyajima K. Transbilayer Transport of Ions and Lipids Coupled with Mastoparan X Translocation. Biochemistry[J] 1996;35:8450-6.
    [28]Sylvie Boichota, Ulrike Kraussb, Thomas Plenata, Robert Rennertb, Pierre-Emmanuel Milhieta, Annette Beck-Sickingerb, Christian Le Gri mellec. Calcitonin-derived carrier peptide plays a major role in the membrane localization of a peptide cargo complex.
    [29]Lee M-T, Hung W-C, Chen F-Y, Huang HW. Many-Body Effect of Antimicrobial Peptides:On the Correlation Between Lipid s Spontaneous Curvature and Pore Formation. Biophysical journal [J] 2005;89:4006-16.
    [30]Thoren PEG, Persson D, Isakson P, Goksor M, Onfelt A, Norden B. Uptake of analogs of penetratin, Tat(48-60) and oligoarginine in live cells. Biochemical and Biophysical Research Communications[J] 2003;307:100-7.
    [31]Wadia JS, Stan RV, Dowdy SF. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med[J] 2004; 10:310-5.
    [32]Rothbard JB, Jessop TC, Lewis RS, Murray BA, Wender PA. Role of Membrane Potential and Hydrogen Bonding in the Mechanism of Translocation of Guanidinium-Rich Peptides into Cells. Journal of the American Chemical Society [J] 2004; 126:9506-7.
    [33]Duchardt F, Fotin-Mleczek M, Schwarz H, Fischer R, Brock R. A Comprehensive Model for the Cellular Uptake of Cationic Cell-penetrating Peptides. Traffic[J] 2007;8:848-66.
    [34]Kosuge M, Takeuchi T, Nakase I, Jones AT, Futaki S. Cellular Internalization and Distribution of Arginine-Rich Peptides as a Function of Extracellular Peptide Concentration, Serum, and Plasma Membrane Associated Proteoglycans. Bioconjugate Chemistry[J] 2008;19:656-64.
    [35]Deshayes S, Morris MC, Divita G, Heitz F. Interactions of amphipathic CPPs with model membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes[J] 2006;1758:328-35.
    [36]Elmquist A, Hansen M, Langel U. Structure-activity relationship study of the cell-penetrating peptide pVEC. Biochimica et Biophysica Acta (BBA)-Biomembranes[J] 2006;1758:721-9.
    [37]Thoren PEG, Persson D, Esbjorner EK, Goksor M, Lincoln P, Norden B. Membrane Binding and Translocation of Cell-Penetrating Peptidest. Biochemistry[J] 2004;43:3471-89.
    [38]Jones AT. Macropinocytosis:searching for an endocytic identity and role in the uptake of cell penetrating peptides. Journal of Cellular and Molecular Medicine[J] 2007; 11:670-84.
    [39]Mayor S, Pagano RE. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol[J]2007;8:603-12.
    [40]Zorko M, Langel U. Cell-penetrating peptides:mechanism and kinetics of cargo delivery. Advanced Drug Delivery Reviews[J] 2005;57:529-45.
    [41]Tan ML, Choong PFM, Dass CR. Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides[J] 2010;31:184-93.
    [42]Wadia JS, Dowdy SF. Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer. Advanced Drug Delivery Reviews[J] 2005;57:579-96.
    [43]Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J. Tat-mediated delivery of heterologous proteins into cells. Proceedings of the National Academy of Sciences[J] 1994;91:664-8.
    [44]Caron NJ, Torrente Y, Camirand G, Bujold M, Chapdelaine P, Leriche K, Bresolin N, Tremblay JP. Intracellular Delivery of a Tat-eGFP Fusion Protein into Muscle Cells. Mol Ther[J] 2001;3:310-8.
    [45]Cao G, Pei W, Ge H, Liang Q, Luo Y, Sharp FR, Lu A, Ran R, Graham SH, Chen J. In Vivo Delivery of a Bcl-xL Fusion Protein Containing the TAT Protein Transduction Domain Protects against Ischemic Brain Injury and Neuronal Apoptosis. The Journal of Neuroscience[J] 2002;22:5423-31.
    [46]Embury J, Klein D, Pileggi A, Ribeiro M, Jayaraman S, Molano RD, Fraker C, Kenyon N, Ricordi C, Inverardi L, Pastori RL. Proteins Linked to a Protein Transduction Domain Efficiently Transduce Pancreatic Islets. Diabetes[J] 2001;50:1706-13.
    [47]Kabouridis PS, Hasan M, Newson J, Gilroy DW, Lawrence T. Inhibition of NF-κB Activity by a Membrane-Transducing Mutant of IκBα. The Journal of Immunology [J] 2002;169:2587-93.
    [48]Wheeler DS, Dunsmore KE, Wong HR. Intracellular delivery of HSP70 using HIV-1 Tat protein transduction domain. Biochemical and Biophysical Research Communications[J] 2003;301:54-9.
    [49]Rudolph L Juliano, Rowshon Alam, Vidula Dixit and Hyun Min Kang. Cell-targeting and cell-penetrating peptides for delivery of therapeutic and imaging agents. Nanomed Nanobiotechnol[J] 2009,1,324-335.
    [50]Temming K, Lacombe M, van der Hoeven P, Prakash J, Gonzalo T, Dijkers ECF, Orfi L, Keri G, Poelstra K, Molema G, Kok RJ. Delivery of the p38 MAPkinase Inhibitor SB202190 to Angiogenic Endothelial Cells:Development of Novel RGD-Equipped and PEGylated Drug-Albumin Conjugates Using Platinum(II)-Based Drug Linker Technology. Bioconjugate Chemistry[J] 2006; 17:1246-55.
    [51]Temming K, Meyer DL, Zabinski R, Senter PD, Poelstra K, Molema G, Kok RJ. Improved Efficacy of avβ3-Targeted Albumin Conjugates by Conjugation of a Novel Auristatin Derivative. Molecular Pharmaceutics[J] 2007;4:686-94.
    [52]Kabanov AV. Polymer genomics:An insight into pharmacology and toxicology of nanomedicines. Advanced Drug Delivery Reviews[J] 2006;58:1597-621.
    [53]Torchilin VP. Multifunctional nanocarriers. Advanced Drug Delivery Reviews[J] 2006;58:1532-55.
    [54]Glover DJ, Lipps HJ, Jans DA. Towards safe, non-viral therapeutic gene expression in humans. Nat Rev Genet[J] 2005;6:299-310.
    [55]Jackson DA, Juranek S, Lipps HJ. Designing Nonviral Vectors for Efficient Gene Transfer and Long-Term Gene Expression. Mol Ther[J] 2006; 14:613-26.
    [56]Morris MC, Chaloin L, Mery J, Heitz F, Divita G. A novel potent strategy for gene delivery using a single peptide vector as a carrier. Nucleic Acids Research[J] 1999;27:3510-7.
    [1]de Oliviera Nascimento L, Massari P, Wetzler LM. de Oliviera Nascimento L, Massari P, Wetzler LM.2012. Frontiers in Immunology 3. Frontiers in Immunology[J] 2012;3.
    [2]Drage MG, Pecora ND, Hise AG, Febbraio M, Silverstein RL, Golenbock DT, Boom WH, Harding CV. TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis. Cellular Immunology[J] 2009;258:29-37.
    [3]O'Neill LAJ, Bryant CE, Doyle SL. Therapeutic Targeting of Toll-Like Receptors for Infectious and Inflammatory Diseases and Cancer. Pharmacological Reviews[J] 2009;61:177-97.
    [4]O'Neill LAJ, Bryant CE, Doyle SL. Therapeutic targeting of Toll-like receptors for infectious and inflammatory diseases and cancer [J], Pharmaco Rev,2009,61:177-97.
    [5]Xie W, Wang Y, Huang Y, Yang H, Wang J, Hu Z. Toll-like receptor 2 mediates invasion via activating NF-κB in MDA-MB-231 breast cancer cells. Biochemical and Biophysical Research Communications [J] 2009;379:1027-32.
    [6]Gambuzza M, Licata N, Palella E, Celi D, Foti Cuzzola V, Italiano D, Marino S, Bramanti P. Targeting Toll-like receptors:Emerging therapeutics for multiple sclerosis management. Journal of Neuroimmunology[J] 2011;239:1-12.
    [7]Kenan DJ, Strittmatter WJ, Burke JR. Phage Display Screening for Peptides that Inhibit Polyglutamine Aggregation. In:Indu K, Ronald W, editors. Methods in Enzymology:Academic Press; 2006. p.253-73.
    [8]Giordano RJ, Cardo-Vila M, Lahdenranta J, Pasqualini R, Arap W. Biopanning and rapid analysis of selective interactive ligands. Nat Med[J] 2001;7:1249-53.
    [9]Oyama T, Rombel IT, Samli KN, Zhou X, Brown KC. Isolation of multiple cell-binding ligands from different phage displayed-peptide libraries. Biosensors and Bioelectronics[J] 2006;21:1867-75.
    [10]Kutikhin AG. Association of polymorphisms in TLR genes and in genes of the Toll-like receptor signaling pathway with cancer risk. Human Immunology[J] 2011;72:1095-116.
    [11]Yang H-Z, Cui B, Liu H-Z, Chen Z-R, Yan H-M, Hua F, Hu Z-W. Targeting TLR2 Attenuates Pulmonary Inflammation and Fibrosis by Reversion of Suppressive Immune Microenvironment. The Journal of Immunology [J] 2009; 182:692-702.
    [12]Lin H, Yan J, Wang Z, Hua F, Yu J, Sun W, Li K, Liu H, Yang H, Lv Q, Xue J, Hu Z-W. Loss of immunity-supported senescence enhances susceptibility to hepatocellular carcinogenesis and progression in Toll-like receptor 2-deficient mice. Hepatology[J] 2013;57:171-82.
    [13]Liu HZ, Yang HZ, Mi S. Toll like receptor 2 mediates bleomycin-induced acute lung injury, inflammation and fibrosis in mice [J]. Acta Pharm Sin(药学学报),2010,45:976-986.
    [14]Tunheim G, Thompson KM, Fredriksen AB, Espevik T, Schjetne KW, Bogen B. Human receptors of innate immunity (CD14, TLR2) are promising targets for novel recombinant immunoglobulin-based vaccine candidates. Vaccine[J] 2007;25:4723-34.
    [15]Bratkovic T. Progress in phage display:Evolution of the technique and its applications. Cellular and Molecular Life Sciences[J] 2010;67:749-67.
    [1]O'Connor OA, Czuczman MS. Novel approaches for the treatment of NHL: Proteasome inhibition and immune modulation. Leukemia & Lymphoma[J] 2008;49:59-66.
    [2]Olivieri A, Capelli D, Troiani E, Poloni A, Montanari M, Offidani M, Discepoli G, Leoni P. A new intensive induction schedule, including high-dose Idarubicin, high-dose Aracytin and Amifostine, in older AML patients:feasibility and long-term results in 42 patients. Experimental Hematology[J] 2007;35:1074-82.
    [3]Hagenbeek A, Gadeberg O, Johnson P, M(?)ller Pedersen L, Walewski J, Hellmann A, Link BK, Robak T, Wojtukiewicz M, Pfreundschuh M, Kneba M, Engert A, Sonneveld P, Flensburg M, Petersen J, Losic N, Radford J. First clinical use of ofatumumab, a novel fully human anti-CD20 monoclonal antibody in relapsed or refractory follicular lymphoma:results of a phase 1/2 trial. Blood[J] 2008;111:5486-95.
    [4]Cheson B. Monoclonal antibody therapy of chronic lymphocytic leukemia. Cancer Immunol Immunother[J] 2006;55:188-96.
    [5]DiJoseph JF, Armellino DC, Boghaert ER, Khandke K, Dougher MM, Sridharan L, Kunz A, Hamann PR, Gorovits B, Udata C, Moran JK, Popplewell AG, Stephens S, Frost P, Damle NK. Antibody-targeted chemotherapy with CMC-544:a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood[J] 2004;103:1807-14.
    [6]Jager E, van der Velden VHJ, te Marvelde JG, Walter RB, Agur Z, Vainstein V. Targeted Drug Delivery by Gemtuzumab Ozogamicin:Mechanism-Based Mathematical Model for Treatment Strategy Improvement and Therapy Individualization. PLoS ONE[J] 2011;6:e24265.
    [7]Walter RB, Medeiros BC, Powell BL, Schiffer CA, Appelbaum FR, Estey EH. Phase II trial of vorinostat and gemtuzumab ozogamicin as induction and post-remission therapy in older adults with previously untreated acute myeloid leukemia. Haematologica[J] 2012;97:739-42.
    [8]Guzman ML, Rossi RM, Neelakantan S, Li X, Corbett CA, Hassane DC, Becker MW, Bennett JM, Sullivan E, Lachowicz JL, Vaughan A, Sweeney CJ, Matthews W, Carroll M, Liesveld JL, Crooks PA, Jordan CT. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood[J] 2007;110:4427-35.
    [9]Hassane DC, Sen S, Minhajuddin M, Rossi RM, Corbett CA, Balys M, Wei L, Crooks PA, Guzman ML, Jordan CT. Chemical genomic screening reveals synergism between parthenolide and inhibitors of the PI-3 kinase and mTOR pathways. Blood[J] 2010;116:5983-90.
    [10]Guzman ML, Rossi RM, Karnischky L, Li X, Peterson DR, Howard DS, Jordan CT. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood[J] 2005;105:4163-9.
    [11]Robillard N, Wuilleme S, Lode L, Magrangeas F, Minvielle S, Avet-Loiseau H. CD33 is expressed on plasma cells of a significant number of myeloma patients, and may represent a therapeutic target. Leukemia[J] 2005;19:2021-2.
    [12]Jedema I, Barge RMY, van der Velden VHJ, Nijmeijer BA, van Dongen JJM, Willemze R, Falkenburg JHF. Internalization and cell cycle-dependent killing of leukemic cells by Gemtuzumab Ozogamicin:rationale for efficacy in CD33-negative malignancies with endocytic capacity. Leukemia[J] 2003; 18:316-25.
    [13]Zhang H, Luo J, Li Y, Henderson PT, Wang Y, Wachsmann-Hogiu S, Zhao W, Lam KS, Pan C-x. Characterization of high-affinity peptides and their feasibility for use in nanotherapeutics targeting leukemia stem cells. Nanomedicine:Nanotechnology, Biology and Medicine[J] 2011.
    [14]Koren E, Apte A, Sawant RR, Grunwald J, Torchilin VP. Cell-penetrating TAT peptide in drug delivery systems:Proteolytic stability requirements. Drug Delivery [J] 2011;18:377-84.
    [15]Nasrollahi SA, Taghibiglou C, Azizi E, Farboud ES. Cell-penetrating Peptides as a Novel Transdermal Drug Delivery System. Chemical Biology & Drug Design[J] 2012;80:639-46.
    [16]Meade BR, Dowdy SF. Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Advanced Drug Delivery Reviews[J] 2007;59:134-40.
    [17]Madani F, Lindberg S, Langel, lo, Futaki S, Gr, slund A. Mechanisms of Cellular Uptake of Cell-Penetrating Peptides. Journal of Biophysics[J] 2010;2011.
    [18]Gooding M, Browne LP, Quinteiro FM, Selwood DL. siRNA delivery:from lipids to cell penetrating peptides and their mimics. Chemical Biology & Drug Design[J] 2012:no-no.
    [19]van Luijn MM, van de Loosdrecht AA, Lampen MH, van Veelen PA, Zevenbergen A, Kester MGD, de Ru AH, Ossenkoppele GJ, van Hall T, van Ham SM. Promiscuous Binding of Invariant Chain-Derived CLIP Peptide to Distinct HLA-I Molecules Revealed in Leukemic Cells. PLoS ONE[J] 2012;7:e34649.
    [20]Jager S, Jahnke A, Wilmes T, Adebahr S, Vogtle FN, deLima-Hahn E, Pfeifer D, Berg T, Lubbert M, Trepel M. Leukemia targeting ligands isolated from phage display peptide libraries. Leukemia[J] 2007;21:411-20.
    [21]Zahringer U, Lindner B, Inamura S, Heine H, Alexander C. TLR2-promiscuous or specific? A critical re-evaluation of a receptor expressing apparent broad specificity. Immunobiology[J]2008;213:205-24.
    [22]Palsson-McDermott E, O'Neill L. The potential of targeting Toll-like receptor 2 in autoimmune and inflammatory diseases. Irish Journal of Medical Science[J] 2007; 176:253-60.
    [23]Tye H, Kennedy Catherine L, Najdovska M, McLeod L, McCormack W, Hughes N, Dev A, Sievert W, Ooi Chia H, Ishikawa T-o, Oshima H, Bhathal Prithi S, Parker Andrew E, Oshima M, Tan P, Jenkins Brendan J. STAT3-Driven Upregulation of TLR2 Promotes Gastric Tumorigenesis Independent of Tumor Inflammation. Cancer Cell[J] 2012;22:466-78.
    [24]Nihon-Yanagi Y, Terai K, Murano T, Matsumoto T, Okazumi S. Tissue expression of Toll-like receptors 2 and 4 in sporadic human colorectal cancer. Cancer Immunol Immunother[J] 2012;61:71-7.
    [25]Xie W, Wang Y, Huang Y, Yang H, Wang J, Hu Z. Toll-like receptor 2 mediates invasion via activating NF-κB in MDA-MB-231 breast cancer cells. Biochemical and Biophysical Research Communications [J] 2009;379:1027-32.
    [26]Yang H-Z, Cui B, Liu H-Z, Mi S, Yan J, Yan H-M, Hua F, Lin H, Cai W-F, Xie W-J, Lv X-X, Wang X-X, Xin B-M, Zhan Q-M, Hu Z-W. Blocking TLR2 Activity Attenuates Pulmonary Metastases of Tumor. PLoS ONE[J] 2009;4:e6520.
    [27]Lin H, Yan J, Wang Z, Hua F, Yu J, Sun W, Li K, Liu H, Yang H, Lv Q, Xue J, Hu Z-W. Loss of Immunity-supported senescence enhances susceptibility to hepatocellular carcinogenesis and progression in TLR2-deficient mouse. Hepatology[J] 2012:n/a-n/a.
    [28]Javadpour MM. De Novo Antimicrobial Peptides with Low Mammalian Cell Toxicity. J Med Chem [J] 1996;Vol.39:3107-13.
    [29]Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD, Krajewski S, Lombardo CR, Rao R, Ruoslahti E, Bredesen DE, Pasqualini R. Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med[J] 1999;5:1032-8.
    [30]Standley SM, Toft DJ, Cheng H, Soukasene S, Chen J, Raja SM, Band V, Band H, Cryns VL, Stupp SI. Induction of Cancer Cell Death by Self-assembling Nanostructures Incorporating a Cytotoxic Peptide. Cancer Research[J] 2010;70:3020-6.
    [31]Arvaniti E, Ntoufa S, Papakonstantinou N, Touloumenidou T, Laoutaris N, Anagnostopoulos A, Lamnissou K, Caligaris-Cappio F, Stamatopoulos K, Ghia P, Muzio M, Belessi C. Toll-like receptor signaling pathway in chronic lymphocytic leukemia: distinct gene expression profiles of potential pathogenic significance in specific subsets of patients. Haematologica[J] 2011;96:1644-52.
    [32]Smits ELJM, Ponsaerts P, Berneman ZN, Van Tendeloo VFI. The Use of TLR7 and TLR8 Ligands for the Enhancement of Cancer Immunotherapy. The Oncologist[J] 2008;13:859-75.
    [33]Spaner DE, Shi Y, White D, Shaha S, He L, Masellis A, Wong K, Gorczynski R. A phase I/II trial of TLR-7 agonist immunotherapy in chronic lymphocytic leukemia. Leukemia[J] 2009;24:222-6.
    [34]Deshayes S, Morris M, Heitz F, Divita G. Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Advanced Drug Delivery Reviews [J] 2008;60:537-47.
    [35]Pecora ND, Gehring AJ, Canaday DH, Boom WH, Harding CV. Mycobacterium tuberculosis LprA Is a Lipoprotein Agonist of TLR2 That Regulates Innate Immunity and APC Function. The Journal of Immunology [J] 2006; 177:422-9.
    [36]Lancioni CL, Li Q, Thomas JJ, Ding X, Thiel B, Drage MG, Pecora ND, Ziady AG, Shank S, Harding CV, Boom WH, Rojas RE. Mycobacterium tuberculosis Lipoproteins Directly Regulate Human Memory CD4+T Cell Activation via Toll-Like Receptors 1 and 2. Infection and Immunity[J] 2011;79:663-73.
    [37]Dantzig AH, Bergin L. Uptake of the cephalosporin, cephalexin, by a dipeptide transport carrier in the human intestinal cell line, Caco-2. Biochimica et Biophysica Acta (BBA)-Biomembranes[J] 1990; 1027:211-7.
    [38]Xu C, Fan J, Riekhof W, Froehlich JE, Benning C. A permease-like protein involved in ER to thylakoid lipid transfer in Arabidopsis. EMBO J[J] 2003;22:2370-9.
    [39]Galluzzi L, Larochette N, Zamzami N, Kroemer G. Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene[J] 0000;25:4812-30.
    [40]Javadpour MM, Juban MM, Lo W-CJ, Bishop SM, Alberty JB, Cowell SM, Becker CL, McLaughlin ML. De Novo Antimicrobial Peptides with Low Mammalian Cell Toxicity. Journal of Medicinal Chemistry[J] 1996;39:3107-13.
    [41]Kosuge M, Takeuchi T, Nakase I, Jones AT, Futaki S. Cellular Internalization and Distribution of Arginine-Rich Peptides as a Function of Extracellular Peptide Concentration, Serum, and Plasma Membrane Associated Proteoglycans. Bioconjugate Chemistry [J] 2008; 19:656-64.
    [42]Mai JC, Mi Z, Kim S-H, Ng B, Robbins PD. A Proapoptotic Peptide for the Treatment of Solid Tumors. Cancer Research[J] 2001;61:7709-12.
    [1]Steeg PS. Tumor metastasis:mechanistic insights and clinical challenges. Nat Med[J] 2006;12:895-904.
    [2]Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen H-Y, Bray K, Reddy A, Bhanot G, Gelinas C, DiPaola RS, Karantza-Wadsworth V, White E. Autophagy Suppresses Tumorigenesis through Elimination of p62. Cell[J] 2009;137:1062-75.
    [3]Eng CH, Abraham RT. The autophagy conundrum in cancer:influence of tumorigenic metabolic reprogramming. Oncogene[J] 2011;30:4687-96.
    [4]Simonsen A, Tooze SA. Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. The Journal of Cell Biology[J] 2009;186:773-82.
    [5]Pankiv S, Clausen TH, Lamark T, Brech A, Bruun J-A, Outzen H,(?)vervatn A, Bj(?)rk(?)y G, Johansen T. p62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy. Journal of Biological Chemistry[J] 2007;282:24131-45.
    [6]Mizushima N, Yoshimori T. How to Interpret LC3 Immunoblotting. Autophagy[J] 2007;3:542-5.
    [7]Kenific CM, Thorburn A, Debnath J. Autophagy and metastasis:another double-edged sword. Current Opinion in Cell Biology[J] 2010;22:241-5.
    [8]GroBhans J, Wieschaus E. A Genetic Link between Morphogenesis and Cell Division during Formation of the Ventral Furrow in Drosophila. Cell[J] 2000;101:523-31.
    [9]Mata J, Curado S, Ephrussi A, R(?)rth P. Tribbles Coordinates Mitosis and Morphogenesis in Drosophila by Regulating String/CDC25 Proteolysis. Cell[J] 2000;101:511-22.
    [10]Kiss-Toth E, Bagstaff SM, Sung HY, Jozsa V, Dempsey C, Caunt JC, Oxley KM, Wyllie DH, Polgar T, Harte M, O'Neill LAJ, Qwarnstrom EE, Dower SK. Human Tribbles, a Protein Family Controlling Mitogen-activated Protein Kinase Cascades. Journal of Biological Chemistry[J] 2004;279:42703-8.
    [11]Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H. TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J[J] 2005;24:1243-55.
    [12]Zanella F, Renner O, Garcia B, Callejas S, Dopazo A, Peregrina S, Carnero A, Link W. Human TRIB2 is a repressor of FOXO that contributes to the malignant phenotype of melanoma cells. Oncogene[J] 2010;29:2973-82.
    [13]Keeshan K, He Y, Wouters BJ, Shestova O, Xu L, Sai H, Rodriguez CG, Maillard I, Tobias JW, Valk P, Carroll M, Aster JC, Delwel R, Pear WS. Tribbles homolog 2 inactivates C/EBP± and causes acute myelogenous leukemia. Cancer Cell[J] 2006;10:401-11.
    [14]Jin G, Yamazaki Y, Takuwa M, Takahara T, Kaneko K, Kuwata T, Miyata S, Nakamura T. Tribl and Evil cooperate with Hoxa and Meisl in myeloid leukemogenesis. Blood[J] 2007; 109:3998-4005.
    [15]Xu J, Lv S, Qin Y, Shu F, Xu Y, Chen J, Xu B-e, Sun X, Wu J. TRB3 interacts with CtIP and is overexpressed in certain cancers. Biochimica et Biophysica Acta (BBA)-General Subjects[J] 2007; 1770:273-8.
    [16]Miyoshi N, Ishii H, Mimori K, Takatsuno Y, Kim H, Hirose H, Sekimoto M, Doki Y, Mori M. Abnormal expression of TRIB3 in colorectal cancer:a novel marker for prognosis. Br J Cancer[J] 0000; 101:1664-70.
    [17]Shimizu K, Takahama S, Endo Y, Sawasaki T (2012) Stress-Inducible Caspase Substrate TRB3 Promotes Nuclear Translocation of Procaspase-3. PLoS ONE [J] 7(8): e42721. doi:10.1371/journal.pone.0042721.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700