抗CD3人源化抗体的制备及生物学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了克服鼠源性单克隆抗体应用于人体时所出现的严重过敏反应,人源化抗体应运而生,并很快成为十余年来国内外生物医学研究的重大热点之一。12F6是我所自制的抗人CD3的小鼠单克隆抗体,实验发现它竞争抑制OKT3、SK7及UCHT1等CD3单抗与抗原的结合并具有与OKT3相似的激活及抑制T细胞的功能,提示12F6有可能作为免疫抑制剂应用于急性移植排斥反应的治疗。但作为小鼠杂交瘤技术生产的抗体,12F6同OKT3一样存在鼠源抗体应用于人体时可能产生的一系列问题。因此,我们计划对12F6进行人源化改造,期望获得一个即保留高亲和力,免疫原性又大大下降的人源化抗体。
    首先采用5'RACE技术获得了12F6的可变区全长序列,在确定了12F6可变区中CDR区和FR区的范围之后,我们将CDR区直接移植到人源抗体模板的FR中,将获得的人源化轻、重链抗体基因克隆到表达载体共转染COS细胞,用流式细胞术测定其抗原结合活性,结果发现这个人源化抗体的亲和力基本完全丧失。为了重建人源化抗体的亲和力,我们对可能影响抗体亲和力的FR区重要残基进行回复突变分析。经过活性筛选,我们发现对于人源化重链来说,框架区残基6,23,24,27,28,30, 48,49,71,73, 76,78的回复突变是必要的,将它们全部突变为鼠源残基后得到了一个活性超过嵌合抗体重链的人源化重链RHj。我们采用同样的方法对人源化轻链基因进行改造, 发现将轻链框架区残基21,46,47,73全部回复突变获得的人源化轻链RLi与RHj组成人源化抗体hu12F6的抗原结合活性超过了嵌合抗体。在筛选得到高亲和力的人源化抗体hu12F6之后,我们采用DHFR扩增系统建立了高效表达hu12F6的CHO细胞株,为人源化抗体今后的动物实验及临床研究打下了基础。
    竞争抑制实验结果表明人源化抗体与原鼠源抗体存在竞争抑制关系并具有相似的亲和力;生物学功能实验表明hu12F6有效刺激T细胞增殖、释放细胞因子和表达活化标记抗原,并能有效调变TCR/CD3复合体,提示它与鼠源12F6一样具有激活和抑制T细胞的双向功能,是一个改造成功的人源化抗体。
    人源化抗体解决了抗体鼠源性的问题,但CD3单抗激活T细胞引起首剂效应的问题仍然存在。为此我们构建了恒定区特定位点突变的人源化抗体
    
    hu12F6m。它对T细胞的激活作用明显减弱而保留了与hu12F6相似的亲和力和调变功能,可望成为一种抗排异能力强、免疫原性和毒副作用小的有效免疫抑制剂用于急性移植排斥反应的治疗。
To reduce the immunogenicity of murine monoclonal antibodies in humans, humanized antibodies have been developed during the past ten years. 12F6 is a murine anti-human CD3 mAb produced in our lab. It competes with other several anti-CD3 mAbs (OKT3, UCHT1 or Leu4) for binding to human T cells and possesses potent T cell activation and suppression properties in vitro similar to OKT3. This indicates 12F6 may be used as an immunosuppressive agent for treatment of acute allograft rejection. However, 12F6 is a murine antibody and is highly immunogenic in humans. Therefore, we plan to develop a humanized version of 12F6, which has the same binding affinity and less immunogenicity compared to the parental 12F6 antibody.
     The variable region cDNAs for the light and heavy chains of 12F6 were cloned from the hybridoma cells by 5'RACE. The obtained variable region genes were sequenced and analyzed. The three Complementarity-determining regions from 12F6 light chain or heavy chain were grafted into human antibody light chain or heavy chain frameworks to generate humanized antibody genes. Then the humanized light chain and heavy chain genes were inserted into expression vectors respectively and were co-expressed transiently in COS cells, yielding humanized antibody (RLa,RHa). FCM was performed to determine the binding of humanized antibody (RLa,RHa) to Peripheral blood mononuclear cells (PBMCs). However, it was demonstrated that this antibody almost lost all the binding activity. Basing on the theory that some changes in the human FRs are essential to reconstitute full binding activity of the humanized antibody, important residues that may have influences on binding activity in the human FRs were analysis and backmutation assay was carried out. A number of light and heavy chain versions were produced to evaluate the contribution of FR residues to antigen binding activity. It was demonstrated that residues 27,28,30,71,6,23,24,48,49,73,76 ,78 on the heavy chain FRs or residues 21,46,47,73 on the light chain FRS were important to the binding activity of heavy chain or light chain. Backmutation of all these
    
    residues generated humanized antibody hu12F6 (RLi,RHj). This humanized antibody completely restore the binding activity of murine 12F6. In order to meet the need of further experimental studies and clinical applications, we expressed humanized antibodies in CHO cells using DHFR amplification system and obtained CHO cell lines that produced antibodies at high levels.
     Competitive binding assay demonstrated hu12F6 compete with 12F6 for binding to HPBMCs, with similar binding affinity to 12F6. T cell activation potency of hu12F6 was evaluated by proliferation, cytokine release and early activation marker expression. The suppressive property of hu12F6 was evaluated by modulation of the TCR/CD3 complex. These experimental results indicate that hu12F6 possesses both T cell activation and suppression properties similar to 12F6. So we thought hu12F6 was a very successful humanized antibody.
     The immunogenicity of 12F6 in humans has been reduced though humanization. But the first-dose reaction associated with T cell activation by anti-CD3 Abs still exists. So humanized antibody containing mutated Fc region(hu12F6m) was also constructed. Hu12F6m was shown to be significantly less mitogenic to T cells but had binding affinity and suppressive property similar to hu12F6. In conclusion, Hu12F6m may be an effective immunosuppressive agent with less immunogenicity and toxicity for acute solid organ rejection.
引文
1 Darby CR, Moore RH, Shrestha B, Lord RJ, Jurewicz AJ, Griffin PJ, Salaman JR. Reduced dose OKT3 prophylaxis in sensitised kidney recipients. Transpl Int, 1996,9(6):565-9.
    2 Abramowicz D, Norman DJ, Vereerstraeten P, Goldman M, De Pauw L, Vanherweghem JL, Kinnaert P, Kahana L, Stuart FP Jr, Thistlethwaite JR Jr, Shield CF, Monaco A, Wu SC, Haverty TP. OKT3 prophylaxis in renal grafts with prolonged cold ischemia times: association with improvement in long-term survival. Kidney Int, 1996,49(3):768-72.
    3 Jaffers GJ, Fuller TC, Cosimi AB, Russell PS, Winn HJ, Colvin RB. Monoclonal antibody therapy. Anti-idiotypic and non-anti-idiotypic antibodies to OKT3 arising despite intense immunosuppression. Transplantation,1986, 41(5):572-8
    4 Norman DJ, Shield CF 3rd, Henell KR, Kimball J, Barry JM, Bennett WM, Leone M. Effectiveness of a second course of OKT3 monoclonal anti-T cell antibody for treatment of renal allograft rejection. Transplantation,1988,46(4):523-9.
    5 Adair JR. Engineering antibodies for therapy. Immunolog Rev,1992,130: 5-40
    6 Kettleborough CA, Saldanha J, Heath VJ, Morrison CJ, Bendig MM. Humanization of a mouse monoclonal antibody by CDR-grafting: the importance of framework residues on loop conformation. Protein Eng, 1991,4(7):773-83
    7 Kolbinger F, Saldanha J, Hardman N, Bendig MM. Humanization of a mouse anti-human IgE antibody: a potential therapeutic for IgE-mediated allergies. Protein Eng, 1993, 6(8):971-80.
    8 Abramowicz D, Schandene L, Goldman M, Crusiaux A, Vereerstraeten P, De Pauw L, Wybran J, Kinnaert P, Dupont E, Toussaint C. Release of tumor necrosis factor, interleukin-2, and gamma-interferon in serum after injection of OKT3 monoclonal antibody in kidney transplant recipients. Transplantation,1989, 47(4):606-8.
    9 Gaston RS, Deierhoi MH, Patterson T, Prasthofer E, Julian BA, Barber WH, Laskow DA, Diethelm AG, Curtis JJ. OKT3 first-dose reaction: association with T cell subsets and cytokine release. Kidney Int. 1991 Jan;39(1):141-8.
    10 Krutmann J, Kirnbauer R, Kock A, Schwarz T, Schopf E, May LT, Sehgal PB, Luger TA. Cross-linking Fc receptors on monocytes triggers IL-6 production. Role in anti-CD3-induced T cell activation. J Immunol. 1990, 145(5):1337-42
    11 Thistlethwaite JR Jr, Stuart JK, Mayes JT, Gaber AO, Woodle S, Buckingham MR, Stuart FP. Complications and monitoring of OKT3 therapy. Am J Kidney Dis,1988,11(2):112-9
    12 Woodle ES, Thistlethwaite JR, Ghobrial IA, Jolliffe LK, Stuart FP, Bluestone JA. OKT3 F(ab')2 fragments--retention of the immunosuppressive properties of whole antibody with marked reduction in T cell activation and lymphokine release. Transplantation, 1991,52(2):354-60
    13 Hirsch R, Bluestone JA, DeNenno L, Gress RE.Anti-CD3 F(ab')2 fragments are immunosuppressive in vivo without evoking either the strong humoral response or morbidity associated with whole mAb.Transplantation. 1990 Jun;49(6):1117-23
    14 van Seventer GA, Kuijpers KC, van Lier RA, de Groot ER, Aarden LA, Melief CJ. Mechanism of inhibition and induction of cytolytic activity in cytotoxic T lymphocytes by CD3 monoclonal antibodies.J Immunol. 1987 Oct 15;139(8):2545-50.
    
    
    
    15 Ollo R, Rougeon F. Gene conversion and polymorphism: generation of mouse immunoglobulin gamma 2a chain alleles by differential gene conversion by gamma 2b chain gene. Cell, 1983, 32(2):515-23
    16 Woof JM, Nik Jaafar MI, Jefferis R, Burton DR. The monocyte binding domain(s) on human immunoglobulin G. Mol Immunol, 1984 ,21(6):523-7
    17 Gergely J, Sarmay G. The two binding-site models of human IgG binding Fc gamma receptors. FASEB J, 1990, 4(15):3275-83
    18 Duncan AR, Woof JM, Partridge LJ, Burton DR, Winter G. Localization of the binding site for the human high-affinity Fc receptor on IgG. Nature,1988, 332(6164):563-4
    19 Jefferis R, Lund J, Pound J. Molecular definition of interaction sites on human IgG for Fc receptors (huFc gamma R). Mol Immunol, 1990, 27(12):1237-40
    20 Xu D, Alegre ML, Varga SS, Rothermel AL, Collins AM, Pulito VL, Hanna LS, Dolan KP, Parren PW, Bluestone JA, Jolliffe LK, Zivin RA. In vitro characterization of five humanized OKT3 effector function variant antibodies. Cell Immunol, 2000, 200(1):16-26
    21 Alegre ML, Peterson LJ, Xu D, Sattar HA, Jeyarajah DR, Kowalkowski K, Thistlethwaite JR, Zivin RA, Jolliffe L, Bluestone JA. A non-activating "humanized" anti-CD3 monoclonal antibody retains immunosuppressive properties in vivo. Transplantation, 1994, 57(11):1537-43
    22 Woodle ES, Xu D, Zivin RA, Auger J, Charette J, O'Laughlin R, Peace D, Jollife LK, Haverty T, Bluestone JA, Thistlethwaite JR Jr. Phase I trial of a humanized, Fc receptor nonbinding OKT3 antibody, huOKT3gamma1(Ala-Ala) in the treatment of acute renal allograft rejection.Transplantation. 1999 Sep 15;68(5):608-16
    23 Woodle ES, Bluestone JA, Zivin RA, Jolliffe LK, Auger J, Xu D, Thistlethwaite JR. Humanized, nonmitogenic OKT3 antibody, huOKT3 gamma(Ala-Ala): initial clinical experience. Transplant Proc,1998,30(4):1369-70
    24 Kabat EA, Wu TT, Perry HM, Gottesman KS, Foeller C. Sequences of proteins of immunological interest,5th edit. United states department of health and human services, Washington DC.
    25 Arakawa F, Kuroki M, Kuwahara M, Senba T, Ozaki H, Matsuoka Y, Misumi Y, Kanda H, Watanabe T. Cloning and sequecing of the VH and Vk gene of an anti-CD3 monoclonal antibody, and construction of a mouse/human chimeric antibody. J Biochem, 1996, 120(3): 657-662
    26 Chatenoud L, Bach JF. Antigenic modulation: a major mechanism of antibody action. Immunol Today, 1984,5: 20
    27 Carpenter PA, Pavlovic S, Tso JY, Press OW, Gooley T, Yu XZ, Anasetti C. Non-Fc receptor-binding humanized anti-CD3 antibodies induce apoptosis of activated human T cells. J Immunol. 2000 Dec 1;165(11):6205-13.
    28 Ohtomo T, Tsuchiya M, Sato K, Shimizu K, Moriuchi S, Miyao Y, Akimoto T, Akamatsu K, Hayakawa T, Ohsugi Y. Humanization of mouse ONS-M21 antibody with the aid of hybrid variable regions. Mol Immunol. 1995 Apr;32(6):407-16.
    29 Hinchliffe SJ, Spiller OB, Rushmere NK, Morgan BP. Molecular cloning and functional characterization of the rat analogue of human decay-accelerating factor (CD55). J Immunol, 1998, 161(10):5695-703
    
    
    30 Yamada A, Yoshio M, Oiwa K, Nyitray L. Catchin, a novel protein in molluscan catch muscles, is produced by alternative splicing from the myosin heavy chain gene. J Mol Biol, 2000,295(2):169-78
    31 Wang H, Yan T, Tan JT, Gong Z. A zebrafish vitellogenin gene (vg3) encodes a novel vitellogenin without a phosvitin domain and may represent a primitive vertebrate vitellogenin gene. Gene, 2000,256(1-2):303-10
    32 Kojima H, Nemoto A, Uemura T, Honma R, Ogura M, Liu Y. rDrak1, a novel kinase related to apoptosis, is strongly expressed in active osteoclasts and induces apoptosis. J Biol Chem, 2001,276(22):19238-43
    33 Cox JA, Barmina O, Voigt MM. Gene structure, chromosomal localization, cDNA cloning and expression of the mouse ATP-gated ionotropic receptor P2X5 subunit. Gene,2001,270(1-2):145-52
    34 Kruger RP, Winter HC, Simonson-Leff N, Stuckey JA, Goldstein IJ, Dixon JE. Cloning, expression, and characterization of the Galalpha 1,3Gal high affinity lectin from the mushroom Marasmius oreades.
    35 Pearson MN, Russell RL, Rohrmann GF. Transcriptional mapping of two genes encoding baculovirus envelope-associated proteins. J Gen Virol, 2002,83(Pt 4):937-43
    36 Coloma MJ, Hastings A, Wims LA, Morrison SL. Novel vectors for the expression of antibody molecules using variable regions generated by polymerase chain reaction. J Immunol Methods, 1992,152:89
    37 Pulito VL, Roberts VA, Adair JR, Rothermel AL, Collins AM, Varga SS, Martocello C, Bodmer M, Jolliffe LK, Zivin RA. Humanization and molecular modeling of the anti-CD4 monoclonal antibody, OKT4A.J Immunol. 1996 Apr 15;156(8):2840-50.
    38 Gorman SD, Clark MR, Routledge EG, Cobbold SP, Waldmann H. Reshaping a therapeutic CD4 antibody.Proc Natl Acad Sci U S A. 1991 May 15;88(10):4181-5
    39 Riechmann L, Clark M, Waldmann H, Winter G. Reshaping human antibodies for therapy. Nature,1988,332(24): 323-327
    40 Couto JR, Blank EW, Peterson JA, Ceriani RL. Anti-BA46 monoclonal antibody Mc3: humanization using a novel positional consensus and in vivo and in vitro characterization.Cancer Res. 1995 Apr 15;55(8):1717-22.
    41 Couto JR, Christian RB, Peterson JA, Ceriani RL. Designing human consensus antibodies with minimal positional templates. Cancer Res. 1995 Dec 1;55(23 Suppl):5973s-5977s
    42 Adair JR, Athwal DS, Bodmer MW, Bright SM, Collins AM, Pulito VL, Rao PE, Reedman R, Rothermel AL, Xu D.Humanization of the murine anti-human CD3 monoclonal antibody OKT3.Hum Antibodies Hybridomas. 1994;5(1-2):41-7.
    43 Couto JR, Padlan EA, Blank EW, Peterson JA, Ceriani RL. Humanization of KC4G3, an anti-human carcinoma antibody. Hybridoma. 1994 Jun;13(3):215-9.
    44 Chothia C, Novotny J, Bruccoleri R, Karplus M. Domain association in immunoglobulin molecules: the packing of variable domain. J Molec Biol. 1985, 186:651-663
    45 Padlan E. A possible procedure for reducing the immunogenicity of antibody variable domains while preserving their ligand-binding properties. Molec Immun. 1991,28: 489-498
    46 Padlan E. Anatomy of the antibody molecule. Molec Immun. 1994, 31: 169-217
    Tempest PR, Bremner P, Lambert M, Taylor G, Furze JM, Carr FJ, Harris WJ. Reshaping a human monoclonal antibody to inhibit human respiratory syncytial virus infection in vivo.
    
    47 Biotechnology (N Y). 1991 Mar;9(3):266-71.
    48 Queen C, Schneider WP, Selick HE, Payne PW, Landolfi NF, Duncan JF, Avdalovic NM, Levitt M, Junghans RP, Waldmann TA. A humanized antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci U S A. 1989 Dec;86(24):10029-33.
    49 Mateo C, Moreno E, Amour K, Lombardero J, Harris W, Perez R. Humanization of a mouse monoclonal antibody that blocks the epidermal growth factor receptor: recovery of antagonistic activity. Immunotechnology. 1997 Mar;3(1):71-81.
    50 Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, Rowland AM, Kotts C, Carver ME, Shepard HM. Related Articles, Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4285-9.
    51 Kashmiri SV, Shu L, Padlan EA, Milenic DE, Schlom J, Hand PH. Generation, characterization, and in vivo studies of humanized anticarcinoma antibody CC49. Hybridoma. 1995 Oct;14(5):461-73.
    52 Graziano RF, Tempest PR, White P, Keler T, Deo Y, Ghebremariam H, Coleman K, Pfefferkorn LC, Fanger MW, Guyre PM. Construction and characterization of a humanized anti-gamma-Ig receptor type I (Fc gamma RI) monoclonal antibody. J Immunol. 1995 Nov 15;155(10):4996-5002.
    53 Padlan EA. Choosing the best framework to use in the humanization of an antibody by CDR-grafting: Suggestions from 3-D structural data. IBC Antibody Engineering conference. San Diego.CA,1992
    54 Roguska MA, Pedersen JT, Keddy CA, Henry AH, Searle SJ, Lambert JM, Goldmacher VS, Blattler WA, Rees AR, Guild BC.Humanization of murine monoclonal antibodies through variable domain resurfacing. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):969-73
    55 Page M, Sydenham. High level expression of the humanized monoclonal antibody CAMPATH-1H in Chinese hamster ovary cells. Bio/Technology. 1991,9: 64-68
    56 Reff M, Carner K, Chambers K. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994, 83: 435-445
    57 Fouser LA, Swanberg SL, Lin BY, Benedict M, Kelleher K, Cumming DA, Riedel GE. High level expression on a chimeric anti-ganglioside GD2 antibody: genomic kappa sequences improve expression in COS and CHO cells. Biotechnology (N Y). 1992 Oct;10(10):1121-7.
    58 Yun YS. Heterogeneity of long term cultured activated .J Immunol,1980,124:2708
    59 Ziegler SF, Ramsdell F, Alderson MR. The activation antigen CD69. Stem Cells,1994,12:456-465.
    60 Gerosa F, Tommasi M, Differential defects of tyrosine kinade inhibition in by rIL-2. Cell Immunol,1993,150(2):382
    61 Lopez Caberna M, Santis AG, Molecular cloning expression and chromosomal. J Exp Med,1993,178(2):537

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700