考虑土—结构相互作用大跨径连续梁桥抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震工程实践表明,土—结构相互作用对结构的抗震性能有重要的影响,是桥梁震害的一个重要原因,而减震控制则是减轻结构地震反应的有效手。有鉴于此,本文对考虑土—结构相互作用的大跨径连续梁桥抗震性能和减震控制问题进行了较为系统深入的研究,主要工作和成果包括如下几个方面。
     (1)考虑土—结构相互作用连续梁体系地震响应的参数影响分析。采用直接法在FLAC-3D中建立了桥梁和土体的整体分析模型。对比分析了土层的密度、泊松比、剪切波速和厚度,地震动加速度峰值以及结构刚度对连续梁桥地震响应的影响,并总结了相关规律。根据研究结果可知,若桥址所在地为II类、III类、IV类场地或者局部冲刷线以下5倍桩径深度内存在较大范围的剪切波速不大于200m/s的土层,且设防烈度不低于7度时,连续梁桥(D类桥梁除外)的抗震分析应考虑土-结构相互作用的影响。
     (2)考虑土—结构相互作用三种结构体系抗震性能的对比研究。在Midas/Civil中采用改良的Penzien模型建立了连续梁桥三种结构体系(连续梁、刚构连续组合和连续刚构)的简化分析模型。从高矮墩、墩形和行波效应三个方面对比了这三种结构体系的抗震性能。通过分析可知,在某一地震响应方面,高矮墩和墩形对不同结构体系的影响不同。同一结构体系中,高矮墩和墩形对不同地震响应的影响也不同。行波效应对三种结构体系均有较大影响。
     (3)考虑土—结构相互作用连续梁体系减震控制研究。虽然粘滞阻尼器具有较好的减震效果,但其设计、制作等技术难度大,价格昂贵,而且养护成本和技术要求高,这些因素可能导致其在地震作用过程中不能发挥应有的作用。鉴于此原因,本文对大行程板式铅阻尼器进行了研究。在有限元和试验结果的基础上,提出了一种计算阻尼力的简化方法,以便于阻尼器的设计。
     从减震控制的分析结果来看,大行程板式铅阻尼器和粘滞阻尼器一样,也可以与支座并联作为分离型减震装置使用,且减震效果明显。由于具有较高性价比,大行程板式铅阻尼器在桥梁工程中具有很好的应用前景。另外,大跨径连续梁桥的减震控制应该考虑土-结构相互作用的影响,否则不仅在支座的设计上偏于不安全,而且可能会导致桥墩的普通钢筋用量偏大。
     (4)考虑土—结构相互作用大跨径连续梁桥的振动台子结构试验探索。通过试验发现,三种结构体系的试验结果与数值分析结果的规律基本一致。不过,界面力的获取方式、时滞、噪声影响以及振动台自身的控制精度等因素造成期望指令与实际指令是存在一定差异的,而且这种差异具有随机性。因此,试验结果与数值结果在大小上差别较大。
     (5)神经网络在振动台子结构试验中的应用研究。振动台子结构试验的一个重要研究内容是试验系统的时滞与补偿。时滞会影响试验的精度、系统的稳定,甚至造成结果的发散。在现代控制理论中,神经网络是解决时滞问题的一个有效工具。在振动台子结构试验中,可以利用神经网络对作动器的信号进行预测。通过仿真分析发现,神经网络的时滞补偿效果显著。
From earthquake engineering practice, soil and structure interaction has much in-fluence on seismic performance of structure, and it is an important cause of bridgedamages, while damping control is an effective means to reduce the seismic re-sponse of structure. For the above reasons, the seismic performance and dampingcontrol of long-span continuous girder bridges have been studied, which are listed inthe following.
     (1) Parameter analysis of the seismic response of the continuous girder systemconsidering soil and structure interaction. With the help of FLAC-3D, the wholeanalysis model that includes soil and the bridge has been built using the directmethod. The influence of soil density, Poisson’s ratio, the velocity of soil shear wave,the thickness and type of soil and so on is summarized on SSI. According to the re-sults, if the location of the bridge is Class II, III or IV site, and the fortification in-tensity is not less than7, seismic analysis of continuous girder bridges (except forbridges belonging to Class D) should consider SSI.
     (2) Comparative study of the seismic performance of the three structure systemconsidering soil and structure interaction. With the help of Midas/Civil, the simpli-fied analysis model has been built using the improved Penzien model. And Seismicperformance of three structure systems has been studied from the difference of pierheight, pier type and traveling wave effect. According to the results, in a seismic re-sponse, the pier height and pier type have different influence with different structuresystems. And in a structure system, the pier height and the pier type have differentinfluence with different seismic response. Traveling wave effect has much influenceon the three structure systems: in lognitudinal direction, support displacement oftransition pier will increase, and other seismic response will basically reduce. Intransverse direction, seismic response may increase. So, doing research on the threestructure systems’ seismic performance should consider traveling wave effect.
     (3) Damping control of the seismic response of the continuous girder system con-sidering soil and structure interaction. Viscous damper has good damping effect, butits design and production are difficult and maintenance cost is high. And because ofthese factors, it can’t play a role in the process of earthquake. For this reason, thelarge stroke lead damper has been studied in this article. A simplified method ofcalculating the damping force has been proposed on the basis of the finite elementanalysis and test results, in order to facilitate the design of the damper.
     Like viscous damper, large stroke lead damper can also be placed with the bearingin parallel as a shock absorber used in long-span continuous girder bridges, and thedamping effect is good. With higher performance price ratio, large stroke leaddamper has good prospect in bridge engineering. In damping system,if consideringSSI, support displacement and the main pier deformation will increase, and the in-ternal forces at the bottom of the side pier and the main pier will be reduced. So, thedamping system should consider the influence of SSI, otherwise it is unsafe in thedesign of the bearing, and the amount of the ordinary reinforced bar in the side piermay increase.
     (4) Exploration of real-time substructure testing with shaking table for long-spancontinuous girder bridges considering soil and structure interaction. With the testingtechniques of real-time substructure testing with shaking table, the shaking table testconsidering SSI can be achieved. According to experimental data, the law in the re-sults of the three structure systems is basically the same with that in the results ofnumerical analysis. But the difference in value is large, and among the seismic re-sponse, the biggest difference is about20%in support displacement and the mainpier deformation. This is mainly related to the way to get interface force, time delay,noise, the control accuracy of shaking table and so on. In other word, when com-mand signal calculated by the numerical substructure drive the array by the controlsystem of shaking table, there is some difference between the table signal and com-mand signal, but this difference is random.
     (5) Application of neural network in real-time substructure testing with shakingtable. Studying on time-delay compensation is an important aspect in real-time sub-structure testing with shaking table. Time delay will affect the accuracy and the sta-bility of the system, and even cause divergence. In modern control theory, neuralnetwork is the effective way to compensate time delay. So, it can be used to predictthe signal applied to the actuator of the shaking table. According to the simulation,the effect of compensation is significant.
引文
[1]王文涛.刚构-连续组合梁桥[M]北京:人民交通出版社,1995.
    [2]重庆交通科研设计院.公路桥梁抗震设计细则JTG/T B02-01-2008[S].北京,人民交通出版社,2008.
    [3]庄卫林,刘振宇,蒋劲松.汶川大地震公路桥梁震害分析及对策[J].岩石力学与工程学报,2009,28(7):1377-1387.
    [4] Murat Dicleli. Performance of seismic-isolated b ridges w ith and w ithoutelastic-gap devicesin near-fault zones [J]. Earthquake Engineering and Structural Dynamics.2008;37:935-954.
    [5] Qingbin Chen, Bruce M. Douglas, Emmanuel A. Maragakis and Ian G. Buckle. Extraction ofhysteretic properties of seismically isolated bridges from quick-release field tests [J]. Earth-quake Engineering and Structural Dynamics,2002;31:333–351.
    [6] Chouw N, Hao H. Study of SSI and non-uniform ground motion effects on pounding betweenbridge girders [J]. Soil Dynamics and Earthquake Engineering2005;25:717-728.
    [7] Wilde K, Gardoni P, Fujino Y. Base isolation system with shape memory alloy device for ele-vated highway bridges. Engineering Structures,2000,22(3):222–229.
    [8] Agrawal AK, Tan P, Nagarajaiah S, Zhang J. Benchmark structural control problem for aseismically excited highway bridge—Part I: phase I problem definition. Journal of StructuralControl and Health Monitoring2008. DOI:10.1002/stc.301.
    [9]夏培华.大跨长联PC连续梁桥地震反应分析[D].长沙:长沙理工大学,2009.
    [10]赵旭峰,王春苗.连续梁桥抗震性能分析与评价[J].铁道工程学报,2009,5:36-39.
    [11]方海,李升玉,王曙光等.高烈度区连续梁桥的减震设计方法研究[J].地震工程与工程振动,2005,25(6):178-182.
    [12]郭磊,李建中,范立础.大跨度连续梁桥减隔震设计研究[J].土木工程学报,2006,39(3):81-85.
    [13周高瞻.三种减隔震装置在连续梁桥中应用的研究[D].北京:北京工业大学硕士学位论文,2007.
    [14]胡万枝,孙红丰.大跨刚构连续梁桥的地震响应分析[J].交通科技,2007,7:6-8.
    [15]王立峰,孙勇,王子强.结构参数对刚构—连续组合梁桥动力特性的影响分析[J].东北林业大学学报,2010,38(6):106-108.
    [16]魏琴,寿楠椿,周建春等.三门峡黄河公路大桥抗震分析[J].桥梁建设,1994,(3):22-29.
    [17]郑史雄,奚绍中,扬建忠.大跨度刚构桥的地震反应分析[J].西南交通大学学报,1997,32(6):58-592.
    [18]叶爱君,袁万城,胡世德.高墩振动台试验研究[J].同济大学学报,1996,24(6):606-612.
    [19]屈爱平,高淑英.梁-墩-桩基的动力特性研究[J].西南交通大学学报,2001,6(36):614-644.
    [20]李忠献,樊素英等.应用MRF-04K阻尼器的大跨连续刚构桥地震反应的半主动控制[J].土木工程学报,2005,8(38):74-79.
    [21]亓兴军.桥梁减震半主控控制研究[D].北京:中国地震局地球物理所博士学位论文,2006.
    [22]闫维明,李勇,陈彦江,苏亮.铅挤压阻尼器在高架桥减震控制中的应用研究[J].公路交通科技,28(4):46-52.
    [23]王维凝,苏亮等.大行程铅剪切阻尼器的数值模拟与试验研究[C].第四届全国防震减灾工程学术研讨会会议论文集,2009:590-596.
    [24] J. Peizien. Seismic Analysis of Bridges on Long Piles[J]. J Engng. Mech. Div, ASCE,1964,90(EM3):223-254.
    [25] J. Peizien. Seismic Analysis of Platform Structure Foundation Systems[A]. The7th AnnualOffshore Technology Conference [C],1975,2352.
    [26]解明雨,孙换纯.桩基础的高层建筑弹塑性地震反应分析[J].大连工学院学报,1986,6,22(2):9-16.
    [27]王有为,王开顺.建筑物-桩-土相互作用地震反应分析的研究[J].建筑结构学报,1985,3:64-73.
    [28]严士超,杜一平.电视塔-桩-土相互作用地震反应分析[J1.土木工程学报,1991,8,24(3):71-79.
    [29] Ahn, K.L.Gould. Soil-Pile-Strueture Interaction Effects on the Seismie Response of CoolingTower[J]. Earthquake Engineering and Structurepynamics,1989,18:593-609.
    [30] T.J.lngham, S.Rodriguez, R.Donikian Seismic Analysis of Bridges with Pile Foundations[J].Computers and Structures,1999,72:49-62.
    [31]孙利民,张晨南,番龙,范立础.桥梁桩土相互作用的集中质量模型及参数的确定[J].同济大学学报,2002,4,30(4):409-415.
    [32]张建民,张嘎.土体与结构物动力相互作用的研究进展[J].岩石力学与工程学报,2001,5,20(增l):854-865.
    [33]宰金氓,宰金璋.高层建筑基础分析与设计一土与结构物共同作用的理论与应用[M].北京:中国建筑工业出版社,1993.
    [34]周铭.弹性桩与弹性梁的通解[J].岩土工程学报,1982,24(l):1-15.
    [35] P.J. Meymand. Shaking Table Scale Model Tests of Nonlinear Soil-Pile-Structure Interactionin Soft Clay[D]. Univ.of California,Berkeley,1998.
    [36] Novak,M. Dynamic Stiffness and Damping of Piles[J]. Can. Geotech. J.,1974,11(4):574-598.
    [37] T.Nogami, J.Otani, K.Konagai. Nonlinear Soil-Pile Interaction Model for Dynamic LateralMotion[J], Journal of Geotechnical Engineering,ASCE,1992,118(1):89-106.
    [38] T.Nogami. Soil-Pile Interaction Model for Earthquake Response Analysis of Offshore PileFoundations[A]. Proceedings:2nd International Conference on Recent Advances in Geotec-nical Earthquake Engineering and Soil Dynamics[C], March, ll-15,1991,Vo1.3,S.t.Louis,Missouri.
    [39] T.Nogami, K.Konagai, J.Otani. Nonlinear Time Domain Numerical Model for Pile GroupUnder Transient Dynamic Forces[A]. Proceedings:2nd International Conference on RecentAdvances in Geotecnical Earthquake Engineering and Soil Dynamics[C], March,11-15,1991,Vo1.1,S.t.Louis Missouri.
    [40] T.Nogami, R.Mosher, H.W.Jones. Seismic Response Analysis of Pile Supported Structure:Assessment of Commonly Used Approximations[A]. Proceedings:2"d International Confer-ence on Recent Advances in Geotecnical Earthquake Engineering and Soil Dynamics[C]March11-15,1991,Vo1.1,S.t.Louis, Missouri.
    [41]赵建锋,杜修力.精度可控地基阻抗力的一种时域计算方法[C].第七届全国土动力学学术会议.北京:清华大学出版社,2006:567–577.
    [42]孙树民.土-结构动力相互作用研究进展[J].中国海洋平台,2001,16(10):31-37.
    [43]林皋.土-结构动力相互作用[J].世界地震工程,1991,1:4-11.
    [44] Han Y C, Novak M N.Dynamic behaviour of single piles under strong harmonic excita-tion[J].Journal of Canadian Geotechnical,1988,15(3):523-534.
    [45] El-Marsafawi H, Han Y C,Novak M.Dynamic experiments on two pile groups[J].Journal ofGeotechnical Engineering,ASCE,1992,118(4):576-592.
    [46] Boulanger R W, Curras C J,Wilson D W.Seismic soil-pile-structure interaction experimentsand analysis[J].Journal of Geotechnical and Geoenvironmental Engineer-ing,1999,125(9):750-759.
    [47] Curras CJ, Boulanger RW, Kutter BL. Dynamic experiments and analysis of apile-group-supportedstructure[J]. Journal of Geotechnicaal and Geoenvironmental Engineer-ing,ASCE,2001,127(7):585-596.
    [48] Toki K,Sato T,Kiyono J,Garmroudi N K.Hybrid experiments on nonlinear earth-quake-induced soil-structure interaction[J].Earthquake Engineering and Structure Dynam-ic,1990,19(6):709-723.
    [49] Toki K,Sato T,Kiyono J,Garmroudi N K,Emi S,Yoshikawa M.Hybrid experiments onnon-linear earthquake induced soil-structure interaction[J].Earthquake Engineering and Struc-ture Dynamic,1990,20(8):895-909.
    [50] Dou H,Byrne P M.Dynamic response of single piles and soil-pile interaction[J].Journal ofCanadian Geotechnical,1996,33(1):80-96.
    [51]韦晓.桩-土-桥梁结构相互作用振动台试验与理论分析.上海:同济大学博士学位论文,1999.
    [52]吕西林,陈跃庆,陈波.结构-地基相互作用体系的振动台模型试验研究[J].地震工程与工程振动,2000,19(4):20-29.
    [53]陈跃庆,吕西林,李培振.分层土-基础-高层框架结构相互作用体系振动台模型试验研究[J].地震工程与工程振动,2001,21(3):104-112.
    [54]尚守平,朱志辉,涂文戈.土-箱形基础-结构动力相互作用的模态试验分析[J].湖南大学学报,2004,31(5):71-76.
    [55]伍小平.砂土-桩-结构相互作用振动台试验研究[D].上海:同济大学博士学位论文,2002.
    [56]冯士伦.可液化土层中桩基横向承载特性研究[D].天津:天津大学博士学位论文,2004.
    [57]李雨润.液化土层中桩基横向动力响应研究[D].哈尔滨:中国地震局工程力学研究所博士学位论文,2006.
    [58]李振宝,唐贞云,纪金豹,李晓亮,周大兴,闫维明.基于多振动台的土-结相互作用动力子结构试验方法研究[J].结构工程师,2011,27:76-81.
    [59] Wong H L, Luco J E.Structural control including soil-structure interaction effects[J]. J Engi-neering Mech ASCE,1991,117(10):2237-2250.
    [60] Alam S M, Baba S.Robust active optimal control scheme including soil-structure interac-tion[J].J Structural Engineering ASCE,1993,119(9):2533-2551.
    [61] Smith H A, Wu W,Boria R.Structural control considering soil-structure interac-tion[J].Earthquake Engineering and Structural Dynamics,1994,23(6):609-626.
    [62]吴京宁,楼梦麟.土-结构相互作用对主动变刚度控制的影响[J].同济大学学报,1996,24(增刊):8-13.
    [63]邹立华,赵人达.土-基础相互作用隔震体系地震随机响应分析[J].计算力学学报,2005,22(2):252-256.
    [64]陈国兴.岩土地震工程学[M].北京:科学出版社,2007.
    [65]陈国兴,陈继华.土-结构-TMD体系振动台模型试验与数值模拟对比研究[J].岩土工程学报,2003,25(5):532-537.
    [66]邹立华.工程结构减震控制中若干问题的研究[D].成都:西南交通大学,2004.
    [67]吴京宁,楼梦麟.土-结构相互作用对高层建筑TMD控制的影响[J].同济大学学报,1997,25(5):515-520.
    [68]楼梦麟,王文剑.桩基础上结构TMD控制的振动台模型试验研究[J].同济大学学报,2001,29(6):636-642.
    [69] Williams M.S. and Blakeborough A. Laboratory testing of structures under dynamic loads: anintroductory review [J]. Phi.l Trans. R. Soc.Lond. A,2001,359:1651-1669.
    [70]李进,王焕定等.高阶单步实时动力子结构实验技术研究[J].地震工程与工程振动,2005,25(1):97-101.
    [71]邱法维.结构抗震实验方法进展[J].土木工程学报,2004,137(110):19-27.
    [72]吴斌.实时子结构试验技术及其在结构控制中的应用[A].第四届全国结构减震控制学术研讨会[C].广州,2003.
    [73] Mahin S A, Shing P B. Pseudo dynamic method for seismic testing [J]. J. Struc-turalEngnineerig,1985,111(7):1482-1503.
    [74] Wu B, BaoH, Ou J, Tian S. Stability and accuracy analysis of central difference method forreal-time substructure testing [J]. EarthquakeEngineering and Structural Dynamics,2005,34(7):705-718.
    [75] Wu B, Bao H. Stability analysis of central difference method for real-time substructure test-ing of SDOF and MDOF structure [C]. Proceedings of the Third InternationalConference onEarthquake Engineering,19-20, October,2004, Nanjing, China.
    [76] Chang S Y. Explicit pseudo dynamic algorithm with unconditional stability [J]. Journal ofEngineering Mechanics,2002,128(9):935-947.
    [77]保海娥.实时子结构试验逐步积分算法的稳定性和精度[D].哈尔滨:哈尔滨工业大学,2005.
    [78]吴斌,保海娥.实时子结构实验Chang算法的稳定性和精度[J].地震工程与工程振动,2005,26(2):41-48.
    [79] ZhangY, Sause R, Ricles J andNaitoC. Modiffed predictor-corrector numerical scheme forreal-time pseudo dynamic testsusing state-space for-mulation [J]. Earthquake Engineering andStructural Dynamics,2005,34(3):271-288.
    [80] Wu B and Xu G. Numerical behavior of operator-splitting method for real-time substructuretesting[A].The First International Conference on Advances in Experimental Structural Engi-neering[C], Nagoya, Japan, July,2005.
    [81] Wu B, Xu G, Wang Q. Operator-splitting method for real-time substructure testing [J].Earthquake Engineering and Structural Dynamics,2005.
    [82] Shing P B, Wei Z, Jung R Y, Stauffer E. Fast hybrid test system at the University of Colorado
    [A]. Proceedings of the13th World Conference on Earthquake Engineering[C], Vancouver,Canada,2004, paper no.3497.
    [83]奚彩亚,吴斌.实时子结构实验的混合控制方法[A].第11届全国实验力学会议[C].大连,2005.
    [84]陈育民. FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2009.
    [85]彭文斌. FLAC3D实用教程[M].北京:机械工业出版社,2008.
    [86]刘洋.近断层地铁隧道地震作用下动力响应数值模拟研究[D].北京:北京交通大学硕士学位论文,2009.
    [87]卢滔,周正华,霍敬妍.土层非线性地震反应一维时域分析[J].岩土力学,2008,29(8):2170-2176.
    [88]蒋通,田治见宏.地基—结构动力相互作用分析方法[M].上海,同济大学出版社,2009.
    [89]范立础.预应力混凝土连续梁桥[M].北京:人民交通出版社,1988.
    [90]钱登朝.高墩大跨刚构—连续组合梁桥关键技术研究[D].西安,长安大学硕士学位论文,2006.
    [91]赵宝俊.刚构—连续组合梁桥下部结构刚度与体系的适应性分析[D].西安,长安大学硕士学位论文,2007.
    [92]柯亮亮.刚构—连续组合梁桥结构分析[D].西安,长安大学硕士学位论文,2009.
    [93]巩春领,肖汝诚.大跨径刚构—连续组合梁桥整体受力分析与探讨[J].结构工程师,2004,20(5):14-19.
    [94]日本建築学会.建物と地盤の動的相互作用を考慮した応答解析と耐震設計[M].日本建築学会,2006.
    [95]龚纬,戚冬艳.桩基础简化模型在桥梁抗震中的应用[J].铁道工程学报,2008,10:20-31.
    [96]刘伟岸,叶爱君,王斌斌.大跨度桥梁桩基抗震简化模式的分析与探讨[J].结构工程师,2007,23(1):51-55.
    [97]林志良.乌龙江二桥的主桥设计[J].公路,1997,6:6-11.
    [98]齐文浩.土层地震反应分析方法的比较研究[D].哈尔滨,中国地震局工程力学研究所硕士学位论文,2004.
    [99]王克海,李茜.桥梁抗震的研究进展[J].工程力学,24(Sup.II):75-82.
    [100]刘延芳,叶爱君.减隔震技术在桥梁结构中的应用[J].世界地震工程,2008,24(2):131-137.
    [101] T.T.Soong, G.F.Dargush. Passive Energy Dissipation Systems in Structural Engineering.Wiley&Sons, Incorporated, John.1997.
    [102] Charles Seim P. E. The Seismic Retrofit of the Golden Gate Bridge [C], PRC-US Workshopon seismic analysis and design of special bridges, Shanghai, Oc-tober2002.
    [103]王克海.桥梁抗震研究[M].北京:中国铁道出版社,2007.
    [104]王志强,胡世德,范立础.东海大桥粘滞阻尼器参数研究[J].中国公路学报,2005,18(3):37-42.
    [105]熊红霞,刘俊民.东尖坨沙河大桥地震响应及减震效果分析[J].武汉理工大学学报,2009,31(11):75-78.
    [106]方海,刘伟庆,王仁贵,李升玉.铅阻尼器在自锚式悬索桥横向减震设计中的应用研究[J].地震工程与工程振动,26(4):220-225.
    [107]苏亮.剪切型和挤压型铅阻尼器研究及其工程应用[D].北京:北京工业大学硕士学位论文,2009.
    [108]周云,周福霖,邓雪松.铅阻尼器的研究和应用[J].世界地震工程,1999,15(1):53-61.
    [109]周云.粘滞阻尼减震结构设计[M].武汉:武汉理工大学出版社,2006.
    [110]李莉,李升军. DEFORM在金属塑性成形中的应用[M].北京,机械工业出版社,2009.
    [111]刘相华.刚塑性有限元及其在轧制中的应用[M].北京,冶金工业出版社,1994.
    [112]温景林,丁桦,曹富荣等.有色金属挤压与拉拔技术[M].北京,化学工业出版社,2007.
    [113]周云.金属耗能减震结构设计[M].武汉:武汉理工大学出版社,2006.
    [114] Nakashima M, Kato H, Takaoka E. Development of real-time pseudo dynamic testing [J].Earthquake Engineering and Structural Dynamics,1992,21:79-92.
    [115]杨现东.振动台子结构试验的数值仿真分析[D].哈尔滨:哈尔滨工业大学土木工程学院,2007.
    [116]任晓崧,徐植信.结构瞬时开闭环最优控制算法中的迟时研究[J].地震工程和工程振动.1998,18(4):85-90.
    [117] Horiuchi T and Konno T. A new method for compen-sating actuator delay in real-time hy-brid experiments [J]. Phil. Trans. R. Soc.Lond. A2001,359:1893-1909.
    [118] Horiuchi T, Inoue M, Konno T, Namita Y. Real-time hybrid experimental system with actu-ator delay com-pensation and its application to a piping system with energy absorber [J].Earthquake Engineering Structural Dynamics,1999,28(10):1121-1141.
    [119] Wallace M I, Sieber J, Neild S A, Wagg D J, Krauskopf B. Stability analysis of real-timedynamic substructure using delay differential equation models [J]. Earthquake Engineeringand Structural Dynamics,2005,34:1817-1832.
    [120] Darby A P, Williams M S, Blakeborough A. Stability and Delay Compensation for Re-al-Time Substructure Testing [J]. Journal of Engineering Mechanics,2002,128(12).
    [121] Bonnet P A, Williams M S, Blakeborough A. Actuator Performance in Real Time HybridTests [C]. Pro-ceedings of the First International Conference on Advances in ExperimentalStructural Engineering, Nagoya, Japan, July,2005:465-472.
    [122] Wu B, Wang Q, Ou J. Numerical Study of Opera-tor-Splitting Method for Real-time Sub-structure Testing with Actuator Delay and Compensa-tion[C].2005Annual Meeting ofAsia-Pacific Network of Centers on Earthquake Engineering Research, Jeju, Korea,10-13November,2005.
    [123]吴斌,王倩颖.实时子结构实验的研究进展[J].实验力学.2007,22(2):547-555.
    [124]丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科学技术大学出版社,1998.
    [125]张德丰. MATLAB神经网络应用设计[M].北京:机械工业出版社,2009.
    [126]刘永昌,关淑贤,任贵兴等.地震模拟振动台波形再现定量判别法[J].地震工程与工程振动.1998,18(1):109-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700