大跨多塔悬索桥结构体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多塔悬索桥可实现超长超大的连续跨越,突破单一跨径的跨度限制,是应对新世纪跨海联岛工程最可行的方案。但目前国内外已建成的多塔悬索桥实例很少,还没有超千米级的多塔悬索桥建成实例,只有国内的泰州长江大桥和马鞍山长江大桥在建。多塔悬索桥这种结构体系还没有得到大范围的应用的主要原因是目前对这种结构体系的把握和认识还远远不够,存在诸多技术瓶颈。
     在总结国内外已建成的多塔悬索桥工程实例和已提出的多塔悬索桥设计方案的基础上,对多塔悬索桥的静动力研究现状进行总结。
     对悬索桥成桥状态、使用状态分析方法和动力作用分析方法进行介绍,在此基础上建立有限元模型对三塔两跨悬索桥与两塔单跨悬索桥进行静动力特性对比分析。
     按照多塔悬索桥中间塔梁处约束的不同,分别建立铰接体系、漂浮体系、纵向弹性约束体系、竖向支承体系和固结体系的三塔两跨悬索桥有限元模型,并对这五种体系静动力作用下塔梁的内力及位移进行比较分析,研究表明:中间塔处设置一定刚度的纵向弹性约束,一方面可减小静动力作用下的塔底弯矩和塔梁的水平位移;另一方面,由于它不像塔梁固结体系那样有较强大的嵌固刚度,外荷载在主梁处产生的弯矩更接近于漂浮体系,远小于固结体系,因此应作为推荐体系。
     对边中塔均设置弹性索、边中塔均设置阻尼器、中塔设置阻尼器边塔设置弹性索、中塔设置弹性索边塔设置阻尼器四种塔梁附加约束装置(阻尼器和纵向弹性索)布置形式分别建立有限元模型进行参数化分析,得到这四种布置形式在静动力作用下的结构内力、位移随弹性刚度和阻尼参数的变化规律。研究表明:边中塔均设置阻尼器,静力作用下梁端位移过大;边中塔均设置弹性索,地震作用下边塔底弯矩最大;阻尼器和弹性索组合使用是较好的选择。
Multi-tower suspension bridges can realize the continuous super-long-span crossing and breakthrough the length limit of single span, which is the most feasible project in the cross-sea projects in the new century. But now, there are only a few construction examples, none of which are over 1000m all over the word. The 1080m Taizhou Yangtze river bridge and Ma an Shan Yangtze river bridge in China are under constructing. The main reason why this structural system has not been widely applied is that the grasp and understanding is not enough for the structure and there are many technical bottlenecks.
     Based on the summary of all-ready built examples and proposed design projects in domestic and abroad area, the problems on the actual application process are analyzed and the existing static and dynamic research situation are summed up.
     The calculation methods are summed up, based on which a multi-tower and a two-tower suspension bridge finite element models are erected to analyze the difference between their static and dynamic characteristics.
     Finite element models of hinge system, floating system, the longitudinal elastic restraint system, the vertical support system and the consolidation system are established. Through comparative analysis of the five systems, the main conclusions are got as follows:if a certain stiffness of longitudinal elastic restraint are set between the middle tower and the girder, it can decrease the bending moment of the column bottom and horizontal displacement of the girder under the action of static and dynamic force, besides, the bending moment of the girder is less than the consolidation system, it should be the recommended system.
     Finite element models of all elastic link devices, all dampers, center elastic link devices sides dampers, center dampers sides elastic link devices are established. Through parametric analysis on these four systems under the action of static and dynamic forces, some conclusions are got:The horizontal displacement of the girder is too large under the action of static forces in the condition of all dampers, The bending moment of the side tower bottom is too large under the action of dynamic forces in the condition of all elastic link devices, the two binding systems are undesirable, dampers and elastic link devices combination is a better choice.
引文
[1]Buonopane SG, Billington DP. Theory and History of Suspension Bridge Design from 1823 to 1940[J]. Journal of Structure Engineering,1993,119(3):954-977.
    [2]Clemente P, Nicolosi G, Raithel A. Preliminary Design of Very Long-Span Suspension Bridges[J]. Engineering Structures,2000,22:1699-1706.
    [3]Cobo del Arco, Aparicio AC. Preliminary Static Analysis of Suspension Bridges [J]. Engineering Structures,2001,23:1096-1103.
    [4]Forsberg T. Multi-span suspension bridges[J]. International Journal of Steel Structures, 2001, 11(1):50-53.
    [5]Fukuda T. Analysis of multi-span suspension bridges[J]. Journal of Structurs Division, 1976,13(9):63-86
    [6]Fukuda T. Multi-span suspension bridges under torsional loading [J]. Journal of Japan Society Civil Engineering,1975,24(2):91-103.
    [7]Gimsing NJ. Cable supported bridges[M].2nd Ed. Chichester. John Wiley,1997.
    [8]Nazir C P. Multi-span balanced suspension bridge [J]. Journal of Structure Engineering, 1986,112(11):2512-2527.
    [9]O'Brien T. Francis AJ. Cable movements under two-dimensional loads[J]. Journal of Structural Division, ASCE,1964,90(ST3):89-123.
    [10]Osamu Yoshida, Motoi Okuda, and Takeo Moriya. Structural Characteristics and Applicability of Four-Span Suspension Bridge[J]. Journal of Bridge Engineering,2004, 9(5):453-463.
    [11]Sato K. Deflection theory of multi-span suspension bridges considering deflection of towers and its numerical examples of various influence lines [J]. Proceedings of Japan Society Civil Engineering,1971,19(1):11-22.
    [12]Sera-m Arzoumanidi, Ayman Shama, Farhang Ostadan. Performance-based seismic analysis and design of suspension bridges[J]. Earthquake Engng Struct. Dyn; 2005, 34(1):349-367.
    [13]Ulstrup CC. Rating and Preliminary Analysis of Suspension Bridges[J]. Journal of Structure Engineering,1993,119 (9):2563-2679.
    [14]Wollmann GP. Preliminary Analysis of Suspension Bridges[J]. Journal of Bridge Engineering,2001,6(4):227-233.
    [15]#12
    [16]#12
    [17]#12
    [18]大橋猛.津轻海峡連络道路[J].橋梁と基礎,1998(8):173.
    [19]吉永一夫.豊予海峡道路[J].橘梁と基礎,1998(8):178.
    [20]须志田健,山崎康嗣.Save川橘(5径問無補刚吊橘)の構造特性[J].橋梁と基礎,2000(3):16-20.
    [21]#12
    [22]陈策,钟建驰.三塔悬索桥关键设计参数对其结构行为的影响[J].桥梁建设,2008,(2):10-12.
    [23]陈策.大跨径三塔悬索桥抗风性能分析[J].桥梁建设,2008,(2):31-33.
    [24]陈策.泰州大桥的桥区风场特性及抗风稳定性研究[J].公路,2008,(4):74-77.
    [25]陈艾荣,陈文明.多塔悬索桥的性能[A].中国公路学会桥梁和结构工程学会20年桥梁学术研讨会[C].2001.
    [26]程进,江见鲸,肖汝诚,项海帆.大跨度悬索桥空气静力稳定性研究[J].中外公路,2002,(1).:25-27.
    [27]邓育林等.大跨度三塔悬索桥动力特性及抗震性能研究[J].振动与冲击,2008,27(9):105-110.
    [28]杜柏松.考虑非线性影响的分体双箱梁悬索桥动力特性研究[D].上海:同济大学,2006.
    [29]方明山,项海帆,肖汝诚.大跨径缆索承重桥梁非线性空气静力稳定理论[J].土木工程学报,2000,33(2):73-79.
    [30]范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [31]范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].北京:人民交通出版社,2001.
    [32]丰硕,项贻强等.自锚式悬索桥动力特性及结构参数影响规律研究[J].世界桥梁,2004,(4):50-53.
    [33]丰硕,项贻强,谢旭.超大跨度悬索桥的动力特性及地震反应分析[J].公路交通科技,2005,(8):31-35.
    [34]胡世德,范立础.江阴长江公路大桥纵向地震反应分析[J].同济大学学报,1994,22(4):433-438.
    [35]何友娣等.三塔悬索桥的抗震性能研究[J].工程抗震与加固改造,2008,3(3):69-72.
    [36]公路悬索桥设计规范(报批稿)[S].北京:人民交通出版社,2002.
    [37]JTG/TD60—2004.公路桥涵设计通用规范[S].北京:人民交通出版社,2004.
    [38]JTG/TD60-01—2004.公路桥梁抗风设计规范[S].北京:人民交通出版社,2004.
    [39]JTG/T B02-01—2008.公路桥梁抗震设计细则[S].北京:人民交通出版社,2008.
    [40]金增洪.介绍日本21世纪的超长桥梁[A].2003年全国桥梁学术会议论文集[C],2003.
    [41]李志岭,秦权.用Ritz法分析江阴悬索桥地震反应的影响[J].工程力学,2003,20(1):32-36.
    [42]6000m海峡通道采用的两个悬索桥方案[J].国外公路,1998,18(1):26-30.
    [43]梁鹏,徐岳,刘永健.斜拉索分析统一理论及应用[J].建筑科学与工程学报,2006,23(1):68-77.
    [44]柳学发,徐成.大跨度悬索桥设计中的几个关键问题[J].铁道标准设计,1996.
    [45]罗喜恒.复杂悬索桥施工过程精细化分析研究[D].上海:同济大学,2004.
    [46]阮静,吉林,祝金鹏.三塔悬索桥中塔结构选型分析[J].山东大学学报(工学版),2008,38(2):106-111.
    [47]裴岷山等.苏通大桥主桥结构体系研究[J].公路,2009,(05):24-27.
    [48]孙斌.超千米级斜拉桥结构体系研究[D].上海:同济大学,2008.
    [49]唐茂林,沈锐利,强士中.悬索桥索鞍位置设计[J].公路交通科技,2001,18(4):55-57.
    [50]唐茂林.大跨度悬索桥空间几何非线性分析与软件开发[D].成都:西南交通大学,2003.
    [51]万田保,王忠彬.泰州长江公路大桥三塔两跨悬索桥总体稳定性分析[J].桥梁建设,2008,(02):17-19.
    [52]王萍.多塔连续体系悬索桥静动力特性的研究[D].成都:西南交通大学,2007.
    [53]王忠彬,万田保.泰州长江公路大桥三塔两跨悬索桥结构行为特征[J].桥梁建设,2008,(02):38-40.
    [54]王胜斌,朱宇,李建中.马鞍山三塔悬索桥抗震性能研究[J].公路交通科技,2009,26(12):17-19.
    [55]王戒躁,钟继卫.大跨度悬索桥主缆线形主要参数的影响性分析[J].桥梁建设,2005,(3):91-95.
    [56]项海帆,方明山.超跨度桥梁结构体系的演变和发展趋势[A].第十二届全国桥梁学术会议[C],1996.
    [57]项海帆,葛耀君.悬索桥跨径的空气动力极限[J].土木工程学报,2005,38(1):60-70.
    [58]肖恩源.再论悬挂索的重力刚度一双索,多塔[J].公路,2001,7(7):67-72.
    [59]徐国平.武汉阳逻长江公路大桥方案设计[A].中国公路学会桥梁和结构工程学会2001年桥梁学术讨论会论文集[C],2001.
    [60]徐利平.超大跨径斜拉桥的结构体系分析[J].同济大学学报,2003,31(4):400-403.
    [61]徐利平.苏通大桥主桥结构体系研究[A].2004年全国桥梁学术会议论文集[C],2004.
    [62]杨咏听,葛耀君,项海帆.改善大跨度悬索桥抗风稳定性能的实践和探索[A].中国土木工程学会桥梁及结构工程学会第十四届年会论文集[C],2000.
    [63]杨进.泰州长江公路大桥主桥三塔悬索桥方案设计的技术理念[J].桥梁建设,2007,(3):33-35.
    [64]杨进.中国大陆创建多塔大跨度悬索桥的工程进展[J].桥梁建设,2009,(6):39-41.
    [65]叶爱君.桥梁抗震[M].北京:人民交通出版社,2002.
    [66]叶爱君,胡世德,范立础.斜拉桥抗震结构体系研究[J].桥梁建设,2002,(4):1-4.
    [67]叶爱君,胡世德,范立础.超大跨度斜拉桥的地震位移控制[J].土木工程学报,2004,12(37):38-43.
    [68]叶爱君,范立础.超大跨度斜拉桥的横向约束体系[J].中国公路学报,2007,20(2):63-67.
    [69]张启伟,冯敏伟.自锚式混凝土悬索桥的动力分析[J].同济大学学报,2003,32(12):1562-1566.
    [70]张运波,陈伟,林玉森.影响大跨度悬索桥自振特性的参数分析[J].华东公路,2002,(6):3-6.
    [71]曾超.厦门海沧大桥悬索桥结构体系的选择[J].公路,2003,(04):39-43.
    [72]朱本瑾.多塔悬索桥结构体系研究[D].上海:同济大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700