水平多向荷载下砂土中桩基础的弹塑性数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,国内外对水平受荷单桩的研究大多集中在单向加载。而在实际工程中,单桩往往受到多方向水平荷载的作用,例如在地震作用、波浪的冲击下桩基础受到的多方向水平荷载。对于群桩的研究也存在同样的问题,并且水平单向荷载的作用方向一般沿着群桩水平布置的对称轴方向。因此,需要对桩基础在多向荷载作用下和群桩在非对称轴方向的水平单向荷载作用下的特性进行研究。本文首先通过室内三轴试验数据率定出砂土本构模型的主要参数,然后利用数值模拟的手对水平单向加载、水平多向加载和沿非对称轴方向单向加载作用下砂土中的桩基础进行了研究。
     首先,对单向和多向荷载作用下的单桩进行了模拟,其中多向加载采用圆及椭圆形的加载路径,几种加载路径中,沿着X方向的最大位移都为10mm。通过模拟发现,单向加载的最大水平力为273N,圆形加载(即X向和Y向的最大位移比为1:1)X方向的最大水平力为255N,和单向加载比较明显减小了。两种椭圆加载(即X向和Y向的最大位移比分别为1:0.6和1:0.2)X方向的最大水平力分别为262N和270N。从以上结果可以看出,在多向加载条件下,X方向的最大水平力明显减少,并且折减的程度随着Y方向的运动位移的增大而增大。
     然后,对单向荷载作用下的群桩进行了模拟。采用了2×2的群桩布置形式,桩间距为3D(即3倍的桩径)。在单向荷载作用下,前排桩的最大水平力为598N,后排桩的最大水平力为488N。前排桩和后排桩的水平群桩效应系数分别为0.82、0.67。对群桩沿非对称轴方向单向加载的模拟中,沿与X轴夹角为15°和30°的非对称轴方向单向加载时,各桩的桩头水平力的方向始终和位移方向不在同一直线上,当位移为10mm时:位移方向为15°时,桩1、桩2、桩3和桩4桩头水平力的方向分别为16.8°、12.5°、17.6°和11.6°;位移方向为30°时,桩1、桩2、桩3和桩4桩头水平力的方向分别为31.0°、28.7°、31.3°和28.0°。力和位移的方向明显出现了非共轴现象。沿着非对称轴方向加载和对称方向的单向加载的群桩的水平力的合力是不变的,说明加载方向对群桩的总的水平承载力的影响是很微弱的。
     最后,对多向加载作用下的群桩进行了模拟,和单桩相似,群桩中的各桩的最大水平力都出现了不同程度的折减。并且由于水平群桩效应的影响,各桩最大水平力的折减程度要比单桩大。
The present studies on lateral loaded piles were mostly focused on unidirectional horizontal loading. The horizontal forces in practical problems, such as earthquake loading and wave loading, have multidirectional characteristics. The same problems also exist in the pile groups, and the direction of unidirectional horizontal loading is along the symmetry axis of the pile level layout. It is necessary to carry out the study on pile foundation under multidirectional loading, as well as the pile groups under the unidirectional horizontal loading along the asymmetry axis. In this paper, the numerical simulation method is used to study the pile foundation under unidirectional horizontal loading, multidirectional horizontal loading and unidirectional horizontal loading along asymmetric axis direction. The main parameters of numerical simulation were obtained from the triaxial test.
     First, the single pile under unidirectional and multidirectional horizontal loading was simulated . The simulation of multidirectional horizontal loading took circular (elliptical) path load method. The displacement along X direction is 10mm, the maximum unidirectional horizontal force is 273N, the maximum horizontal force of circular loading (the maximum displacement ratio of X and Y is 1:1) on X direction was 255N. The maximum horizontal force of elliptical loading (the maximum displacement ratio of X and Y are 1:0.6 and 1:0.2)on X direction are 262N and 270N.It can be evidently seen, under multidirectional loading conditions, the maximum horizontal force on X direction has been reduced remarkably, and the reduction degree increased as the Y direction displacement increasing.
     Then, the pile groups under unidirectional horizontal loading were simulated. The pile layout of 2x2 was used and the piles spacing was 3D (D is the pile diameter). Under unidirectional horizontal loading, the maximum horizontal force of the front row pile is 598N, the maximum horizontal force of the rear row pile is 488N. This indicated generate the horizontal pile group effect.The pile group effect coefficient of the front row pile and the rear row pile are 0.82 and 0.67 respectively. The pile groups under the load along non-symmetry axis direction were simulated. Under unidirectional horizontal loading along the non-symmetry axis direction with the X-axis angle of 15°and 30°, the horizontal force direction of the pile head and displacement direction is non-coaxial. when the displacement is 10mm and the angle of displacement direction is 15°, the angle of he horizontal force direction of pile 1, pile 2, pile 3 and pile 4 are 16.8°, 12.5°, 17.6°and 11.6°; if the angle of displacement direction is 30°, the angle of the horizontal force direction of pile 1, pile 2, pile 3 and pile 4 are 31.0°, 28.7°, 31.3°and 28.0°. The phenomenon of non-coaxial has obviously seen from the direction of force and displacement. The total level force of the unidirectional loading of non-symmetry axis and symmetry direction is unchange, it indicated that the direction of loading did not affect the total horizontal bearing very much
     Finally, the pile groups under multidirectional horizontal loading were simulated. The same as single pile, the maximum horizontal force of the pile has suffered reduction of different degree . Because the horizontal pile group effect, the maximum horizontal force of pile reduced more than that of single pile.
引文
1. Matlock H. and Ripperger E. A. Procedures and Instrumentation for Tests on a Laterally Loaded Pile. Proceedings. Eighth Texas Conference on Soil Mechanics and Foundation Engineering, Special Publication No. 29.Bureau of Engineering Research, University of Texas.1956:287-298
    2. Randolph M.F. The Response of Flexible Piles to Lateral Loading. Geotechnique, 1981, 31(2):247-259
    3. Chen L.T., Poulos H.G. and Hull T.S. Model Tests on Pile Groups Subjected to Lateral Soil Movement. Research Report, No. R729. School of Civil and Mining Engineering, University of Sydney, 1996:26-39
    4. Murchison J.M., O’Neill M.W. Evaluation of p-y Relationships in Cohesionless Soils. Proceedings of the ASCE Symposium on Analysis and Design of Pile Foundations, ASCE National Convention, San Francisco, California, 1984: 174-191
    5. Gazioglu S.M., O’Neill M.W. Evaluation of p-y Relationships in Cohesive Soils. Proceedings of the ASCE Symposium on Analysis and Design of Pile Foundations, ASCE National Convention, San Francisco, California, 1984: 192-213
    6. Reese, L. C., Cox, W. R. and Koop, F. B. Analysis of Laterally Loaded Piles in Sand. Proc., Offshore Technology Conf., Houston, Paper No. OTC 2080,1974
    7. Matlock, H. Correlations for Design of Laterally Loaded Piles in Soft Clay. Proc., Offshore Technology Conf., Houston, Paper No. OTC 1204, 1970
    8. Matlock, H., and Reese, L. C. Generalized Solutions for Laterally Loaded Piles. Soil Mech. Found. Eng. 1960,86(5): 63–91
    9.王成,邓安福.水平荷载桩桩土共同作用全过程分析.岩土工程学报. 2001, 23(4): 476-480
    10.王梅,楼志刚,李建乡,赵京.水平荷载作用下单桩非线性m法试验研究.岩土力学. 2002, 23(1): 23-26
    11.叶万灵,时蓓玲.桩的水平承载力实用非线性计算方法―NL法.岩土力学. 2000, 21(2): 97-101
    12. Chen, L., Poulos, HG. A Method of Pile-soil Interaction Analysis for Piles Subjected to Lateral Soil Movement. Proc, 8th Int. Conf. on Computer Methods and Advances in Geomechanics. 1994 : 2311-2316
    13. Dunnavant T.W., and O’Neill M.W. Experimental p-y Model for Submerged Stiff Clay. Journal of Geotechnical Engineering. 1989, 115(1): 95-114
    14. Matlock, H., and Reese, LC. Foundation Analysis of Offshore Pile Supported Structures. Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering. Paris, France.1961
    15. Poulos, HG. Load-deflection Prediction for Laterally Loaded Piles. Aust. Geomechs. 1973,G3:1–8
    16. JGJ-94建筑桩基技术规范.中国建筑工业出版社, 2008:33-36
    17. JTJ 024-85公路桥涵地基与基础设计规范.北京:人民交通出版社,1985:2446-2455
    18.韩理安.群桩水平承载力的研究.华东水利学院研究生论文. 1981:34-46
    19.何光春.粘土中横向受荷群桩性状的试验研究.重庆交通学院学报. 1989, 8(2): 79-88
    20. Rao S, Ramakrishna V and Raju G . Behavior of Pile-supported Dolphins in Marine Clay under Lateral Loading. Journal of Geotechnical Engineering. 1996, 122(8):607-612
    21. Poulos HG, Chen LT. Pile Responese due to Excavation induced Lateral Soil Movement. Journal of Geotechnical and Geoenviromental Engineering. 1997,123(2): 94-99
    22. Moss RES, Caliendo JA and Anderson LR. Investigation of a Cyclic Laterally Loaded Model Pile Group. Soil Dynamics and Earthquake Engineering. 1998, 17(5): 519–523
    23.谢涛,袁文忠,马庭林,蒋泽中.水平承载下超大群桩受力变形特性的模型试验研究.岩石力学与工程学报. 2005,25(9):1582-1587
    24. Barton YO. Response of Pile Groups to Lateral Loading in the Centrifuge. Proc., Application of Centrifuge Modeling to Geotech. Des., W.H. Craig, ed., A.A. Balkema, Rotterdam, The Netherlands. 1984:456-472
    25. McVay MC, Casper R and Shang T. Lateral Response of Three Row Groups in Loose to Dense Sands at 3D and 5D Pile Spacing. J. Geotech. Engrg. 1995,121(5):436-441
    26. McVay MC, Zhang LM, Molnit T and Lai P. Centrifuge Testing of Large Laterally Loaded Pile Groups in Sands. J. Geotech. And Geoenvir. Engrg. 1998,124(10): 1016–1026
    27. Ilyas T, Leung CF, Chow YK, and Budi SS. Centrifuge Model Study of Laterally Loaded Pile Groups in Clay. Journal of Geotechnical and GeoenvironmentalEngineering. 2004, 130(3):274-283
    28. Matlock H, Ingram WB, Kelley AE, and Bogard D. Field Tests of the Lateral Load Behavior of Pile Groups in Soft Clay. Proc.,12th Annual Offshore Tech. Conf., OTC, Houston.1980:163–174
    29. Brown DA, Morrison C and Reese LC. Lateral Load Behavior of a Pile Group in Sand. J. Geotech. Engrg. 1988,114(11):1261-1276
    30. Ruesta PF, and Townsend, FC.Evaluation of Laterally Loaded Pile Group at Roosevelt Bridge. Geotech. Geoenviron. Eng. 1997,123(12):1153–1161
    31. Rollins KM, Peterson KT, Weaver TJ. Lateral Load Behavior of Full-scale Pile Group in Clay. Journal of Geotechnical and Geoenvironmental Engineering. 1998, 124(6):468-478
    32.杨克己.水平作用下群桩性状的研究.岩土工程学报. 1990 (3):42-52
    33.谢耀峰.横向承载群桩性状及承载力研究.岩土工程学报. 1996(11):40-42
    34.卢成原,孟繁丽.承受水平荷载群桩研究进展.浙江工业大学学报. 2001(12):405-409
    35.冯世挺.横向承载桩的有限元分析.浙江大学硕士生论文. 2003:21-35
    36.韩洁.横向静载群桩效应研究.河海大学硕士生论文. 2001:18-45
    37.《港口工程桩基规范》(JTJ254-98)局部修订(桩的水平承载力设计).人民交通出版社. 2001:13-15
    38.灌注桩基试验研究组.小钻孔灌注桩的实验研究.岩土工程学报. 1983,5(1):40-41
    39.刘金励.群桩横向承载力的分项综合效应系数计算法.岩土工程学报. 1992,14(3):9-18
    40.谢耀峰.横向承载群桩性状及承载力研究.岩土工程学报. 1996,18(6):39-45
    41.蔡亮,鲁子爱,韩洁.横向荷载群桩效应分析.水运工程. 2003,346(1):4-7
    42. Poulos, H G. Behavior of Laterally Loaded Piles: II Pile Groups. Journal of Soil Mechanics and Foundations Division. 1971,97 (5): 731-752
    43. Focht J A and Koch KJ. Rational Analysis of the Lateral Performance of Offshore Pile Groups, OTC 1896, 1973: 701-708
    44.周洪波,茜平一,周立斌.水平荷载作用下群桩计算方法分析.岩土工程技术. 1999,25 (3) :89-90
    45.仝佗,谢耀峰.水平承载群桩计算方法的研究.山西建筑. 2007,33(25): 18-19
    46.韩理安.桩基水平承载力的群桩效率.岩土工程学报. 1984,6(3):66-74
    47.韩理安.群桩水平承载力的实用计算.岩土工程学报. 1986 ,8(3):22-36
    48.韩理安,赵利平,韩时琳.群桩水平地基系数的确定.长沙交通学院学报. 1999:76-81
    49. Ashour M, Norris G, and Pilling P. Lateral Loading of a Pile in Layered Soil Using the Strain Wedge Model. J. Geotech. Geoenviron. Eng. 1998,124(4): 303–315
    50. Ashour M, Pilling P, and Norris G. Lateral Behavior of Pile Groups in Layered Soils. Geotech. Geoenviron. Eng. 2004,130(6): 580–592
    51.谢耀峰.水平荷载下群桩p-y曲线的试验研究.土工基础. 1996,10(2):27-34
    52.茜平一,周洪波.水平荷载群桩三维有限元分析研究.岩土工程技术. 1999(4):44-48
    53.周洪波,杨敏,茜平一.水平荷载作用下群桩相互作用的弹塑性数值分析.水文地质工程地质. 2003(3):29-35
    54.周常春,邓安福,张明义,干腾君,潘晋.水平荷载下群桩前后土抗力分布的数值分析.地下空间. 2003,23(1):17-21
    55.陈晓平,贾成.水平荷载下群桩工作性状的数值分析方法.武汉水利电力大学学报. 1997,30(2):13-17
    56. Zhang LM, McVay MC, Lai PW. Numerical Analysis of Laterally Loaded 3×3 to 7×7 Pile Groups in Sands. Journal of Geotechnical and Geoenvironmental Engineering. 2003 ,129(7) :936-946
    57.陈菊香,刘克萍,俞亚南,冯世挺.基于P-Y曲线的水平承载群桩有限元分析.江南大学学报. 2005(4): 163-167
    58. K. H. Roscoe, A. N. Schofield and C. P. Worth. On the Yielding of Soils. Geotechnique. 1958, 8(1):22~53
    59. K. H. Roscoe, A. N. Schofield and C. P. Wroth. Critical State Soil Mechanics. Mc Graw-Hill. 1968
    60. X. S. Li and Y. Wang. Linear Representation of Steady-state Line for Sand. Journal of Geotechnical and Geoenvironmental Engineering. 1998,124(12):1215~1217
    61. Z. Y. Cai. A Comprehensive Study of State-dependent Dilatancy and its Application in Shear Band Formation Analysis. Dissertation of Doctor of Philosophy in Hong Kong University of Science and Technology. 2001:57~92
    62.朱明双.现浇筒桩桩-土共同作用试验与数值研究.浙江大学博士论文. 2006:69-108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700