多旋翼飞行器建模与飞行控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多旋翼飞行器简单的结构、超强的机动性、独特的飞行方式以及在军事和民事领域展现出的巨大应用价值,引起了国内外学者以及科研机构的广泛关注,并迅速成为目前国际上研究的热点之一。然而,国内对多旋翼飞行器自主飞行控制的研究与国外先进水平之间还有一定的差距,此外,目前所广泛研究的四旋翼飞行器的旋翼组件无任何冗余,任一执行机构发故障,都难以实施容错飞行控制,只能任其坠落。因此,多旋翼飞行器在构型以及先进飞行控制方法方面都需要进一步深入研究。针对上述问题,本文以课题组提出的一种面对称布局多旋翼飞行器为研究对象,以其实际飞行需求为目标,分别在数学建模和先进飞行控制等方面开展了一系列研究工作。
     首先,在详细分析飞行器的构型以及飞行原理的基础上,对旋翼以及整个机体的空气动力和动力矩进行分析计算;在此基础上,详细推导并建立出较为完整的飞行器六自由度非线性数学模型以及飞行运动控制模型,同时对数学模型和控制模型的开环特性进行了检验和分析,论证了该飞行器的飞行运动特性具有强非线性、强耦合、不确定的特点,可以满足飞控系统设计的需求。
     而后,在充分考虑飞行器的不确定性以及外部干扰因素下,推导出带有复合干扰的姿态控制系统模型。针对不确定姿态系统,提出一种基于全调节径向基神经网络干扰补偿的鲁棒自适应姿态控制器,其中神经网络的中心向量和宽度向量均可在线进行调节。仿真结果表明该方法可有效实现对干扰的抑制,并可满足飞行器的姿态运动控制要求。
     接着,为实现飞行器精确跟踪期望轨迹的任务需求,提出一种基于回馈递推-终端滑模变结构控制的轨迹跟踪控制方法。其中,为抑制不确定以及外界干扰等构成的复合干扰对飞行器的影响,提出一种自适应滑模干扰重构算法,该算法和径向基神经网络一样都无需知道复合干扰的界,但所提算法与径向基神经网络相比具有设计简单,易于工程实现的优点;为实现该飞行器姿态稳定以及对期望姿态和轨迹的快速与精确跟踪,将所提的自适应滑模干扰重构算法与回馈递推控制方法、动态面控制方法以及终端滑模变结构控制方法相结合设计了飞行器的姿态控制器并基于回馈递推控制方法设计了飞行器的位置控制器。仿真结果表明所提方法的有效性和正确性。
     然后,为了更好地体现和满足飞行器实际工作特点和飞行需求,进一步综合考虑该飞行器在复合干扰影响以及状态受限情况下的轨迹跟踪控制问题。其中,针对系统中的复合干扰,设计了滑模干扰观测器用于对复合干扰的重构和补偿控制律的设计;针对该飞行器位置控制模型的特殊形式,借鉴滑模控制方法的设计思想设计了飞行器的位置控制器;在姿态控制器设计中考虑复合干扰的影响、姿态角以及角速率受限要求,设计了基于复合干扰重构补偿以及受限指令滤波的回馈递推姿态控制器。结果表明所提方法可实现该飞行器在复合干扰以及状态受到约束情况下的轨迹跟踪控制。
     最后,针对飞行器姿态控制系统的执行器故障问题,提出一种故障诊断、辨识和容错控制策略。其中,考虑文献[199]滑模干扰观测器的控制量中存在着切换函数,可能导致复合干扰的重构值存在抖振现象的问题,提出一种改进滑模干扰观测器复合干扰重构算法,并针对执行器的失效和卡死故障问题,提出一种类MIT模型参考自适应控制的局部执行器故障估计算法;基于所提的改进滑模观测器复合干扰重构算法和执行器故障估计算法与回馈递推控制方法结合设计了该飞行器姿态系统的容错控制器。通过Lyapunov方法进行了闭环性能分析,同时仿真得到了满意的控制效果。
Due to its simple structure, superior maneuverability and unique flying way, multi-rotor aircrafthas attracted increasing attention from scholars and research institutions at home and abroad and it isbecoming one of the attractive research fields. However, the greater disparity exists when comparingthe autonomous flight control of the multi-rotor aircraft domestic with that of abroad. Besides, it isdifficult to implement fault-tolerant flight control when any of the actuator breaks down because ofthe rotor assembly of the quad-rotor without any redundancy. Therefore, the configuration and theadvanced flight control method of the multi-rotor aircraft is to be studied furtherly. Accordingly, thedissertation carries out a series of research work in modelling and advanced flight control to meet thetarget of the actual flight for a novel multi-rotor aircraft which was awarded a national inventionpatents.
     First of all, the aerodynamics forces, torques of the rotor and the whole airframe are analyzedand derived on the basis of the detailed analysis of the configuration and the principles of flight of theplane symmetrical multi-rotor aircraft. Then, the systemic nonlinear mathematical model with sixdegree of freedom and the flight control model are developed for the aircraft, respectively. At thesame time, the open-loop characteristic of the mathematical model and control model are proved andanalyzed. They demonstrate that the developed model can embody the characteristics of the aircraft,such as serious nonlinearity, intense state-coupling and uncertainties and can meet the requirements offlight control system design.
     Secondly, an attitude control system model with composite disturbance of the aircraft is deducedunder taking full account of the uncertainties and external disturbance factors for the aircraft. And, arobust adaptive attitude controller with compensation the disturbance based on fully tuned radial basisfunction neural network is proposed for the uncertain attitude system and the center vector and thewidth vector of the neural network all can be adjusted online. Simulation results show that theproposed method can restrain the disturbance effectively and can meet the requirement of the attitudemotion control.
     Thirdly, a method of trajectory tracking control for the aircraft is proposed based onbackstepping terminal sliding mode control to achieve the requirement of tracking the desiredtrajectory accurately. Thereinto, an adaptive sliding mode algorithm for disturbance reconstruction isdeveloped to restrain the impact of the composite disturbance on the aircraft. The algorithm does notneed the boundary of the composite disturbance just like the RBF neural network. But, compared with RBF neural network, the proposed algorithm is simple and fit for engineering. In order to achieve theattitude stabilization and to track the desired attitude and trajectory quickly as well as accurately, anattitude controller is designed which use a combined adaptive sliding mode algorithm for disturbancereconstruction, backstepping, dynamic surface control and terminal sliding mode control. After that, aposition controller is designed based on backstepping. The effectiveness and correctness of theproposed methods are verified through the simulation results.
     In the following, a problem of trajectory tracking is further considered under the condition ofcomposite disturbance impact, the state constraints to better reflect and meet both the actual flightcharacteristics and requirements. Aiming at the composite disturbance of the system, a sliding modedisturbance observer is designed to reconstruct the composite disturbance and to bulid thecompensatory control law. Considering the special form of the position control model, a positioncontroller is referred from the designing ideas of the sliding mode control and developed. The impactof the composite disturbance and the requirements of the attitude angles and angular velocitiesconstraints are considered in the attitude controller design. Then, a backstepping attitude controller isdesigned based on composite disturbance reconstruction and compensation, as well as constrainedcommand filter. The simulation results demonstrate that the proposed methods can make the aircrafttracking the desired trajectory under the case of composite disturbance and the state constraints.
     Finally, aiming at the problem of actuator fault of the attitude control system, a novel faultdiagnosis, identification and fault tolerant control strategy is presented. In ref.[199], there is aswitching function in the control variable of the sliding mode disturbance observer which may lead tothe problem of chattering phenomena of the composite disturbance reconstruction value. A modifiedsliding mode disturbance observer is proposed to reconstruct the composite disturbance. Consideringthe actuator fault models include both the loss of actuator effectiveness fault and the actuator-stuckfault, a local actuator fault estimation algorithm is presented which is similar to the mode referenceadaptive control. Then, an attitude controller based on the proposed composite disturbancereconstruction algorithm, the actuator fault estimation algorithm and backstepping is designed. Thestability of closed-loop system is analysed via Lyapunov method and the excellent performance isdemonstrated by simulation.
引文
[1] Yu Yushu, Ding Xilun. A quadrotor test bench for six degree of freedom flight[J]. Journal ofIntelligent&Robotic Systems,2012,68(3-4):323-338.
    [2] Guerrero-Castellanosa J F, Marchandb N, Hablyb A. Bounded attitude control of rigid bodies:Real-time experimentation to a quadrotor mini-helicopter[J]. Control Engineering Practice,2011,19(8):790-797.
    [3] Erginer Bora, Altu Erdin. Design and implementation of a hybrid fuzzy logic controller for aquadrotor VTOL vehicle[J]. International Journal of Control, Automation, and Systems,2012,10(1):61-70.
    [4] Nicola C, Macnaba C J B, Ramirez-Serranob A. Robust adaptive control of a quadrotorhelicopter[J]. Mechatronics,2011,21(6):927-938.
    [5] Kim Jinhyun, Kang Min-Sung, Park Sangdeok. Accurate modeling and robust hovering controlfor a quad–rotor VTOL aircraft[J]. Journal of Intelligent and Robotic Systems,2010,57(1-4):9-26.
    [6] Chen Xiangjian, Li Di, Bai Yue, Xu Zhijun. Modeling and neuo-fuzzy adaptive attitude controlfor eight-rotor MAV[J]. International Journal of Control, Automation, and System,2011,9(6):1154-1163.
    [7]王振华,黄宵宁,梁焜,李少斌,杨忠.基于四旋翼无人机的输电线路巡检系统研究[J].中国电力,2012,45(10):59-62.
    [8]杨成顺,杨忠,葛乐,黄宵宁,李少斌.基于多旋翼无人机的输电线路智能巡检系统[J].济南大学学报,2013,27(4):358-362.
    [9] http://www.ted.com/talks/vijay_kumar_robots_that_fly_and_cooperate.html.
    [10] Bachrach.A G, He Ruijie, Roy Nicholas. Autonomous flight in unstructured and unknownindoor environments[J]. International Journal of Micro Air Vehicles,2009,1:217-228.
    [11] M. Cutler. Comparison of fixed and variable pitch actuators for agile quadrotors[C]. AIAAGuidance, Navigation, and Control Conference (GNC), Portland, OR,2011.
    [12] B. Michini. Design and flight testing of an autonomous variable-pitch quadrotor[C]. IEEEInternational Conference on Robotics and Automation (ICRA),2011.
    [13] Mark Cutler, Jonathan P. How. Actuator constrained trajectory generation and control forVariable-Pitch quadrotors[C]. AIAA Guidance, Navigation, and Control Conference (GNC),Minneapolis, Minnesota,2012.
    [14] http://www.microdrones.com/index.php.
    [15]王田苗,汪列武,梁建宏.四旋翼自主飞行与轨迹跟踪控制[J].计算机与现代化,2012,(5):126-129.
    [16]宿敬亚,张瑞峰,王新华,蔡开元.基于滤噪微分器的四旋翼飞行器控制[J].控制理论与应用,2009,26(8):827-832.
    [17]宿敬亚,樊鹏辉,蔡开元.四旋翼飞行器的非线性PID姿态控制[J].北京航空航天大学学报,2011,37(9):1050-1054.
    [18]谷永晟,杨建军,朱宇虹.四旋翼无人飞行器导航控制系统研究[J].遥控遥测,2012,33(3):68-73.
    [19]王俊生,马宏绪,蔡文澜,税海涛,聂博文.基于ADRC的小型四旋翼无人直升机控制方法研究[J].弹道与制导学报,2008,28(3):31-34,40.
    [20]张广玉,张洪涛,李隆球,王林.四旋翼微型飞行器设计[J].哈尔滨理工大学学报,2012,17(3):110-114.
    [21]王帅,周洋.用于危险区域物品清理的四旋翼飞行抓捕手[J].兵工自动化,2011,30(3):78-80.
    [22]王帅,魏国.卡尔曼滤波在四旋翼飞行器姿态测量中的应用[J].兵工自动化,2011,30(1):73-74,80.
    [23]韩志凤,李荣冰,刘建业,杭义军.小型四旋翼飞行器动力学模型优化[J].控制工程,2013,20(5):158-162.
    [24]郭晓鸿.微型四旋翼无人机控制系统设计与实现[D].南京:南京航空航天大学,2012.
    [25] www.dji-innovations.com/cn/.
    [26] http://www.zerouav.com/.
    [27]杨忠,黄宵宁,李桥梁,杨成顺.新型面对称布局多旋翼飞行器:中国, CN202071985U[P],2011-12-14.
    [28]杨忠,黄宵宁,李桥梁,杨成顺.面对称布局多旋翼飞行器:中国, CN102126554A[P],2011-07-20.
    [29]杨忠,黄宵宁,李桥梁,等.基于多旋翼无人飞行器的输电线路巡检系统:中国,CN202042825U [P],2011-11-16.
    [30]杨忠,黄宵宁,李桥梁,等.基于多旋翼无人飞行器的输电线路巡检系统:中国,CN102183955A[P],2011-09-14.
    [31] Kanellakopoulos I, Kokotovic P V, Morse A S. Systematic design of adaptive controllers forfeedback linearizable system[J]. IEEE Transactions on Automatic Control,1991,36(11):1241-1253.
    [32] Jiang Z P, Hill D J. A robust adaptive backstepping scheme for nonlinear systems withunmodeled dynamics[J]. IEEE Transactions on Automatic Control,1999,44(9):1705-1711.
    [33] Li J H, Lee P M. A neural network adaptive controller design for free-pitch-angle divingbehavior of an autonomous underwater vehicle[J]. Robotics and Autonomous Systems,2005,52(2-3):132-144.
    [34] Li T S, Yang Y S, Hong B G. A robust adaptive nonlinear control approach to ship straight-pathtracking design[C]. In:2005American Control Conference, Portland,2005,4016-4021.
    [35] Swaroop D, Hedrick J K. Dynamic surface control for a class of nonlinear systems[J]. IEEETransactions on Automatic Control,2000,45(10):1893-1899.
    [36] Yao B, Tomizuka M. Adaptive robust control of MIMO nonlinear systems in semi-strictfeedback forms[J]. Automatica,2001,37(9):1305-1321.
    [37] Madani T, Benallegue A. Control of a quadrotor mini-helicopter via full state backsteppingtechnique[C]. Proceeding of the45th IEEE Conference. Decision and Control,2006:1515-1520.
    [38] Madani T, Benallegue A. Backstepping control for a quadrotor helicopter[C]. Proceedings ofthe2006IEEE/RSJ International Conference on Intelligent Robots and Systems,2006:3255-3260.
    [39] Madani T, Benallegue A. Backstepping sliding mode control applied to a miniature quadrotorflying robot[C]. Proceedings of the32nd IEEE Annual Conference on Industrial Electronics,2008:700-705.
    [40] Madani T, Benallegue A. Sliding mode observer and backstepping control for a quadrotorunmanned aerial vehicles[C]. Proceedings of the2007American Control Conference,2007:5887-5891.
    [41] Hamel T, Mahony R, Lozano R, et al. Dynamic modelling and configuration stabili-zation foran X4-Flyer[C]. Proceedings of the IFAC World Congress,2002.
    [42] Mckerrow. Modelling the Draganflyer four rotor helicopter[C]. Proceedings of the2004International Conference Robotics and Automation,2004:3596–3601.
    [43] Bouabdallah S, Siegwart R. Backstepping and sliding mode techniques applied to an indoormicro quadrotor[C]. Proceedings of the2005IEEE International Conference Robotics andAutomation,2005:2247–2252.
    [44] Pollini L, Metrangolo A. Simulation and robust backstepping control of a quadrotor aircraft[C].AIAA Modeling and Simulation Technologies Conference Exhibit,2008.
    [45] Farrell J, Sharma M, Polycarpou M. Backstepping-based flight control with adaptive functionapproximation[J]. Journal of Guidance, Control, and Dynamics,2005,28(6):1089–1102.
    [46] Das A, Lewis F, Subbarao K. Backstepping approach for controlling a quadrotor usinglagrange form dynamics[J]. Journal of Intelligent and Robotic Systems,2009,56(1-2):127-151.
    [47] Nagaty A, Saeedi S, Thibault C, Seto M, Li H. Control and navigation framework forquadrotor helicopters[J]. Journal of Intelligent&Robotic Systems,2013,70(1-4):1-12.
    [48] Raptis I A, Valavanis K P, Moreno W A. System identification and discrete nonlinear control ofminiature helicopters using backstepping[J]. Journal of Intelligent and Robotic Systems,2009,55(2-3):223-243.
    [49] Garratt M, Anavatti S. Non-linear control of heave for an unmanned helicopter using a neuralnetwork[J]. Journal of Intelligent&Robotic Systems,2012,66(4):495-504.
    [50] Wang GuanLin, Xia Hui, Yuan XiaMing, Fan Yong, Zhu JiHong. Modeling the yaw dynamicsof an unmanned helicopter through modes partition method[J]. Science China TechnologicalSciences,2012,55(1):182-192.
    [51] Chen Mou, Jiang Bin. Robust attitude control of near space vehicles with time-varyingdisturbances[J]. International Journal of Control, Automation and Systems,2013,11(1):182-187.
    [52] He Naibao, Gao Qian, Gong Chenglong, Jiang Changsheng. Research on disturbance innear-space-vehicle longitudinal trajectory system[C].201325th Chinese Control and DecisionConference (CCDC), Guiyang,2013,159-162.
    [53] Vinod V, Geetha S, Dasgupta S. Controller design for ascent phase of reusable launch vehicleusing backstepping[J]. Journal of the Institution of Engineers (India): Series C,2012,93(1):41-45.
    [54] Qian Moshu, Jiang Bin, Xu Dezhi. Fault tolerant tracking control scheme for UAV usingdynamic surface control technique[J]. Circuits, Systems, and Signal Processing,2012,31(5):1713-1729.
    [55] Gu Wenjin, Zhao Hongchao, Pan Changpeng. Sliding mode control for an aerodynamic missilebased on backstepping design[J]. Journal of Control Theory and Applications,2005,3(1):71-75.
    [56] Shi Jianhong, Zhao Guorong, Lei Junwei, Liang Guoqiang. Research on backsteppingnussbaum gain control of missile overload system[J]. Advances in Computer Science,Environment, Ecoinformatics, and Education, Communications in Computer and InformationScience,2011,214:612-615.
    [57] Zuo Z. Trajectory tracking control design with command-filtered compensation for aquadrotor[J]. IET Control Theory and Application,2010,4(11),2343-2355.
    [58] Esfandiari F, Khalil H K. Output feedback stabilization of fully linearizable systems[J].International Journal of Control,1992,56(5):1007-1037.
    [59] Isidori A. Nonlinear control systems: Communications and control engineering series[M].Berlin, Germany: Springer-Verlag,1995:70-118.
    [60] Sam G S, Wang J. Robust adaptive tracking for time-varying uncertain nonlinear systems withunknown control coefficients[J]. IEEE Transactions on Automatic Control,2003,48(8):1463-1469.
    [61] Khalil H K. Nonlinear system[M].3rd Ed, Upper Saddle River, New Jersey: Prentice-Hall,2002.
    [62] McFarland M B. Adaptive nonlinear control of missiles using neural networks [D]. Atlanta,Georgia Institute of Technology,1997.
    [63] McFarland M B, Calise A J. Adaptive nonlinear control of agile antiair missiles using neuralnetworks [J]. IEEE Transactions on Control Systems Technology,2000,8(5):749-756.
    [64] Brockett R W. Nonlinear systems and differential geometry [J]. Proceedings of the IEEE,1976,64(1):61-72.
    [65] Kuo C Y, Spetanto D, Chiou Y C. Geometric analysis of flight control command for tacticalmissile guidance[J]. IEEE Transactions on Control Systems Technology,2001,9(2):234-243.
    [66] Isidori A, Marconi L, Serrani A. Robust nonlinear motion control of a helicopter[J]. IEEETransactions on Automatic Control,2003.48(3):413-426.
    [67] Singh S N, Yim W. Feedback linearization and solar pressure satellite attitude control[J]. IEEETransactions on Aerospace and Electronic Systems,1996,32(2):732-741.
    [68] Han Y T, Sun Y, Mo H W, et al. Design of flight control law for underwater supercavitatingvehicle[C]. Proceedings of the27th Chinese Control Conference, Kunming,2008:289-293.
    [69] White B A, Shin H Y, Tsourdos A. UAV obstacle avoidance using differential geometryconcepts[C].18th IFAC World Congress, Milano, Italy,2011:6325-6330.
    [70] Meyer G, Su R, Hunt L R. Application of nonlinear transformation to automatic flight control[J], Automatica,1984,20(1):103-107.
    [71] Huang J, Lin C F, Cloutier J R, et al. Robust feedback linearization approach to autopilotdesign[C]. First IEEE Conference on Control Applications, Dayton, USA,1992:220-225.
    [72] Hauser J, Sastry S, Meyer G. Nonlinear control design for slightly non-minimum phasesystems: application to V/STOL aircraft[J]. Automatica,1992,28(4):665-679.
    [73] Godbole A A, Talole S E. Robust feedback linearization approach to pitch autopilot design[C].2011International Conference on Control, Robotics and Cybernetics, New Delhi, India,2011:76-80.
    [74] Tomlin C, Lygeros J, Benvenuti L. Output tracking for a non-minimum phase dynamic CTOLaircraft model[C], Proceeding of the34th IEEE Conference in Decision and Control, NewOrleans: USA,1995:1867-1872.
    [75] Das A, Subbarao K, Lewis F. Dynamic inversion with zero-dynamics stabilisation forquadrotor control[J]. IET Control Theory and Applications,2009,3(3):303-314.
    [76] Das A, Subbarao K, Lewis F. Dynamic inversion of quadrotor with zero-dynamics stabilization[C]. IEEE International Conference on Control Applications,2008,1189-1194.
    [77] Lane S H, Stengel R F. Flight control design using nonlinear inverse dynamics[J]. Automatica,1988,24(4):471-483.
    [78] Snell S A. Nonlinear dynamic-inversion flight control of supermaneuverable aircraft[D].Minnesota: University of Minnesota,1991.
    [79] Somakumar R, Chandrasekhar J. Neural network based nonlinear inverse dynamics for flightcontroller design[C]. Proceedings of the1998IEEE International Conference on ControlApplications, Trieste, Italy,1998:187-191.
    [80] Zhu R G, Jiang C S, Feng B. Adaptive flight control system of armed helicopter using waveletneural network method[J], Transactions of Nanjing University of Aeronautics and Astronautics,2004,21(2):157-162.
    [81] McFarland M B, Calise A J. Neural-adaptive nonlinear nonlinear autopilot design for an agileanti-air missile[C]. AIAA Guidance, Navigation and Control Conference, San Diego, USA,AIAA96-3914:1-9.
    [82] Leitner J, Calise A J, Prasad J V R. Analysis of adaptive neural networks for helicopter flightcontrols[J]. AIAA Journal of Guidance, Control, and Dynamics,1997,20(5):972-979.
    [83] Namba T, Uchiyama K. Fault-tolerant adaptive flight control system using feedbacklinearization[C]. AIAA Guidance, Navigation, and Control Conference, Portland, USA,AIAA-2011-6717:1-12.
    [84] Snell A, Enns D, Garrard W. Nonlinear inversion flight control for a super maneuverableaircraft[J]. Journal of Guidance, Control and Dynamics,1992,15(4):976-984.
    [85] Johnson E N, Calise A J. Limited authority adaptive flight control for reusable launch vehicles[J]. AIAA Journal of Guidance, Control, and Dynamics,2003,26(6):906-913.
    [86] Wunch W S. Reproduction of an arbitrary function of time by discontinuous control[D].Stanford: Stanford University,1953.
    [87] Chung Y C, Wen B J, Lin Y C. Optimal fuzzy sliding-mode control for bio-microfluidicmanipulation[J]. Control Engineering Practice,2007,15(9):1093-1105.
    [88] Wu L, Ho D W C, Li C W. Sliding mode control of switched hybrid systems with stochasticperturbation[J]. Systems&Control Letters,2011,60:531-539.
    [89] Lin T C, Chen M C. Adaptive hybrid type-2intelligent sliding mode control for uncertainnonlinear multivariable dynamical systems[J]. Fuzzy Sets and Systems,2011,171(1):44-71.
    [90] Daly J M, Wang D W L. Output feedback sliding mode control in the presence of unknowndisturbances[J]. Systems&Control Letters,2009,58(3):188-193.
    [91] Tseng M L, Chen M S. Chattering reduction of sliding mode control by low-pass filtering thecontrol signal[J]. Asian Journal of Control,2010,12(3):392-398.
    [92] Defoort M, Floquet T, Kkosy A, et al. A novel higher order sliding mode control scheme[J].Systems&Control Letters,2009,58(2):102-108.
    [93] Shtessel Y B, Kaveh P, Ashrafi A. Harmonic oscillator utilizing double-fold integral, traditionaland second-order sliding mode control[J]. Journal of the Franklin Institute,2009,346(9):872-888.
    [94] Roopaei M, Zolghadri M, Meshksar S. Enhanced adaptive fuzzy sliding mode control foruncertain nonlinear systems[J]. Communications in Nonlinear Science and NumericalSimulation,2009,14(9-10):3670-3681.
    [95] Herrmann G, Spurgeon S K, Edwards C. On robust, multi-input sliding-mode based controlwith a state-dependent boundary layer[J]. Journal of Optimization Theory and Applications,2006,129(1):89-107.
    [96] Fuh C C. Variable-thickness boundary layers for sliding mode control[J]. Journal of MarineScience and Technology,2008,16(4):288-294.
    [97] Gao W B, Hung J C. Variable structure control of nonlinear systems: a new approach[J]. IEEETransactions on Industrial Electronics,1993,40(1):45-55.
    [98] Chen W Y, Gao C C, Zhao L. Chattering-free sliding mode control for linear uncertain systemswith multiple time-delays[C].2010Second Pacific-Asia Conference on Circuits,Communications and System, Beijing,2010:39-42.
    [99] Cheng N B, Guan L W, Wang L P, et al. Chattering reduction of sliding mode control byadopting nonlinear saturation function[J]. Advanced Materials Research,2011,143-144:53-61.
    [100] Zeghlache S, Saigaa D, Kara K. Fuzzy sliding mode control with chattering elimination for aquadrotor helicopter in vertical flight[J]. Hybrid Artificial Intelligent Systems Lecture Notes inComputer Science,2012,7208:125-136.
    [101] Lee Daewon, Jin Kim H, Sastry Shankar. Feedback linearization vs. adaptive sliding modecontrol for a quadrotor helicopter[J]. International Journal of Control, Automation and Systems,2009,7(3):419-428.
    [102] Harl N, Balakrishnan S N. Reentry terminal guidance through sliding mode control [J]. Journalof Guidance, Control, and Dynamics,2010,33(1):186-199.
    [103] Yeh H H, Nelson E, Sparks A. Nonlinear tracking control for satellite formations[J]. Journal ofGuidance, Control, and Dynamics,2002,25(2):376-386.
    [104] Ahn C, Kim Y D. Point targeting of multisatellites via a virtual structure formation flightscheme[J]. Journal of Guidance, Control, and Dynamics,2009,32(4):1330-1344.
    [105] Shtessel Y B, Tournes C H. Integrated higher-order sliding mode guidance and autopilot fordual-control missiles[J]. Journal of Guidance, Control, and Dynamics,2009,32(1):79-94.
    [106] Levant A, Pridor A, Gitizadeh R, et al. Aircraft pitch control via second-order sliding technique[J]. Journal of Guidance, Control, and Dynamics,2000,23(4):586-594.
    [107] Bergsten P, Palm R, Driankov D. Observers for Takago-Sugeno fuzzy systems[J]. IEEETransactions on Systems, Man and Cybernetics-Part B: Cybernetics.2002,32(1):114-21.
    [108] Takeshi F, Somboon S, Shigeru O. A position-and-velocity sensorless control for brushless DCmotors using an adaptive sliding mode observer[J]. IEEE Transactions on IndustrialElectronics,1992,39(2):89-95.
    [109] Mezouar A, Fellah M K, Hadjeri S. Adaptive sliding-mode-observer for sensorless inductionmotor drive using two-time-scale approach[J]. Simulation Modelling Practive and Theory,2008(16):1323-1336.
    [110] Inoue Akira, Deng Mingcong. Framework of combined adaptive and non-adaptive attitudecontrol system for a helicopter experimental system[J]. International Journal of Automationand Computing,2006,3(3):229-234.
    [111] Ferreira de Loza A, Ríos H, Rosales A. Robust regulation for a3-DOF helicopter viasliding-mode observation and identification[J]. Journal of the Franklin Institute,2012,349(2):700-718.
    [112] Zhou Yanlong, Chen Mou. Sliding mode control for NSVs with input constraint using neuralnetwork and disturbance observer[J]. Mathematical Problems in Engineering,2013, Article ID:904830.
    [113]张军,姜长生.基于复杂干扰估计的高速NSV鲁棒自适应模糊Terminal滑模控制[J].宇航学报,2009,30(5):1896-1901.
    [114] Richalet J. Model predictive heuristic control: applications to industrial processes[J].Automatica,1978,14(5):413-428.
    [115] Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control[J]. Automatica,1987,23(2):137-160.
    [116]席裕庚.预测控制[M].北京:国防工业出版社,1993.
    [117] Li Y, Mao Z Z, Wang Y, Yuan P, et al. Model predictive control synthesis approach of electroderegulator system for electric arc furnace[J]. International Journal of Iron and Steel Research,2011,18(11):20-25.
    [118] Liu Y, Gao Y C, Gao Z L, et al. Simple nonlinear predictive control strategy for chemicalprocess using sparse kernel learning with polynomial form [J]. Industrial&EngineeringChemistry Research,2010,49(17):8209-8218.
    [119] Maner B R, Doyle F J, Ogunnaike B A, et al. Nonlinear model predicitive control of asimulated multivariable polymerization reactor using second-order volterra models [J].Automatica,1996,32(9):1285-1301.
    [120] Wills A G, Heath W P. Application of barrier function based model predictive control to anedible oil refining process[J]. Journal of Process Control,2005,15(2):183-200.
    [121] Cortes P, Kazmierkowski M P, Kennel R M, et al. Predictive control in power electronics anddrives [J]. IEEE Transactions on Industrial Electronics,2008,55(12):4312-4324.
    [122] Pacheco L, Luo N S. Mobile robot local trajectory tracking with dynamic model predictivecontrol techniques[J]. International Journal of Innovative Computing, Information and Control,2011,7(6):3457-3483.
    [123] Cheng L, Jiang C S, Pu M. Online-SVR-compensated nonlinear generalized predictive controlfor hypersonic vehicles[J]. Science China (Information Sciences),2011,54(3):551-562.
    [124] Slegers N, Kyle J, Costello M. Nonlinear model predictive control technique for unmanned airvehicles[J]. Journal of Guidance, Control, and Dynamics,2006,29(5):1179-1188.
    [125] Nguyen N, Ardema M. Predictive optimal control of a hyperbolic distributed model for a windtunnel[J]. Journal of Guidance, Control, and Dynamics,2006,29(3):626-633.
    [126] Slegers N, Costello M. Model predictive control of a parafoil and payload system[J]. Journalof Guidance, Control, and Dynamics,2005,28(4):816-821.
    [127] Kluever C A. Entry guidance performance for Mars precision landing[J]. Journal of Guidance,Control, and Dynamics,2008,31(6):1537-1544.
    [128] Garcia C E, Morari M. Internal model control: a unifying review and some new results[J].Industrial and Engineering Chemistry Process Design and Development,1982,21(2):308-323.
    [129] Cutler C R, Ramaker B L. Dynamic matrix control-a computer control algorithm[C].Proceedings of the Joint Automatic Control Conference, San Francisco, USA: AmericanAutomatic Control Council,1980, WP5-B.
    [130] Rouhani R, Mehra R K. Model algorithmic control (MAC): basic theoretical properties[J].Automatica,1982,18(4):401-414.
    [131] Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control [J]. Automatica,1987,23(2):137-160.
    [132] Gawthrop P J, Ronco E. Predictive pole-placement control with linear models [J]. Automatica,2002,38(3):421-432.
    [133] Guilandoust M T, Morris A J, Tham M T. Adaptive inferential control [C]. IEE ProceedingsPart D: Control Theory and Applications,1987,134(3):171-179.
    [134] Alexisa Kostas, Nikolakopoulosb George, Tzesa Anthony. Switching model predictive attitudecontrol for a quadrotor helicopter subject to atmospheric disturbances[J]. Control EngineeringPractice,2011,19(10):1195-1207.
    [135] Abdolhosseini Mahyar, Zhang Youmin, Rabbath Camille Alain. Trajectory tracking withpredictive control for an unmanned quad-rotor helicopter: theory and flight test results[J].Intelligent Robotics and Applications Lecture Notes in Computer Science,2012,7506:411-420.
    [136] Alexis, K, Papachristos C, Nikolakopoulos G, Tzes, A. Model predictive quadrotor indoorposition control[C].201119th Mediterranean Conference on Control&Automation (MED),2011,1247-1252.
    [137] Garcia G A, Keshmiri S. Nonlinear model predictive controller for navigation, guidance andcontrol of a fixed-wing UAV[C]. AIAA Guidance, Navigation, and Control Conference,Portland, USA, AIAA2011-6310:1-14.
    [138] Joos A, Muller M A, Baumgartner D, et al. Nonlinear predictive control based on time-domainsimulation for automatic landing[C]. AIAA Guidance, Navigation, and Control Conference,Portland, USA, AIAA2011-6298:1-15.
    [139] Barlow J S, Stepanyan V, Krishnakumar K. Estimating loss-of-control: a data-based predictivecontrol approach[C]. AIAA Guidance, Navigation, and Control Conference, Portland, USA,AIAA2011-6408:1-9.
    [140] Youssef A, Grimble M, Ordys A, et al. Robust nonlinear predictive flight control [C]. EuropeanControl Conference2003, Cambridge, England,2003:1-6.
    [141] Eklund J M, Sprinkle J, Sastry S S. Switched and symmetric pursuit/evasion games usingonline model predictive control with application to autonomous aircraft[J]. IEEE Transactionson Control Systems Technology,2012,20(3):604-620.
    [142] Shin J, Kim H J. Nonlinear model predictive formation flight [J]. IEEE Transactions onSystems, Man, and Cybernetics–Part A: Systems and Humans,2009,39(5):1116-1125.
    [143] Almeida F A, Leibling D. Fault-tolerant model predictive control with flight-test results[J].Journal of Guidance, Control, and Dynamics,2010,33(2):363-375.
    [144] Almeida F A. Reference management for fault-tolerant model predictive control[J]. Journal ofGuidance, Control, and Dynamics,2011,34(6):44-56.
    [145] Yao Y, Yang B Q, Qiao Y P, et al. Attitude control of missile via Fliess expansion[J]. IEEETransactions on Control Systems Technology,2008,16(5):959-970.
    [146] Chen W H. Optimal control of nonlinear systems: a predictive control approach[J]. Automatica,2003,39(4):633-641.
    [147] Song D L, Qi J T, Han J D, et al. Active model based predictive control for unmannedhelicopter in full flight envelope [C]. The2010IEEE/RSJ International Conference onIntelligent Robots and Systems, Taipei, Taiwan,2010:616-621.
    [148] He D L, Cao X B. Predictive control for satellite formation keeping[J]. Journal of SystemsEngineering and Electronics,2008,19(1):161-166.
    [149] Crassidis J L, Markley F L, Anthony T C, et al. Nonlinear predictive control of spacecraft[J].Journal of Guidance, Control, and Dynamics,1997,20(6):1096-1103.
    [150] Hyochoong B. Predictive control for the attitude maneuver of a flexible spacecraft[J].Aerospace Science and Technology,2004,8(1):443-452.
    [151] Castillo P, Dzul A, Lozano R. Real-time stabilization and tracking of a four-rotor minirotorcraft[J]. IEEE Transactions on Control Systems Technology,2004,12(4),510–516.
    [152] Castillo P, Lozano R, Dzul A. Stabilization of a mini rotorcraft having four rotors[J]. IEEEControl Systems Magazine,2005,25(6),45–55.
    [153] Mokhtari A, Benallegue A, Orlov Y. Exact linearization and sliding mode observer for aquadrotor unmanned aerial vehicle[J]. International Journal of Robotics and Automation,2006,21(1),39-49.
    [154] Mokhtari A, Benallegue A, Daachi B. Robust feedback linearization and GH∞controller for aquadrotor unmanned aerial vehicle[J]. Journal of Electrical Engineering,2006(1),57,20–27.
    [155]杨超,宋寿峰.对直升机动力学的现状与发展的分析[J].北京航空航天大学学报,1995,21(2):42-52.
    [156]王适存等.直升机空气动力学[M].南京航空航天大学,1976.
    [157] Raymond W P. Helicopter Performance, Stability, and Control[M]. PWS Engineering Boston,1986.
    [158]吴大卫,李书.基于优化算法的倾转旋翼准定常气动模型[J].航空动力学报,2013,28(4):759-764.
    [159]唐亮,徐庆九,赵鹏.倾转旋翼机模型及仿真[J].四川兵工学报,2012,33(10):18-20,33.
    [160] Felipe B, Darryll P, Paul D S. Small rotor design optimization using blade element momentumtheory and hover tests[J]. Journal of Aircraft,2010,47(1):268-283.
    [161] Stephen A W, Robert S M. Nonlinear large angle solutions of the blade element momentumtheory propeller equations[J]. Journal of Aircraft,2012,49(4):1126-1134.
    [162] Gao Qiuxin, Jin Wei, Vassalos Dracos. The calculations of propeller induced velocity byRANS and momentum theory[J]. Journal of Marine Science and Application,2012,11(2):164-168.
    [163]王博,招启军,徐广,徐国华.一种适合于旋翼前飞非定常流场计算的新型运动嵌套网格方法[J].空气动力学报,2012,30(1):14-21.
    [164]魏靖彪,薛晓中,舒敬荣,孙传杰.悬停状态旋翼流场计算方法评述[J].弹道学报,2002,14(3):90-96.
    [165] Bagai A, Leishman J G. Rotor free-wake modeling using a pseudo implicit relaxationalgorithm[J].Journal of Aircraft,1955,32(6):1276-1285.
    [166]李春华,徐国华.悬停和前飞状态倾转旋翼机的旋翼自由尾迹计算方法[J].空气动力学学报,2005,23(2):152-156.
    [167] Kang H J, Kwon O J. Unstructured mesh navier-stokes calculations of the flow field of ahelicopter rotor in hover[J]. Journal of the American Helicopter Society,2002,47(2):90-99.
    [168]解福田,宋文萍,韩忠华.低耗散格式在旋翼前飞气动噪声预测中的应用研究[J].西北工业大学学报,2009,2:151-156.
    [169]牟斌,肖中云,周铸,等.直升机旋翼悬停流场的粘性数值模拟[J].空气动力学学报,2009,27(5):582-585.
    [170]叶靓,招启军,徐国华.基于非结构嵌套网格和逆风格式的旋翼悬停流场数值模拟[J].空气动力学学报,2009,27(1):62-66.
    [171]第五鹏杰,杨树兴.微小型多旋翼飞行器的非线性建模研究[J].兵工自动化,2012,31(6):14-17.
    [172]钱杏芳,林瑞雄,赵亚男.导弹飞行力学[M].北京:北京理工大学出版社,2011.
    [173] Goldstein R. Classical mechanics.2nd edn. Addison Wesley, Reading, MA,1980.
    [174] Yu Lei, Fei Shumin, Li Xun. RBF neural networks-based robust adaptive tracking control forswitched uncertain nonlinear systems[J]. International Journal of Control, Automation andSystems,2012,10(2):437-443.
    [175] Luan Xiaoli, Liu Fei, Shi Peng. Robust finite-time H∞control for nonlinear jump systems vianeural networks[J]. Circuits, Systems and Signal Processing,2010,29(3):481-498.
    [176] Tong Shaocheng, Li Yongming. Adaptive backstepping output feedback control for SISOnonlinear system using fuzzy neural networks[J]. International Journal of Automation andComputing,2009,6(2):145-153.
    [177] Rovithakis G A, Christodoulou M A. Regulation of unknown nonlinear dynamical systems viadynamical neural networks[J]. Journal of Intelligent and Robotic Systems,1995,12(3):259-275.
    [178] Theocharis J, Vachtsevanos G. Adaptive fuzzy neural networks as identifiers of discrete-timenonlinear dynamic systems[J]. Journal of Intelligent and Robotic Systems,1996,17(2):119-168.
    [179] Rigatos G, Siano P, Zervos N. An approach to fault diagnosis of nonlinear systems using neuralnetworks with invariance to Fourier transform[J]. Journal of Ambient Intelligence andHumanized Computing,2013.
    [180] Yang Hongwei, Li Zhiping. Adaptive backstepping control for a class of semistrict feedbacknonlinear systems using neural networks[J]. Journal of Control Theory and Applications,2011,9(2):220-224.
    [181] Wen Shiping, Zeng Zhigang, Huang Tingwen, Bao Gang. Robust passivity and passificationfor a class of singularly perturbed nonlinear systems with time-varying delays and polytopicuncertainties via neural networks[J]. Circuits, Systems, and Signal Processing,2013,32(3):1113-1127.
    [182] Yuan Xiaofang, Wang Yaonan. Neural networks based self-learning PID control of electronicthrottle[J]. Nonlinear Dynamics,2009,55(4):385-393.
    [183] Wang Huanqing, Chen Bing, Lin Chong. Adaptive neural tracking control for a class ofperturbed pure-feedback nonlinear systems[J]. Nonlinear Dynamics,2013,72(1-2):207-220.
    [184] Sun Gang, Wang Dan, Li Tieshan, Peng Zhouhua, Wang Hao. Single neural networkapproximation based adaptive control for a class of uncertain strict-feedback nonlinearsystems[J]. Nonlinear Dynamics,2013,72(1-2):175-184.
    [185] Wang Ruliang, Mei Kunbo, Chen Chaoyang. Adaptive neural control for MIMO nonlinearsystems with state time-varying delay[J]. Journal of Control Theory and Applications,2012,10(3):309-318.
    [186] Li Tieshan, Li Ronghui, Li Junfang. Decentralized adaptive neural control of nonlinearsystems with unknown time delays[J]. Nonlinear Dynamics,2012,67(3):2017-2026.
    [187] Ji Geng. Adaptive neural network dynamic surface control for perturbed nonlinear time-delaysystems[J]. International Journal of Automation and Computing,2012,9(2):135-141.
    [188] Leeghim Henzeh, Seo In-Ho, Bang Hyochoong. Adaptive nonlinear control using inputnormalized neural networks[J]. Journal of Mechanical Science and Technology,2008,22(6):1073-1083.
    [189] Du Yanli, Wu Qingxian, Jiang Chengsheng. Robust optimal predictive control for a near spacevehicle based on functional link network disturbance observer[J]. Journal of Astronautics,2009,30(4),1489-1497.
    [190] Chen M, Ge S S, How B V. Robust Adaptive neural network control for a class of uncertainMIMO nonlinear systems with input nonlinearities[J]. IEEE Transactions on Neural Networks,2010,21(5):796-812.
    [191] Swaroop D, Gerdes J C, Hedrick J K. Dynamic surface control of nonlinear systems[C].Proceedings of the American Control Conference, Albuquerque, New Mexico,1997.
    [192] MAN Z H, Paplinski P, WU H R. A robust MIMO terminal sliding mode control scheme forrigid robot manipulators[J]. IEEE Transactions on Automatic Control,1994,39(2):2464-2469.
    [193] Zhang Ruimin, Sun Changyin, Zhang Jingmei, Zhou Yingjiang. Second-order terminal slidingmode control for hypersonic vehicle in cruising flight with sliding mode disturbance observer[J]. Journal of Control Theory and Applications,2013,11(2):299-305.
    [194] Mezghani Ben Romdhane Neila, Damak Tarak. Adaptive terminal sliding mode control forrigid robotic manipulators[J]. International Journal of Automation and Computing,2011,8(2):215-220.
    [195] Bouadi H, Bouchoucha M, Tadjine M. Sliding mode control based on backstepping approachfor an UAV type-quadrotor[C]. Proceedings of world academy of science, engineering andtechnology, Vol.20,2007.
    [196] Kristic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and adaptive control design [M]. NewYork: John Wiley and Sons,1995.
    [197] Besnard L, Alabama U H, Shtessel Y B, Landrum B. Control of a quadrotor vehicle usingsliding mode disturbance observer[C].2007American Control Conference, New York City,USA, July11-13,2007.
    [198]曾宪法,王洁瑶,王小虎,等.基于SMDO的滑模控制器设计及其在导弹上的应用[J].航空学报,2011,35(5):873-880.
    [199]程路.近空间飞行器鲁棒自适应协调控制研究[D].南京:南京航空航天大学,2011.
    [200] Farrell J, Polycarpou M, Sharma M. Backstepping-based flight control with adaptive functionapproximation[J]. Journal of Guidance, Control and Dynamics,2005,28(6):1089-1102.
    [201] F. Lewis, S. Jagannathan, A. Yesildirek. Neural Network Control of Robot Manipulators andNonlinear Systems[M]. Taylor and Francis, London,1999.
    [202]周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社,2000.
    [203] Noura H, Theillilo D. Fault-tolerant Control Systems: Design and Practical Applications[M].Springer-Verlag, Berlin,2009.
    [204] Ye Dan, Yang Guanghong. Adaptive fault-tolerant tracking control against actuator faults withapplication to flight control[J]. IEEE Transactions on Control Systems Technology,2006,14(6):1088-1096.
    [205] Jiang Bin, Staroswiecki M, Cocquempot V. Fault accommodation for nonlinear dynamicsystems[J]. IEEE Transactions on Automatic Control,2006,51(9):1805-1809.
    [206] Zhang Youmin, Jiang Jin. Bibliographical review on reconfigurable fault-tolerant controlsystems[J]. Annual Reviews in Control,2008,32(2):229-252.
    [207] Freddi A, Longhi S, Monteriu A. A model-based fault diagnosis system for a mini-quadrotor[C].7th Workshop on Advanced Control and Diagnosis, Zielona Gora, Poland,19-20November2009.
    [208] Nguyen H V, Berbra C, Lesecq S, Gentil S, Barraud A, Godin C. Diagnosis of an inertialmeasurement unit based on set membership estimation[C]. The17th MediterraneanConference on Control and Automation, Thessaloniki, Greece,24-26June2009:211-216.
    [209] Berbra C, Lesecq S, Martinez J J. A multi-observer switching strategy for fault-tolerant controlof a quadrotor helicopter[C].16th Mediterranean Conference on Control and Automation,Ajaccio, Corsica, France,2008:1094-1099.
    [210] Zhou Q L, Zhang Y M, Rabbath C A, Theilliol D. Design of feedback linearization control andreconfigurable control allocation with application to a quadrotor UAV[C]. Proceedings of theInternational Conference on Control and Fault-Tolerant Systems, Nice, France,6-8October2010.
    [211] Zhang X B, Zhang Y M, Su C Y, Feng Y. Fault tolerant control for quadrotor UAV viabackstepping approach[C]. The48th AIAA Aerospace Sciences Meeting, Orlando, Florida,USA,4-7January2010.
    [212] Shari F, Mirzaei M, Gordon B W, Zhang Y M. Fault tolerant control of a quadrotor UAV usingsliding mode control[C]. Proceedings of the International Conference on Control andFault-Tolerant Systems, Nice, France,6-8October2010:239-244.
    [213] Sadeghzadeh I, Mehta A, Zhang Y M. Fault/damage tolerant control of a quadrotor helicopterUAV using model reference adaptive control and gain-scheduled PID[C]. AIAA Guidance,Navigation, and Control Conference, Portland, Oregon, USA,8-11August2011.
    [214] WHITAKER H. Design of model reference adaptive systems for aircraft, Report R-164.Instrumentation laboratory, MIT, Cambridge, Mass,1958.
    [215] Boskovic J, Mehra R. A decentralized fault-tolerant control system for accommodation offailures in higher-order fight control actuators[J]. IEEE Transactions on Control SystemsTechnology,2010,18(5):1103-1115.
    [216] Zhang Songtao, Ren Guang. Design of robust fuzzy controller for ship course-tracking basedon RBF network and backstepping approach[J]. Journal of Marine Science and Application,2006,5(3):5-10.
    [217] Lee T, Kim Y. Nonlinear adaptive flight control using backstepping and neural networkscontroller[J]. AIAA Journal of Guidance, Control, and Dynamics,2001,24(4):675-682.
    [218] Li Chaoyong, Jing Wuxing, Gao Changsheng. Adaptive backstepping-based flight controlsystem using integral filters[J]. Aerospace Science and Technology,2009,13(2-3):105-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700